
Architecture of the Pentium
Microprocessor

The Pentiwn CPU is the latest in Intel’s family of compatible microprocessors. It integrates 3.1
million transistors in 0.8-pm BiCMOS technology. We describe the techniques of pipelining,
superscalar execution, and branch prediction used in the microprocessor’s design.

he Pentium processor is Intel’s next
generation of compatible microproces-
sors following the popular i486 CPU
family. The design started in early 1989

with the primary goal of maximizing performance
while preserving software compatibility within the
practical constraints of available technology. The
Pentium processor integrates 3.1 million transis-
tors in 0.8-ym BiCMOS technology and carries
the Intel trademark. We describe the architecture
and development process employed to achieve
this goal.

Donald Alpert

Dror Avnon

htel Corporation

Technology
The continual advancement of semiconductor

technology promotes innovation in microproces-
sor design. Higher levels of integration, made
possible by reduced feature sizes and increased
interconnection layers, enable designers to de-
ploy additional hardware resources for more par-
allel computation and deeper pipelining. Faster
device speeds lead to higher clock rates and con-
sequently to requirements for larger and more
specialized on-chip memory buffers.

Table 1 (next page) summarizes the technology
improvements associated with our three most re-
cent microprocessor generations. The 0.8-ym
BiCMOS technology of the Pentium microproces-
sor enables 2.5 times the number of transistors
and twice the clock frequency of the original i486
CPU, which was implemented in 1.0-pm CMOS.

Compat i bi I ity
Since introduction of the 8086 microprocessor

in 1978, the X86 architecture has evolved through
several generations of substantial functional en-
hancements and technology improvements, in-
cluding the 80286 and i386 CPUs. Each of these
CPUs was supported by a corresponding float-
ing-point unit. The i486 CPU,’ introduced in 1989,
integrates the complete functionality of an inte-
ger processor, floating-point unit, and cache
memory into a single circuit.

The X86 architecture greatly appealed to soft-
ware developers because of its widespread
application as the central processor of IBM-
compatible personal computers. The success of
the architecture in PCs has in turn made the X86
popular for commercial server applications as
well. Figure 1 shows some of the well-known
software environments that are hosted on the
architecture.

The common software environments allow the
X86 architecture to exercise several operating
modes. Applications developed for DOS use 16-
bit real mode (or virtual 8086 mode) and MS
Windows. Early versions of OS/2 use 16-bit pro-
tected mode, and applications for other popular
environments use 32-bit flat (unsegmented) mode.
The Pentium microprocessor employs general
techniques for improving performance in all op-
erating modes, as well as certain techniques for
improving performance in specific operating

0272-1732/93/0600-0011$03.00 0 1993 IEEE June 1993 11

Pentium microprocessor

Table 1. Technology for microprocessor development.
~ ~ ~~ ~ ~

No. of Frequency
Microprocessor Year Technology transistors (MHz)

1386 CPU 1986 1.5-pm CMOS, 275K 16
two-layer metal

i486 CPU 1989 1 .O-pm CMOS, 1.2M 33
two-layer metal

Pentium CPU 1993 0.8-pm BiCMOS, 3.1M 66
three-layer metal

1 &bit aeneratton 32-bit generation
Unix SVR4
sco

Netware 3 1 1
DOS OSF/1
MS-W t ndows
os12 1 x Next Step

32-bit OS/2
Solaris

Windows NT i r

Taligent
Univel

1980s 1991 199x

1

Figure 1. Software environments. (Allfigures, tables, and
photographspubllshed in thzs article are the property of Intel
Colporation j

I I

64 bits

interface

64 bits

Prefetch buffers Pipelined
floating-point

Pipe I I v pipe unit
Integer Integer

Register set Multiplier

32 bits I Adder
I

I

4 Datacache I 1 Divider I

Figure 2. Pentium processor block diagram.

modes. We focus on the 32-bit flat mode
here, since this is the most appropriate
mode for comparison with the other
high-performance microprocessors de-
scribed at the Hot Chips IV Conference.

The X86 architecture supports the
IEEE-754 standard for floating-point arith-
metic.’ In addition to required operations
on single-precision and double-precision
formats, the XS6 floating-point architec-
ture includes operations on 8O-bit,
extended-precision format and a set of
basic transcendental functions.

