
Architecture of the Pentium 
Microprocessor 

The Pentiwn CPU is the latest in Intel’s family of compatible microprocessors. It integrates 3.1 
million transistors in 0.8-pm BiCMOS technology. We describe the techniques of pipelining, 
superscalar execution, and branch prediction used in the microprocessor’s design. 

he Pentium processor is Intel’s next 
generation of compatible microproces- 
sors following the popular i486 CPU 
family. The design started in early 1989 

with the primary goal of maximizing performance 
while preserving software compatibility within the 
practical constraints of available technology. The 
Pentium processor integrates 3.1 million transis- 
tors in 0.8-ym BiCMOS technology and carries 
the Intel trademark. We describe the architecture 
and development process employed to achieve 
this goal. 
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Technology 
The continual advancement of semiconductor 

technology promotes innovation in microproces- 
sor design. Higher levels of integration, made 
possible by reduced feature sizes and increased 
interconnection layers, enable designers to de- 
ploy additional hardware resources for more par- 
allel computation and deeper pipelining. Faster 
device speeds lead to higher clock rates and con- 
sequently to requirements for larger and more 
specialized on-chip memory buffers. 

Table 1 (next page) summarizes the technology 
improvements associated with our three most re- 
cent microprocessor generations. The 0.8-ym 
BiCMOS technology of the Pentium microproces- 
sor enables 2.5 times the number of transistors 
and twice the clock frequency of the original i486 
CPU, which was implemented in 1.0-pm CMOS. 

Compat i bi I ity 
Since introduction of the 8086 microprocessor 

in 1978, the X86 architecture has evolved through 
several generations of substantial functional en- 
hancements and technology improvements, in- 
cluding the 80286 and i386 CPUs. Each of these 
CPUs was supported by a corresponding float- 
ing-point unit. The i486 CPU,’ introduced in 1989, 
integrates the complete functionality of an inte- 
ger processor, floating-point unit, and cache 
memory into a single circuit. 

The X86 architecture greatly appealed to soft- 
ware developers because of its widespread 
application as the central processor of IBM- 
compatible personal computers. The success of 
the architecture in PCs has in turn made the X86 
popular for commercial server applications as 
well. Figure 1 shows some of the well-known 
software environments that are hosted on the 
architecture. 

The common software environments allow the 
X86 architecture to exercise several operating 
modes. Applications developed for DOS use 16- 
bit real mode (or virtual 8086 mode) and MS 
Windows. Early versions of OS/2 use 16-bit pro- 
tected mode, and applications for other popular 
environments use 32-bit flat (unsegmented) mode. 
The Pentium microprocessor employs general 
techniques for improving performance in all op- 
erating modes, as well as certain techniques for 
improving performance in specific operating 
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Table 1. Technology for microprocessor development. 
~ ~ ~~ ~ ~ 

No. of Frequency 
Microprocessor Year Technology transistors (MHz) 

1386 CPU 1986 1.5-pm CMOS, 275K 16 
two-layer metal 

i486 CPU 1989 1 .O-pm CMOS, 1.2M 33 
two-layer metal 

Pentium CPU 1993 0.8-pm BiCMOS, 3.1M 66 
three-layer metal 
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Figure 1. Software environments. (Allfigures, tables, and 
photographspubllshed in thzs article are the property of Intel 
Colporation j 
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Figure 2. Pentium processor block diagram. 

modes. We focus on the 32-bit flat mode 
here, since this is the most appropriate 
mode for comparison with the other 
high-performance microprocessors de- 
scribed at the Hot Chips IV Conference. 

The X86 architecture supports the 
IEEE-754 standard for floating-point arith- 
metic.’ In addition to required operations 
on single-precision and double-precision 
formats, the XS6 floating-point architec- 
ture includes operations on 8O-bit, 
extended-precision format and a set of 
basic transcendental functions. 

Pentium CPU designers found numer- 
ous exciting technical challenges in de- 
veloping a microarchitecture that 

maintained compatibility with such a diverse software base. 
Later in this article we present examples of techniques for 
supporting self-modifying code and the stack-oriented, 
floating-point register file. 

Performance 
A microprocessor’s performance is a complex function of 

many parameters that vary between applications, compilers, 
and hardware systems. In developing the Pentium micropro- 
cessor, the design team addressed these aspects for each of 
the popular software environments. As a result, Pentium CPU 
features tuned compilers and cache memory. 

We focus on the performance of SPEC benchmarks for 
both the Pentium microprocessor and i486 CPU in systems 
with well-tuned compilers and cache memory. More specifi- 
cally, the Pentium CPU achieves roughly two times the 
speedup on integer code and up to five times the speedup 
on floating-point vector code when compared with an i486 
CPU of identical clock frequency. 