Pentium CPU designers found numer-
ous exciting technical challenges in de-
veloping a microarchitecture that

maintained compatibility with such a diverse software base.
Later in this article we present examples of techniques for
supporting self-modifying code and the stack-oriented,
floating-point register file.

Performance
A microprocessor’s performance is a complex function of

many parameters that vary between applications, compilers,
and hardware systems. In developing the Pentium micropro-
cessor, the design team addressed these aspects for each of
the popular software environments. As a result, Pentium CPU
features tuned compilers and cache memory.

We focus on the performance of SPEC benchmarks for
both the Pentium microprocessor and i486 CPU in systems
with well-tuned compilers and cache memory. More specifi-
cally, the Pentium CPU achieves roughly two times the
speedup on integer code and up to five times the speedup
on floating-point vector code when compared with an i486
CPU of identical clock frequency.

Organization
Figure 2 shows the overall organization of the Pentium

microprocessor. The core execution units are two integer
pipelines and a floating-point pipeline with dedicated adder,
multiplier, and divider. Separate on-chip instruction code and
data caches supply the memory demands of the execution
units, with a branch target buffer augmenting the instruction
cache for dynamic branch prediction. The external interface
includes separate address and 64-bit data buses.

Integer pipeline
The Pentium processor’s integer pipeline is similar to that

of the i486 CPU.3 The pipeline has five stages (see Figure 3)
with the following functions:

Preftcch. During the PF stage the CPU prefetches code
from the instruction cache and aligns the code to the

12 IEEEMicro

PF

D1

D2

E

WB

Fetch and align instruction L
Decode instruction

Generate control word

Decode control word
Generate memory address

c
Access data cache or
calculate ALU result

Write result I I

Figure 3. Integer pipeline.

PF

D1

D2

E

WB

Fetch and align instruction L
Decode instruction

Generate control word

Decode control word
I Generate memory address :
I
i Access data cache or

~ calculate ALU result I

~~ +
Decode control word

i Generate memory address .
I Access data cache or

calculate ALU result

Write result Write result

U pipe V pipe

Figure 4. Superscalar execution.

initial byte of the next instruction to be decoded. Be-
cause instructions are of variable length, this stage in-
cludes buffers to hold both the line containing the
instruction being decoded and the next consecutive line.
First decode. In the D1 stage the CPU decodes the in-
struction to generate a control word. A single control
word executes instructions directly; more complex in-
structions require microcoded control sequencing in D1.

. Second decode. In the D2 stage the CPU decodes the
control word from D1 for use in the E stage. In addition,
the CPU generates addresses for data memory references.
Execute. In the E stage the CPU either accesses the data
cache or calculates results in the M U (arithmetic logic
unit), barrel shifter, or other functional units in the data
path.
Write buck In the WB stage the CPU updates the regis-
ters and flags with the instruction’s results. All excep-
tional conditions must be resolved before an instruction
can advance to WB.

Compared to the integer pipeline of the i486 CPU, the
Pentium microprocessor integrates additional hardware in
several stages to speed instruction execution. For example,
the i486 CPU requires two clocks to decode several instruc-
tion formats, but the Pentium CPU takes one clock and ex-
ecutes shift and multiply instructions faster. More significantly,
the Pentium processor substantially enhances superscalar ex-
ecution, branch prediction, and cache organization.

Superscalar execution. The Pentium CPU has a super-
scalar organization that enables two instructions to execute

in parallel. Figure 4 shows that the resources for address
generation and M U functions have been replicated in inde-
pendent integer pipelines, called U and V. (The pipeline names
were selected because U and V were the first two consecu-
tive letters of the alphabet neither of which was the initial of
a functional unit in the design partitioning.) In the PF and D1
stages the CPU can fetch and decode two simple instructions
in parallel and issue them to the U and V pipelines. Addition-
ally, for complex instructions the CPU in D1 can generate
microcode sequences that control both U and V pipelines.

Several techniques are used to resolve dependencies be-
tween instructions that might be executed in parallel. Most of
the logic is contained in the instruction issue algorithm (see
Figure 5) of D1.