Organization 
Figure 2 shows the overall organization of the Pentium 

microprocessor. The core execution units are two integer 
pipelines and a floating-point pipeline with dedicated adder, 
multiplier, and divider. Separate on-chip instruction code and 
data caches supply the memory demands of the execution 
units, with a branch target buffer augmenting the instruction 
cache for dynamic branch prediction. The external interface 
includes separate address and 64-bit data buses. 

Integer pipeline 
The Pentium processor’s integer pipeline is similar to that 

of the i486 CPU.3 The pipeline has five stages (see Figure 3) 
with the following functions: 

Preftcch. During the PF stage the CPU prefetches code 
from the instruction cache and aligns the code to the 
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Figure 3. Integer pipeline. 
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Figure 4. Superscalar execution. 

initial byte of the next instruction to be decoded. Be- 
cause instructions are of variable length, this stage in- 
cludes buffers to hold both the line containing the 
instruction being decoded and the next consecutive line. 
First decode. In the D1 stage the CPU decodes the in- 
struction to generate a control word. A single control 
word executes instructions directly; more complex in- 
structions require microcoded control sequencing in D1. 

. Second decode. In the D2 stage the CPU decodes the 
control word from D1 for use in the E stage. In addition, 
the CPU generates addresses for data memory references. 
Execute. In the E stage the CPU either accesses the data 
cache or calculates results in the M U  (arithmetic logic 
unit), barrel shifter, or other functional units in the data 
path. 
Write buck In the WB stage the CPU updates the regis- 
ters and flags with the instruction’s results. All excep- 
tional conditions must be resolved before an instruction 
can advance to WB. 

Compared to the integer pipeline of the i486 CPU, the 
Pentium microprocessor integrates additional hardware in 
several stages to speed instruction execution. For example, 
the i486 CPU requires two clocks to decode several instruc- 
tion formats, but the Pentium CPU takes one clock and ex- 
ecutes shift and multiply instructions faster. More significantly, 
the Pentium processor substantially enhances superscalar ex- 
ecution, branch prediction, and cache organization. 

Superscalar execution. The Pentium CPU has a super- 
scalar organization that enables two instructions to execute 

in parallel. Figure 4 shows that the resources for address 
generation and M U  functions have been replicated in inde- 
pendent integer pipelines, called U and V. (The pipeline names 
were selected because U and V were the first two consecu- 
tive letters of the alphabet neither of which was the initial of 
a functional unit in the design partitioning.) In the PF and D1 
stages the CPU can fetch and decode two simple instructions 
in parallel and issue them to the U and V pipelines. Addition- 
ally, for complex instructions the CPU in D1 can generate 
microcode sequences that control both U and V pipelines. 

Several techniques are used to resolve dependencies be- 
tween instructions that might be executed in parallel. Most of 
the logic is contained in the instruction issue algorithm (see 
Figure 5) of D1. 

Decode two consecutive instructions I 1  and I2 
If the following are all true 

I1 is a ”simple” instruction 
I2 is a ”simple” instruction 
I1 is not a jump instruction 
Destination of I1 z source of I2 
Destination of I1 j l  destination of I2 

Then issue 11 to  U pipe and I2 to V pipe 
Else issue I1 to U pipe 

Figure 5.  Instruction issue algorithm. 
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Figure 6. Branch target buffer. 

Resource dependencies. A resource dependency occurs 
when two instructions require a single functional unit or data 
path. During the D1 stage, the CPU only issues two instruc- 
tions for parallel execution if both are from a class of “simple” 
instructions, thereby eliminating most resource dependen- 
cies. The instructions must be directly executed. that is, not 
require microcode sequencing. The instruction being issued 
to the V pipe can be an ALU operation, memory reference, 
or jump. The instruction being issued to the U pipe can be 
from the same categories or from an additional set that uses 
a functional unit available only in the U pipe, such as the 
barrel shifter. Although the set of instructions identified as 
“simple” might seem restrictive, more than 90 percent of in- 
structions executed in the Integer SPEC benchmark suite are 
simple. 

Data dependencies. A data dependency occurs when one 
instruction writes a result that is read or written by another 
instruction. Logic in D1 ensures that the source and destina- 
tion registers of the instruction issued to the V pipe differ 
from the destination register of the instruction issued to the U 
pipe. This arrangement eliminates read-after-write (RAW) and 
write-after-write (WAW) dependencies. Write-after-read (WAR) 
dependencies need not be checked because redds occur in 
an earlier stage of the pipelines than writes. 

The design includes logic that enables instructions with 
certain special types of data dependency to be executed in 
parallel. For example, a conditional branch instruction that 
tests the flag results can be executed in parallel with a com- 
pare instruction that sets the flags. 