Decode two consecutive instructions I 1 and I2
If the following are all true

I1 is a ”simple” instruction
I2 is a ”simple” instruction
I1 is not a jump instruction
Destination of I1 z source of I2
Destination of I1 j l destination of I2

Then issue 11 to U pipe and I2 to V pipe
Else issue I1 to U pipe

Figure 5. Instruction issue algorithm.

June 1993 13

-~ -

Pentium microprocessor

lr
Branch

instruction
address

+
History

+
Branch

destination
address

Figure 6. Branch target buffer.

Resource dependencies. A resource dependency occurs
when two instructions require a single functional unit or data
path. During the D1 stage, the CPU only issues two instruc-
tions for parallel execution if both are from a class of “simple”
instructions, thereby eliminating most resource dependen-
cies. The instructions must be directly executed. that is, not
require microcode sequencing. The instruction being issued
to the V pipe can be an ALU operation, memory reference,
or jump. The instruction being issued to the U pipe can be
from the same categories or from an additional set that uses
a functional unit available only in the U pipe, such as the
barrel shifter. Although the set of instructions identified as
“simple” might seem restrictive, more than 90 percent of in-
structions executed in the Integer SPEC benchmark suite are
simple.

Data dependencies. A data dependency occurs when one
instruction writes a result that is read or written by another
instruction. Logic in D1 ensures that the source and destina-
tion registers of the instruction issued to the V pipe differ
from the destination register of the instruction issued to the U
pipe. This arrangement eliminates read-after-write (RAW) and
write-after-write (WAW) dependencies. Write-after-read (WAR)
dependencies need not be checked because redds occur in
an earlier stage of the pipelines than writes.

The design includes logic that enables instructions with
certain special types of data dependency to be executed in
parallel. For example, a conditional branch instruction that
tests the flag results can be executed in parallel with a com-
pare instruction that sets the flags.

Control dependencies. A control dependency occurs when
the result of one instruction determines whether another in-
struction will be executed. When a jump instruction is issued
to the U pipe, the CPU in D1 never issues an instruction to
the V pipe, thereby eliminating control dependencies.

Note that resource dependencies and data dependencies
between memory references are not resolved in D1. Depen-
dent memory references can be issued to the two pipelines;
we explain their resolution in the description of the data
cache.

Branch prediction. The i486 CPU has a simple technique
for handling branches. When a branch instruction is executed,
the pipeline continues to fetch and decode instructions along
the sequential path until the branch reaches the E stage. In E,
the CPU fetches the branch destination, and the pipeline re-
solves whether or not a conditional branch is taken. If the
branch is not taken, the CPU discards the fetched destina-
tion, and execution proceeds along the sequential path with
no delay. If the branch is taken, the fetched destination is
used to begin decoding along the target path with two clocks
of delay. Taken branches are found to be 15 percent to 20
percent of instructions executed, representing an obvious area
for improvement by the Pentium processor.

The Pentium CPU employs a branch target buffer (BTB),
which is an associative memory used to improve performance
of taken branch instructions (see Figure 6). When a branch
instruction is first taken, the CPU allocates an entry in the branch
target buffer to associate the branch instruction’s address with
its destination address and to initialize the history used in the
prediction algorithm. As instructions are decoded, the CPU
searches the branch target buffer to determine whether it holds
an entry for a corresponding branch instruction. When there is
a hit, the CPU uses the history to determine whether the branch
should be taken. If it should, the microprocessor uses the tar-
get address to begin fetching and decoding instructions from
the target path. The branch is resolved early in the WB stage,
and if the prediction was incorrect, the CPU flushes the pipe-
line and resumes fetching along the correct path. The CPU
updates the dual-ported history in the WB stage. The branch
target buffer holds entries for predicting 256 branches in a
four-way associative organization.

Using these techniques, the Pentium CPU executes cor-
rectly predicted branches with no delay. In addition, condi-
tional branches can be executed in the V pipe paired with a
compare or other instruction that sets the flags in the U pipe.
Branching executes with full compatibility and no modifica-
tion to existing software. (We explain aspects of interactions
between branch prediction and self-modifying code later.)

Cache organization. The i486 CPU employs a single on-
chip cache that is unified for code and data. The single-ported
cache is multiplexed on a demand basis between sequential
code prefetches of complete lines and data references to in-
dividual locations. As just explained, branch targets are
prefetched in the E stage, effectively using the same hard-
ware as data memory references. There are potential advan-
tages for such an organization over one that separates code
and data.