Control dependencies. A control dependency occurs when 
the result of one instruction determines whether another in- 
struction will be executed. When a jump instruction is issued 
to the U pipe, the CPU in D1 never issues an instruction to 
the V pipe, thereby eliminating control dependencies. 

Note that resource dependencies and data dependencies 
between memory references are not resolved in D1. Depen- 
dent memory references can be issued to the two pipelines; 
we explain their resolution in the description of the data 
cache. 

Branch prediction. The i486 CPU has a simple technique 
for handling branches. When a branch instruction is executed, 
the pipeline continues to fetch and decode instructions along 
the sequential path until the branch reaches the E stage. In E, 
the CPU fetches the branch destination, and the pipeline re- 
solves whether or not a conditional branch is taken. If the 
branch is not taken, the CPU discards the fetched destina- 
tion, and execution proceeds along the sequential path with 
no delay. If the branch is taken, the fetched destination is 
used to begin decoding along the target path with two clocks 
of delay. Taken branches are found to be 15 percent to 20 
percent of instructions executed, representing an obvious area 
for improvement by the Pentium processor. 

The Pentium CPU employs a branch target buffer (BTB), 
which is an associative memory used to improve performance 
of taken branch instructions (see Figure 6). When a branch 
instruction is first taken, the CPU allocates an entry in the branch 
target buffer to associate the branch instruction’s address with 
its destination address and to initialize the history used in the 
prediction algorithm. As instructions are decoded, the CPU 
searches the branch target buffer to determine whether it holds 
an entry for a corresponding branch instruction. When there is 
a hit, the CPU uses the history to determine whether the branch 
should be taken. If it should, the microprocessor uses the tar- 
get address to begin fetching and decoding instructions from 
the target path. The branch is resolved early in the WB stage, 
and if the prediction was incorrect, the CPU flushes the pipe- 
line and resumes fetching along the correct path. The CPU 
updates the dual-ported history in the WB stage. The branch 
target buffer holds entries for predicting 256 branches in a 
four-way associative organization. 

Using these techniques, the Pentium CPU executes cor- 
rectly predicted branches with no delay. In addition, condi- 
tional branches can be executed in the V pipe paired with a 
compare or other instruction that sets the flags in the U pipe. 
Branching executes with full compatibility and no modifica- 
tion to existing software. (We explain aspects of interactions 
between branch prediction and self-modifying code later.) 

Cache organization. The i486 CPU employs a single on- 
chip cache that is unified for code and data. The single-ported 
cache is multiplexed on a demand basis between sequential 
code prefetches of complete lines and data references to in- 
dividual locations. As just explained, branch targets are 
prefetched in the E stage, effectively using the same hard- 
ware as data memory references. There are potential advan- 
tages for such an organization over one that separates code 
and data. 

1) For a given size of cache memory, a unified cache has a 
higher hit rate than separate caches because it balances 
the total allocation of code and data lines automatically. 

2) Only one cache needs to be designed. 
3)  Handling self-modifying code can be simpler. 
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Despite these potential advantages of a unified cache, all 
of which apply to the i486 CPU, the Pentium microprocessor 
uses separate code and data caches. The reason is that the 
superscalar design and branch prediction demand more band- 
width than a unified cache similar to that of the i486 CPU can 
provide. First, efficient branch prediction requires that the 
destination of a branch be accessed simultaneously with data 
references of previous instructions executing in the pipeline. 
Second, the parallel execution of data memory references 
requires simultaneous accesses for loads and stores. Third, in 
the context of the overall Pentium microprocessor design, 
handling self-modifying code for separate code and data 
caches is only marginally more complex than for a unified 
cache. 

The instruction cache and data cache are each 8-Kbyte, 
two-way associative designs with 32-byte lines. 

Programs executing on the i486 CPU typically generate 
more data memory references than when executing on RISC 
microprocessors. Measurements on Integer SPEC benchmarks 
show 0.5 to 0.6 data references per instruction for the i486 
CPU4 and only 0.17 to 0.33 for the Mips processor.j This 
difference results directly from the limited number (eight) of 
registers for the X86 architecture, as well as procedure-calling 
conventions that require passing all parameters in memory. 
A small data cache is adequate to capture the locality of the 
additional references. (After all, the additional references have 
sufficient locality to fit in the register file of the RISC micro- 
processors.) The Pentium microprocessor implements a data 
cache that supports dual accesses by the U pipe and V pipe 
to provide additional bandwidth and simplify compiler in- 
struction scheduling algorithms. 

Figure 7 shows that the address path to the translation 
look-aside buffer and data cache tags is a fully dual-ported 
structure. The data path, however, is single ported with eight- 
way interleaving of 32-bit-wide banks. When a bank conflict 
occurs, the U pipe assumes priority, and the V pipe stalls for 
a clock cycle. The bank conflict logic also serves to eliminate 
data dependencies between parallel memory references to a 
single location. For memory references to double-precision 
floating-point data, the CPU accesses consecutive banks in 
parallel, forming a single 64-bit path. 

The design team considered a fully dual-ported structure 
for the data cache, but feasibility studies and performance 
simulations showed the interleaved structure to be more ef- 
fective. The dual-ported structure eliminated bank conflicts, 
but the SRAM cell would have been larger than the cell used 
in the interleaved scheme, resulting in a smaller cache and 
lower hit ratio for the allocated area. Additionally, the han- 
dling of data dependencies would have been more complex. 

With a write-through cache-consistency protocol and 32- 
bit data bus, the i486DX2 CPU uses buses 80 percent of the 
time; 85 percent of all bus cycles are writes. (The i486DX2 
CPU has a core pipeline that operates at twice the bus clock's 
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TLB 

Bank 
conflict 

detection 7 7 

I I I 

Dual-ported 
cache tags 

Figure 7. Dual-access data cache. 
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frequency.) For the Pentium microprocessor, with its higher 
performance core pipelines and 64-bit data bus, using a write- 
back protocol for cache consistency was an obvious enhance- 
ment. The write-back protocol uses four states: modified, 
exclusive, shared, and invalid (MESI). 

Self-modifying code. One challenging aspect of the 
Pentium microprocessor's design was supporting self-modi- 
fying code compatibly. Compatibility requires that when an 
instruction is modified followed by execution of a taken branch 
instruction, subsequent executions of the modified instruc- 
tion must use the updated value. This is a special form of 
dependency between data stores and instruction fetches. 

The interaction between branch predictions and self-modi- 
fying code requires the most attention. The Pentium CPU 
fetches the target of a taken branch before previous instruc- 
tions have completed stores, so dedicated logic checks for 
such conditions in the pipeline and flushes incorrectly fetched 
instructions when necessary. The CPU thoroughly verifies 
predicted branches to handle cases in which an instruction 
entered in the branch target buffer might be modified. The 
same mechanisms used for consistency with external memory 
maintain consistency between the code cache and data cache. 

Floating-point pipeline 
The i486 CPU integrated the floating-point unit (FPU) on 

chip, thus eliminating overhead of the communication proto- 
col that resulted from using a coprocessor. Bringing the FPU 
on chip substantially boosted performance in the i486 CPU. 
Nevertheless, due to limited devices available for the FPU, its 
microarchitecture was based on a partial multiplier array and 
a shift-and-add data path controlled by microcode. Floating- 
point operations could not be pipelined with any other 
floating-point operations; that is, once a floating-point in- 
struction is invoked, all other floating-point instructions stall 
until its completion. 

The larger transistor budget available for the Pentium mi- 
croprocessor permits a completely new approach in the de- 
sign of the floating-point microarchitecture. The aggressive 
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Figure 8. Floating-point pipeline. 

performance goals for the FPtJ presented an exciting chal- 
lenge for the designers, even with inore silicon resources 
available. Furthermore, maintaining fill1 compatibility with 
previous products and with the IEEE standard for floating- 
point arithmetic was an uncoinpromising requirement. 

Floating-point pipeline stages. Pentium's floating-point 
pipeline consists of eight stages. The first two stages are pro- 
cessed by the conmion (integer pipeline) resources for prefetch 
and decode. In the third stage the floating-point hardware 
begins activating logic for instruction execution. All o f  the 
first five Stages are matched with their counterpart integer 
pipeline Stages for pipeline sequencing and synchronization 
(see Figure 8) .  

Prefetch. The PF stage is the same 21s in the integer pipe- 
line. 
Fin-t decode. The D1 stage is the same as in the integer 
pipeline. 
Second decode. The D2 stage is the same :is in the inte- 
ger pipeline. 
Operand,fetch. In this E stage the FPLJ accesses Imth the 
data cache and the floating-point register file to fetch 
the operands necessary for the operation. When floating- 
point data is to be written to the data cache. the FPU 
converts internal data format into the appropriate memory 
representation. This stage matches the E stage of the 
integer pipeline. 
First execute. In the X1 stage the FPU executes the first 
steps of the floating-point computation. When floating- 
point data is read from the data cache, the FPU writes 
the incoming data into the floating-point register file. 
Second execute. In the X2 stage the FP1J continues to 
execute the floating-point computation. 
WriteJoat. In the WF stage the FPU completes the ex- 
ecution of the floating-point computation and writes 
the result into the floating-point register file. 
Error reporting. In the ER stage the FPU reports internal 
special situations that might require additional process- 
ing to complete execution and updates the floating-point 
status word. 