1) For a given size of cache memory, a unified cache has a
higher hit rate than separate caches because it balances
the total allocation of code and data lines automatically.

2) Only one cache needs to be designed.
3) Handling self-modifying code can be simpler.

14 IEEE Micro

Despite these potential advantages of a unified cache, all
of which apply to the i486 CPU, the Pentium microprocessor
uses separate code and data caches. The reason is that the
superscalar design and branch prediction demand more band-
width than a unified cache similar to that of the i486 CPU can
provide. First, efficient branch prediction requires that the
destination of a branch be accessed simultaneously with data
references of previous instructions executing in the pipeline.
Second, the parallel execution of data memory references
requires simultaneous accesses for loads and stores. Third, in
the context of the overall Pentium microprocessor design,
handling self-modifying code for separate code and data
caches is only marginally more complex than for a unified
cache.

The instruction cache and data cache are each 8-Kbyte,
two-way associative designs with 32-byte lines.

Programs executing on the i486 CPU typically generate
more data memory references than when executing on RISC
microprocessors. Measurements on Integer SPEC benchmarks
show 0.5 to 0.6 data references per instruction for the i486
CPU4 and only 0.17 to 0.33 for the Mips processor.j This
difference results directly from the limited number (eight) of
registers for the X86 architecture, as well as procedure-calling
conventions that require passing all parameters in memory.
A small data cache is adequate to capture the locality of the
additional references. (After all, the additional references have
sufficient locality to fit in the register file of the RISC micro-
processors.) The Pentium microprocessor implements a data
cache that supports dual accesses by the U pipe and V pipe
to provide additional bandwidth and simplify compiler in-
struction scheduling algorithms.

Figure 7 shows that the address path to the translation
look-aside buffer and data cache tags is a fully dual-ported
structure. The data path, however, is single ported with eight-
way interleaving of 32-bit-wide banks. When a bank conflict
occurs, the U pipe assumes priority, and the V pipe stalls for
a clock cycle. The bank conflict logic also serves to eliminate
data dependencies between parallel memory references to a
single location. For memory references to double-precision
floating-point data, the CPU accesses consecutive banks in
parallel, forming a single 64-bit path.

The design team considered a fully dual-ported structure
for the data cache, but feasibility studies and performance
simulations showed the interleaved structure to be more ef-
fective. The dual-ported structure eliminated bank conflicts,
but the SRAM cell would have been larger than the cell used
in the interleaved scheme, resulting in a smaller cache and
lower hit ratio for the allocated area. Additionally, the han-
dling of data dependencies would have been more complex.

With a write-through cache-consistency protocol and 32-
bit data bus, the i486DX2 CPU uses buses 80 percent of the
time; 85 percent of all bus cycles are writes. (The i486DX2
CPU has a core pipeline that operates at twice the bus clock's

Dual-ported
TLB

Bank
conflict

detection 7 7

I I I

Dual-ported
cache tags

Figure 7. Dual-access data cache.

Singe-ported and
interleaved

b cache data

frequency.) For the Pentium microprocessor, with its higher
performance core pipelines and 64-bit data bus, using a write-
back protocol for cache consistency was an obvious enhance-
ment. The write-back protocol uses four states: modified,
exclusive, shared, and invalid (MESI).

Self-modifying code. One challenging aspect of the
Pentium microprocessor's design was supporting self-modi-
fying code compatibly. Compatibility requires that when an
instruction is modified followed by execution of a taken branch
instruction, subsequent executions of the modified instruc-
tion must use the updated value. This is a special form of
dependency between data stores and instruction fetches.

The interaction between branch predictions and self-modi-
fying code requires the most attention. The Pentium CPU
fetches the target of a taken branch before previous instruc-
tions have completed stores, so dedicated logic checks for
such conditions in the pipeline and flushes incorrectly fetched
instructions when necessary. The CPU thoroughly verifies
predicted branches to handle cases in which an instruction
entered in the branch target buffer might be modified. The
same mechanisms used for consistency with external memory
maintain consistency between the code cache and data cache.