The eight-stage pipeline in the FPU allows a single cycle 
throughput for most of the "basic" floating-point instructions 
such as floating-point add. subtract, inultiply, and compare. 
This means that a sequence of basic floating-point instnic- 
tions free from data dependencies would execute at a rate of 

one instruction per cycle, assuming instruction cache and 
data cache hits. 

Data dependencies exist between floating-point instruc- 
tions when a subsequent instruction uses the result of a pre- 
ceding instruction. Since the actual computation of 
floating-point results takes place during X1, X2, and WF stages, 
special paths in the hardware allow other stages to be by- 
passed and present the result to the subsequent instruction 
upon generation. Consequently, the latency of the basic 
floating-point instructions is three cycles. 

The X86 floating-point architecture supports single-precision 
(32-bit), double-precision (66bit), and extended-precision (80- 
hit) floating-point operations. We chose to support all com- 
piitation for the three precisions directly, by extending the 
data path width to support extended precision. Although this 
entailed using inore devices for the implementation, it greatly 
simplified the microarchitecture while improving the perfor- 
mance. If smaller data paths were designed, special rerouting 
o f  the data within the FPlJ and several state machines or 
microcode sequencing ~vould have been required for calcu- 
lating the higher precision data. 

Floating-point instructions execute in the U pipe and gen- 
erally cannot be paired with any other integer or floating- 
point instructions (the one exception will be explained later). 
The design was tuned for instructions that use one 64-bit 
operand in memory with the other operand residing in the 
floating-point register file. Thus. these operations may ex- 
ecute at the maximum throughput rate, since a full stage (E 
stage) in the pipeline is dedicated to operand fetching. Al- 
though floating-point instructions use the U pipe during the 
E stage. the tuo ports to the data cache (which are used by 
the U pipe and the V pipe for integer operations) are used to 
bring 64-bit data to the FPU. Consequently, during intensive 
floating-point computation programs, the data cache access 
ports of the LJ pipe and V pipe operate concurrently with the 
floating-point computation. This behavior is similar to 
superscalar load-store RISC designs where load instructions 
execute in parallel Lvith floating-point operations, and there- 
fore deliver equivalent throughput o f  floating-point opera- 
tions per cycle. 

Microarchitecture overview. The floating-point unit of 
the Pentium microprocessor consists of six functional sec- 
tions (see Figure 9) .  

The floating-point interface, register file, and control (FIRC) 
section is the only interface between the FPU and the rest of 
the CPU. Since the function of floating-point operations is 
usually self-contained within the floating-point computation 
core, concentrating all the interface logic in one section helped 
to create a modular design of the other sections. The FIRC 
section also contains most of the common floating-point re- 
sources: register file. centralized control logic, and safe in- 
struction recognition logic (described later). FIRC can complete 
execution of instructions that do not need arithmetic conipu- 
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tation. It dispatches the instructions requiring arithmetic com- 
putation to the arithmetic sections. 

The floating-point exponent section (FEXP) calculates the 
exponent and the sign results for all the floating-point arith- 
metic operations. It interfaces with all the other arithmetic 
sections for all the necessary adjustments between the man- 
tissa and the sign-and-exponent fields in the computation of 
floating-point results. 

The floating-point multiplier section (FMUL) includes a full 
multiplier array to support single-precision (24-bit mantissa). 
double-precision (j3-bit mantissa), and extended-precision 
(64-bit mantissa) multiplication and rounding within three 
cycles. FMUL executes all the floating-point multiplication 
operations. It is also used for integer multiplication, which is 
implemented through microcode control. 

The floating-point adder section (FAIII)) executes all the 
“add” floating-point instructions, such as floating-point add, 
subtract, and compare. FADD also executes a large set of 
micro-operations that are used by microcode sequences in 
the calculation of complex instructions, such as tinary coded 
decimal (BCD) operations, fomiat conversions, and transcen- 
dental functions. The FAIID section operates during the X1 
and X2 stages of the floating-point pipeline and employs 
several wide adders and shifters to support high-speed arith- 
metic algorithms while inaintaining maximum performance 
for all data precisions. The CPU achieves a Latency o f  three 
cycles with a throughput of one cycle for all the operations 
directly executed by the FADD section for single-precision, 
double-precision, and extended-precision data. 

The floating-point divider (FDIV) section executes the floating- 
point divide, remainder, and square-root instructions. It oper- 
ates during the X1 and X2 pipeline stages and calcukates two 
bits of the divide quotient every cycle. The overall instmction 
latency depends on the precision of the operation. FDIV uses its 
own sequencer for iterative computation during the X1 stage. 
The results are fully accurate in accordance with IEEE standard 
754 and ready for rounding at the end of the X2 stage. 