Floating-point pipeline
The i486 CPU integrated the floating-point unit (FPU) on

chip, thus eliminating overhead of the communication proto-
col that resulted from using a coprocessor. Bringing the FPU
on chip substantially boosted performance in the i486 CPU.
Nevertheless, due to limited devices available for the FPU, its
microarchitecture was based on a partial multiplier array and
a shift-and-add data path controlled by microcode. Floating-
point operations could not be pipelined with any other
floating-point operations; that is, once a floating-point in-
struction is invoked, all other floating-point instructions stall
until its completion.

The larger transistor budget available for the Pentium mi-
croprocessor permits a completely new approach in the de-
sign of the floating-point microarchitecture. The aggressive

June 1993 15

Pentium microprocessor

Integer pipe
Floating-point pipe

Figure 8. Floating-point pipeline.

performance goals for the FPtJ presented an exciting chal-
lenge for the designers, even with inore silicon resources
available. Furthermore, maintaining fill1 compatibility with
previous products and with the IEEE standard for floating-
point arithmetic was an uncoinpromising requirement.

Floating-point pipeline stages. Pentium's floating-point
pipeline consists of eight stages. The first two stages are pro-
cessed by the conmion (integer pipeline) resources for prefetch
and decode. In the third stage the floating-point hardware
begins activating logic for instruction execution. All o f the
first five Stages are matched with their counterpart integer
pipeline Stages for pipeline sequencing and synchronization
(see Figure 8) .

Prefetch. The PF stage is the same 21s in the integer pipe-
line.
Fin-t decode. The D1 stage is the same as in the integer
pipeline.
Second decode. The D2 stage is the same :is in the inte-
ger pipeline.
Operand,fetch. In this E stage the FPLJ accesses Imth the
data cache and the floating-point register file to fetch
the operands necessary for the operation. When floating-
point data is to be written to the data cache. the FPU
converts internal data format into the appropriate memory
representation. This stage matches the E stage of the
integer pipeline.
First execute. In the X1 stage the FPU executes the first
steps of the floating-point computation. When floating-
point data is read from the data cache, the FPU writes
the incoming data into the floating-point register file.
Second execute. In the X2 stage the FP1J continues to
execute the floating-point computation.
WriteJoat. In the WF stage the FPU completes the ex-
ecution of the floating-point computation and writes
the result into the floating-point register file.
Error reporting. In the ER stage the FPU reports internal
special situations that might require additional process-
ing to complete execution and updates the floating-point
status word.

The eight-stage pipeline in the FPU allows a single cycle
throughput for most of the "basic" floating-point instructions
such as floating-point add. subtract, inultiply, and compare.
This means that a sequence of basic floating-point instnic-
tions free from data dependencies would execute at a rate of

one instruction per cycle, assuming instruction cache and
data cache hits.

Data dependencies exist between floating-point instruc-
tions when a subsequent instruction uses the result of a pre-
ceding instruction. Since the actual computation of
floating-point results takes place during X1, X2, and WF stages,
special paths in the hardware allow other stages to be by-
passed and present the result to the subsequent instruction
upon generation. Consequently, the latency of the basic
floating-point instructions is three cycles.

The X86 floating-point architecture supports single-precision
(32-bit), double-precision (66bit), and extended-precision (80-
hit) floating-point operations. We chose to support all com-
piitation for the three precisions directly, by extending the
data path width to support extended precision. Although this
entailed using inore devices for the implementation, it greatly
simplified the microarchitecture while improving the perfor-
mance. If smaller data paths were designed, special rerouting
o f the data within the FPlJ and several state machines or
microcode sequencing ~vould have been required for calcu-
lating the higher precision data.

Floating-point instructions execute in the U pipe and gen-
erally cannot be paired with any other integer or floating-
point instructions (the one exception will be explained later).
The design was tuned for instructions that use one 64-bit
operand in memory with the other operand residing in the
floating-point register file. Thus. these operations may ex-
ecute at the maximum throughput rate, since a full stage (E
stage) in the pipeline is dedicated to operand fetching. Al-
though floating-point instructions use the U pipe during the
E stage. the tuo ports to the data cache (which are used by
the U pipe and the V pipe for integer operations) are used to
bring 64-bit data to the FPU. Consequently, during intensive
floating-point computation programs, the data cache access
ports of the LJ pipe and V pipe operate concurrently with the
floating-point computation. This behavior is similar to
superscalar load-store RISC designs where load instructions
execute in parallel Lvith floating-point operations, and there-
fore deliver equivalent throughput o f floating-point opera-
tions per cycle.

Microarchitecture overview. The floating-point unit of
the Pentium microprocessor consists of six functional sec-
tions (see Figure 9) .

The floating-point interface, register file, and control (FIRC)
section is the only interface between the FPU and the rest of
the CPU. Since the function of floating-point operations is
usually self-contained within the floating-point computation
core, concentrating all the interface logic in one section helped
to create a modular design of the other sections. The FIRC
section also contains most of the common floating-point re-
sources: register file. centralized control logic, and safe in-
struction recognition logic (described later). FIRC can complete
execution of instructions that do not need arithmetic conipu-

16 IEEE Micro

.- .

tation. It dispatches the instructions requiring arithmetic com-
putation to the arithmetic sections.

The floating-point exponent section (FEXP) calculates the
exponent and the sign results for all the floating-point arith-
metic operations. It interfaces with all the other arithmetic
sections for all the necessary adjustments between the man-
tissa and the sign-and-exponent fields in the computation of
floating-point results.

The floating-point multiplier section (FMUL) includes a full
multiplier array to support single-precision (24-bit mantissa).
double-precision (j3-bit mantissa), and extended-precision
(64-bit mantissa) multiplication and rounding within three
cycles. FMUL executes all the floating-point multiplication
operations. It is also used for integer multiplication, which is
implemented through microcode control.

The floating-point adder section (FAIII)) executes all the
“add” floating-point instructions, such as floating-point add,
subtract, and compare. FADD also executes a large set of
micro-operations that are used by microcode sequences in
the calculation of complex instructions, such as tinary coded
decimal (BCD) operations, fomiat conversions, and transcen-
dental functions. The FAIID section operates during the X1
and X2 stages of the floating-point pipeline and employs
several wide adders and shifters to support high-speed arith-
metic algorithms while inaintaining maximum performance
for all data precisions. The CPU achieves a Latency o f three
cycles with a throughput of one cycle for all the operations
directly executed by the FADD section for single-precision,
double-precision, and extended-precision data.

The floating-point divider (FDIV) section executes the floating-
point divide, remainder, and square-root instructions. It oper-
ates during the X1 and X2 pipeline stages and calcukates two
bits of the divide quotient every cycle. The overall instmction
latency depends on the precision of the operation. FDIV uses its
own sequencer for iterative computation during the X1 stage.
The results are fully accurate in accordance with IEEE standard
754 and ready for rounding at the end of the X2 stage.

The floating-point rounder (FRND) section rounds the re-
sults delivered from the FADD and FDIV sections. It operates
during the WF stage of the floating-point pipeline and deliv-
ers a rounded result according to the precision control and
the rounding control, which are specified in the floating-point
control word.

Safe instruction recognition. Floating-point computa-
tion requires longer execution times than integer computa-
tion. Pentium’s floating-point pipeline uses eight stages. while
the integer pipeline uses only five stages. Compatibility re-
quires in-order instruction execution as well as precise ex-
ception reporting. To meet these requirements in the Pentium
processor, floating-point instructions should not proceed
beyond the X1 stage, that is. allow subsequent instructions to
proceed beyond the E stage, unless the floating-point in-
struction is guaranteed to complete without causing an ex-

Toifrom
integericache

Mantissa result
Exponent result - I

I I
I I

FDIV
I i

FADD

. 1 FMUL c c I

FRND

Figure 9. Floating-point unit block diagram.

ception. Otherwise, an instruction may change the state of
the CPU, while an earlier floating-point instruction (which
has not yet completed) might cause an exception that re-
quires a trap to a software exception handler.

To avoid a substantial performance loss due to stalling
instructions until the exception status of a previous floating-
point instruction is known, Pentium’s floating-point unit em-
ploys a mechanism called safe instruction recognition (SIR).
This logic determines whether a floating-point instruction is
guaranteed to complete without creating an exception and
therefore is considered “safe.” If an instruction is safe, there
is no need to stall the pipeline, and the maximum through-
put can be obtained. If, however, the instruction is not safe,
the pipeline stalls for three cycles until the unsafe instruction
reaches the ER stage and a final determination of the excep-
tion SVdtUS is made.