The floating-point rounder (FRND) section rounds the re- 
sults delivered from the FADD and FDIV sections. It operates 
during the WF stage of the floating-point pipeline and deliv- 
ers a rounded result according to the precision control and 
the rounding control, which are specified in the floating-point 
control word. 

Safe instruction recognition. Floating-point computa- 
tion requires longer execution times than integer computa- 
tion. Pentium’s floating-point pipeline uses eight stages. while 
the integer pipeline uses only five stages. Compatibility re- 
quires in-order instruction execution as well as precise ex- 
ception reporting. To meet these requirements in the Pentium 
processor, floating-point instructions should not proceed 
beyond the X1 stage, that is. allow subsequent instructions to 
proceed beyond the E stage, unless the floating-point in- 
struction is guaranteed to complete without causing an ex- 
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Figure 9. Floating-point unit block diagram. 

ception. Otherwise, an instruction may change the state of 
the CPU, while an earlier floating-point instruction (which 
has not yet completed) might cause an exception that re- 
quires a trap to a software exception handler. 

To avoid a substantial performance loss due to stalling 
instructions until the exception status of a previous floating- 
point instruction is known, Pentium’s floating-point unit em- 
ploys a mechanism called safe instruction recognition (SIR). 
This logic determines whether a floating-point instruction is 
guaranteed to complete without creating an exception and 
therefore is considered “safe.” If an instruction is safe, there 
is no need to stall the pipeline, and the maximum through- 
put can be obtained. If, however, the instruction is not safe, 
the pipeline stalls for three cycles until the unsafe instruction 
reaches the ER stage and a final determination of the excep- 
tion SVdtUS is made. 

Six possible exceptions can occur on the Pentium 
microprocessor’s floating-point operations: invalid operation, 
divide by zero, denomdl operand, overflow, underflow, and 
inexact. The SIR logic needs to determine early in the float- 
ing pipeline-in the X1 stage-before any computation takes 
place whether the instruction is guaranteed to be exception 
free (safe) or not (unsafe). The first three of the six excep- 
tions can be detected without any floating-point calculation. 
From the latter three exceptions, the inexact exception is 
usually “masked“ by the operating system or the software 
application (using the precision mask, or PM, bit in the 
floating-point control word). Otherwise, a trap will occur 
whenever rounding of the result is necessary. Whep the pre- 
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Figure IO. FXCH code example. 

cision (inexact) exception is masked, the pipeline delivers 
the correctly rounded result directly. For overflow and 
underflow exceptions SIR logic uses an algorithm that moni- 
tors the exponent fields of the input operands to conclude 
the exception status (safe or unsafe). 

In the X86 architecture the CPU stores floating-point oper- 
ands in the floating-point register file with an extended- 
precision exponent, regardless of the precision control in the 
floating-point control word. The extended-precision expo- 
nent supports much greater range than the double-precision 
format. Overflow and underflow exceptions caused by con- 
verting the data into double-precision or single-precision for- 
mats occur only when storing the data into external memory. 
These characteristics of the X86 floating-point architecture 
give a unique advantage to the effectiveness of the SIR mecha- 
nism in the Pentium CPU, since the SIR algorithm can use the 
internal (extended-precision) exponent range. Thus, the oc- 
currence of unsafe operations is extremely rare. Our evalua- 
tion of the SIR algorithm for the FPU design found no unsafe 
instructions in simulated execution of the SPEC89 floating- 
point benchmarks. 

Register stack manipulation. The x86 floating-point in- 
struction set uses the register file as a stack of eight registers 
in which the top of stack (TOS) acts as an accumulator of the 
results. Therefore, the top of the stack is used for the majority 
of the instructions as one of the source operands and, u s u  
ally, as the destination register. 

To improve the floating-point pipeline performance by op- 
timizing the use of the floating-point register file, Pentium's 
FPU can execute the FXCH instruction in parallel with any 
basic floating-point operation. The FXCH instruction "swaps" 
the contents of the TOS register with another register in the 
floating-point register file. All the basic floating-point instruc- 
tions may be paired with FXCH in the V pipe. The pair ex- 
ecute in parallel, even when data dependency between the 
two instructions in the pair exists. The use of parallel FXCH 
redirects the result of a floating-point operation to any se- 
lected register in the register file, while bringing a new oper- 
and to the top of the stack for immediate use by the next 
floating-point operation. 