Six possible exceptions can occur on the Pentium
microprocessor’s floating-point operations: invalid operation,
divide by zero, denomdl operand, overflow, underflow, and
inexact. The SIR logic needs to determine early in the float-
ing pipeline-in the X1 stage-before any computation takes
place whether the instruction is guaranteed to be exception
free (safe) or not (unsafe). The first three of the six excep-
tions can be detected without any floating-point calculation.
From the latter three exceptions, the inexact exception is
usually “masked“ by the operating system or the software
application (using the precision mask, or PM, bit in the
floating-point control word). Otherwise, a trap will occur
whenever rounding of the result is necessary. Whep the pre-

‘t

June 1993 17

Pentium micronrocessor

STO
ST1
ST2
ST3
ST4
ST5
ST6
ST7

Cycle 1 +FADD QWORD PTR [EAX] FXCH ST (2)
Cycle 2 +FMUL QWORD PTR [EBX] I FXCH ST (3)

ST2
ST3
ST4
ST5

G ST6
H ST7

ST4
ST5
ST6
ST7

Figure IO. FXCH code example.

cision (inexact) exception is masked, the pipeline delivers
the correctly rounded result directly. For overflow and
underflow exceptions SIR logic uses an algorithm that moni-
tors the exponent fields of the input operands to conclude
the exception status (safe or unsafe).

In the X86 architecture the CPU stores floating-point oper-
ands in the floating-point register file with an extended-
precision exponent, regardless of the precision control in the
floating-point control word. The extended-precision expo-
nent supports much greater range than the double-precision
format. Overflow and underflow exceptions caused by con-
verting the data into double-precision or single-precision for-
mats occur only when storing the data into external memory.
These characteristics of the X86 floating-point architecture
give a unique advantage to the effectiveness of the SIR mecha-
nism in the Pentium CPU, since the SIR algorithm can use the
internal (extended-precision) exponent range. Thus, the oc-
currence of unsafe operations is extremely rare. Our evalua-
tion of the SIR algorithm for the FPU design found no unsafe
instructions in simulated execution of the SPEC89 floating-
point benchmarks.

Register stack manipulation. The x86 floating-point in-
struction set uses the register file as a stack of eight registers
in which the top of stack (TOS) acts as an accumulator of the
results. Therefore, the top of the stack is used for the majority
of the instructions as one of the source operands and, u s u
ally, as the destination register.

To improve the floating-point pipeline performance by op-
timizing the use of the floating-point register file, Pentium's
FPU can execute the FXCH instruction in parallel with any
basic floating-point operation. The FXCH instruction "swaps"
the contents of the TOS register with another register in the
floating-point register file. All the basic floating-point instruc-
tions may be paired with FXCH in the V pipe. The pair ex-
ecute in parallel, even when data dependency between the
two instructions in the pair exists. The use of parallel FXCH
redirects the result of a floating-point operation to any se-
lected register in the register file, while bringing a new oper-
and to the top of the stack for immediate use by the next
floating-point operation.

The example shown in Figure 10 illustrates the use of par-
allel FXCH. The code in the example generates the results of
two independent floating-point calculations. The floating-point
register file contains initial values prior to code execution:
register STO (TOS) contains the value A, register STl contains
value B, register ST2 contains value C, and so on. The two
operations are

1) floating-point addition of value A with the 64-bit floating-
point operand addressed by the genera1 register EAX,
and

2) floating-point multiplication of value C by the &bit floating-
point operand addressed by the general register EBX.

When the floating-point pipeline is fully loaded and these
two operations are part of the code sequence, the parallel
FXCH allows the calculation to maintain the maximum
throughput of one cycle per operation. Within one cycle the
Pentium CPU writes the result of the addition to ST2, while
the operand for the next operation moves to the top of the
stack. On the next cycle, the processor writes the result of
the multiplication to ST3, while the top of the stack contains
value D, which may be used for a subsequent operation.