The example shown in Figure 10 illustrates the use of par- 
allel FXCH. The code in the example generates the results of 
two independent floating-point calculations. The floating-point 
register file contains initial values prior to code execution: 
register STO (TOS) contains the value A, register STl contains 
value B, register ST2 contains value C, and so on. The two 
operations are 

1) floating-point addition of value A with the 64-bit floating- 
point operand addressed by the genera1 register EAX, 
and 

2) floating-point multiplication of value C by the &bit floating- 
point operand addressed by the general register EBX. 

When the floating-point pipeline is fully loaded and these 
two operations are part of the code sequence, the parallel 
FXCH allows the calculation to maintain the maximum 
throughput of one cycle per operation. Within one cycle the 
Pentium CPU writes the result of the addition to ST2, while 
the operand for the next operation moves to the top of the 
stack. On the next cycle, the processor writes the result of 
the multiplication to ST3, while the top of the stack contains 
value D, which may be used for a subsequent operation. 

Transcendental instructions. The CPU supports all eight 
transcendental instructions that are defined in the instruction 
set through direct execution of microcode sequences. The 
transcendental instructions are 

1) FSIN 
2) FCOS 
3) FSINCOS 
4) FPTAN 
5) FPATAN 
6) F2XM1 
7 )  M 2 X  
8) FYL2xP 

sine, 
cosine, 
sine and cosine, 
tangent, 
arctangent, 
2**x - 1, 
Y * Log2(X), and 
1 Y * Log2(X+l) 

We developed new, table-driven algorithms for the tran- 
scendental functions using polynomial approximation tech- 
niques. These algorithms substantially improved performance 
and accuracy over the i486 CPU implementation, which used 
the more traditional Cordic algorithms. The approximation 
tables reside in an on-chip ROM along with the other special 
constants that are used for floating-point computation. 

The performance improvement of the transcendental in- 
structions on the Pentium processor ranges from two to three 
times over the same instructions on the i486 CPU at the same 
frequency. The worst-case error for all the transcendental in- 
structions is less than 1 ulp (unit in the last place) when 
rounding to nearest even and less than 1.5 ulps when round- 
ing in other modes. The functions are guaranteed to be mono- 
tonic, with respect to the input operands, throughout the 
domain supported by the instruction. 
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Development process 
Developing a highly integrated microprocessor involves 

collaboration between numerous teams having diverse tech- 
nical specialties and working under the discipline of well- 
defined methodologies. A small team of architects and VLSI 
designers developed the initial concepts of the design. This 
group conducted feasibility studies of parallel instruction 
decoding and options for branch prediction techniques. Si- 
multaneously, it evaluated performance by hand for short 
benchmarks and compiler optimizations. As initial directions 
were established, additional engineers participated, and 
subteams focused on the following areas: 

1) behavioral modeling of the microarchitecture; 
2) circuit feasibility design for caches, decoding PLAs (pro- 

grammable logic arrays), floating-point data path, and 
other critical functions; 

3) a flexible, trace-driven simulator of instruction timing 
for performance evaluation; 

4) a prototype compiler; and 
5) enhancements to existing instruction-tracing tools. 

Throughout the design we refined the Pentium micropro- 
cessor using both top-down and bottom-up methods. Top- 
down refinement was accomplished through comprehensive 
characterization of executing benchmark work loads on the 
i486 CPU4 and trace-driven experiments concerning alterna- 
tive machine organizations conducted by architects using the 
performance simulator. 

VLSI design engineers evaluating features critical to the 
targeted area and frequency refined the design from the bot- 
tom up. On two occasions in the design the accumulation of 
changes from bottom-up refinement caused the need for sub- 
stantial restructuring of the microprocessor’s global chip plan, 
or “die diets.” On those occasions, interdisciplinary teams of 
specialists collaborated to brainstorm and evaluate ideas that 
could satisfy the global or local design constraints. In one 
instance, we found it necessary to refine the set of instruc- 
tions that could be executed in parallel. Constraints had been 
assigned to the area and speed of the decoder PLAs. The 
VLSI designers identified combinations of instruction formats 
that would feasibly decode in parallel, and the compiler writ- 
ers determined the optimal selection. 

In the end, the measured performance of the Pentium mi- 
croprocessor in production systems is within 2 percent of 
that predicted before the design was completed. 

The logic validation of the Pentium processor design pre- 
sented a major challenge to the design team. A comprehen- 
sive test base from the validation of previous X86 
microprocessors was available. However, the Pentium pro- 
cessor microarchitecture introduced several new fundamen- 
tal techniques, such as superscalar, write-back cache, and 
floating-point algorithms, that required a more rigorous veri- 

- 

Naming the Pentium processor 

In naming the fifth generation of its compatible mi- 
croprocessor line the Pentium processor, Intel departed 
from tradition. Pentium breaks a string of CPU products 
dating back to the late 1970s that used numerics (8086, 
286, 386, 486). 

“The natural course would be to call this chip the 
336,“ said Andrew S. Grove, president and chief execu- 
tive officer. “Unfortunately, we cannot trademark those 
numbers, which means that any company might call any 
chip a 586, even if it doesn’t measure up to the real 
thing. ” 

Pentium uses the Greek word for five, “pente,” as its 
root to associate with the fifth-generation product and 
adds “-ium,” a common ending from the periodic table 
of elements. Thus, the Pentium microprocessor is the 
fifth generation, a key element for future computing. 

fication methodology. 

ing of the Pentium microprocessor: 
We used different validation approaches in pre-silicon test- 

1) Architecture verification looked at the “black box” func- 
tionality from the programmer’s point of view. We de- 
signed comprehensive tests to cover all possible aspects 
of the programming model and all the Pentium proces- 
sor user-visible features. 
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Figure 11. Pentium processor and i486 CPU performance for SPEC benchmarks. 

2) Design verification checked the internal functionality from 
the point of view of a logic designer who would under- 
stand the behavior of every internal signal. This testing 
approach is considered a “white box” technique, in which 
tests are written to exercise all the internal logic and 
verify its correct behavior. 

3) Random instruction testing was a valuable tool to cover 
all those situations that are rarely covered by the more 
traditional, handwritten tests. Running finely tuned ran- 
dom tests let us verify correct functionality by compar- 
ing the results generated by a logic design description of 
the Pentium processor to the results generated by a 
software-emulated model. 

4) A logic-design hardware model (QuickTurn) enabled in- 
creased testing coverage capacity by allowing a much 
larger software base to run on the processor model be- 
fore the first silicon was avaikable. We ported the logic 
model of the Pentium processor onto a QuickTurn setup, 
which was capable of handling the complete design. and 
tested major operating systems and application programs 
before finalizing the design. 

In addition to the general validation approach, we dedi- 
cated a special effort to verify the new algorithms employed 
by the FPU. We developed a high-level software simulator to 
evaluate the intricacies of the specific add. multiply, and di- 
vide algorithms used in the design. This simulator then evolved 
into a testing environment, allowing the verification of the 
FPU logic design model independently from the rest of the 
Pentium processor. Also, the new algorithms used for the 

floating-point transcendental functions 
required an extensive test strategy that 
verified the accuracy and monotonic- 
ity of the results throughout the devel- 
opment process, comparing the results 
to a “super accurate” software model. 
Eventually, when the first silicon of the 
Pentium processor was available for 
testing, we used automatic testing tech- 
niques to assure the correctness of the 
transcendental instructions. 

Compiler optimizations 
The compiler technology developed 

with the Pentium microprocessor 
includes machine-independent optim- 
zations common to current high- 
performance compilers, such as inlining, 
unrolling, and other loop transforma- 
tions. In addition, we used techniques 
specifically developed for the X86 ar- 
chitecture and tuned them for the 
Pentium processor’s microarchitecture. 

The X86 architecture has certain characteristics that require 
specialized optimization techniques different from those for 
RISC architectures. The architecture supports a variety of in- 
struction formats for equivalent operations. consequently, it 
is critical to select instruction formats that are decoded most 
efficiently by the processor. The X86 register set includes 
only eight integer and eight floating-point registers. We have 
found that common global register allocation techniques that 
assign variables to registers for the entire scope of a proce- 
dure are ineffective with such a limited number of registers. 
Registers must be allocated within a narrower scope and to- 
gether with instruction scheduling. 

The compiler schedules instructions to minimize interlocks 
and to maximize parallel execution for the Pentium processor’s 
superscalar pipelines. These techniques also benefit perfor- 
mance on the i486 CPU (though to a lesser extent) because 
the processors’ pipeline organizations are similar. The instruc- 
tion-scheduling techniques have minimal impact on perfor- 
mance for the i386 CPU since that processor uses little 
pipelining. As explained in the description of the floating- 
point pipeline, the compiler schedules FXCH instructions to 
avoid floating-point register-stack dependencies. 

THE PENTIUM MICROPROCESSOR employs superscalar in- 
teger pipelines, branch prediction, and a highly pipelined 
FPU to achieve the highest X86 performance levels available 
elsewhere while preserving binary compatibility with the X86 
architecture. Figure 11 summarizes the performance of the 
Pentium microprocessor and the highest performance i486 
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Figure 12. Die photograph. 

CPU for the SPEC benchmarks in well-tuned systems. Figure 
12 reproduces a photograph of the packaged circuit that in- 
tegrates 3.1 million transistors. Ip 
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