Transcendental instructions. The CPU supports all eight
transcendental instructions that are defined in the instruction
set through direct execution of microcode sequences. The
transcendental instructions are

1) FSIN
2) FCOS
3) FSINCOS
4) FPTAN
5) FPATAN
6) F2XM1
7) M 2 X
8) FYL2xP

sine,
cosine,
sine and cosine,
tangent,
arctangent,
2**x - 1,
Y * Log2(X), and
1 Y * Log2(X+l)

We developed new, table-driven algorithms for the tran-
scendental functions using polynomial approximation tech-
niques. These algorithms substantially improved performance
and accuracy over the i486 CPU implementation, which used
the more traditional Cordic algorithms. The approximation
tables reside in an on-chip ROM along with the other special
constants that are used for floating-point computation.

The performance improvement of the transcendental in-
structions on the Pentium processor ranges from two to three
times over the same instructions on the i486 CPU at the same
frequency. The worst-case error for all the transcendental in-
structions is less than 1 ulp (unit in the last place) when
rounding to nearest even and less than 1.5 ulps when round-
ing in other modes. The functions are guaranteed to be mono-
tonic, with respect to the input operands, throughout the
domain supported by the instruction.

18 IEEE Micro

Development process
Developing a highly integrated microprocessor involves

collaboration between numerous teams having diverse tech-
nical specialties and working under the discipline of well-
defined methodologies. A small team of architects and VLSI
designers developed the initial concepts of the design. This
group conducted feasibility studies of parallel instruction
decoding and options for branch prediction techniques. Si-
multaneously, it evaluated performance by hand for short
benchmarks and compiler optimizations. As initial directions
were established, additional engineers participated, and
subteams focused on the following areas:

1) behavioral modeling of the microarchitecture;
2) circuit feasibility design for caches, decoding PLAs (pro-

grammable logic arrays), floating-point data path, and
other critical functions;

3) a flexible, trace-driven simulator of instruction timing
for performance evaluation;

4) a prototype compiler; and
5) enhancements to existing instruction-tracing tools.

Throughout the design we refined the Pentium micropro-
cessor using both top-down and bottom-up methods. Top-
down refinement was accomplished through comprehensive
characterization of executing benchmark work loads on the
i486 CPU4 and trace-driven experiments concerning alterna-
tive machine organizations conducted by architects using the
performance simulator.

VLSI design engineers evaluating features critical to the
targeted area and frequency refined the design from the bot-
tom up. On two occasions in the design the accumulation of
changes from bottom-up refinement caused the need for sub-
stantial restructuring of the microprocessor’s global chip plan,
or “die diets.” On those occasions, interdisciplinary teams of
specialists collaborated to brainstorm and evaluate ideas that
could satisfy the global or local design constraints. In one
instance, we found it necessary to refine the set of instruc-
tions that could be executed in parallel. Constraints had been
assigned to the area and speed of the decoder PLAs. The
VLSI designers identified combinations of instruction formats
that would feasibly decode in parallel, and the compiler writ-
ers determined the optimal selection.

In the end, the measured performance of the Pentium mi-
croprocessor in production systems is within 2 percent of
that predicted before the design was completed.

The logic validation of the Pentium processor design pre-
sented a major challenge to the design team. A comprehen-
sive test base from the validation of previous X86
microprocessors was available. However, the Pentium pro-
cessor microarchitecture introduced several new fundamen-
tal techniques, such as superscalar, write-back cache, and
floating-point algorithms, that required a more rigorous veri-

-

Naming the Pentium processor

In naming the fifth generation of its compatible mi-
croprocessor line the Pentium processor, Intel departed
from tradition. Pentium breaks a string of CPU products
dating back to the late 1970s that used numerics (8086,
286, 386, 486).

“The natural course would be to call this chip the
336,“ said Andrew S. Grove, president and chief execu-
tive officer. “Unfortunately, we cannot trademark those
numbers, which means that any company might call any
chip a 586, even if it doesn’t measure up to the real
thing. ”

Pentium uses the Greek word for five, “pente,” as its
root to associate with the fifth-generation product and
adds “-ium,” a common ending from the periodic table
of elements. Thus, the Pentium microprocessor is the
fifth generation, a key element for future computing.

fication methodology.

ing of the Pentium microprocessor:
We used different validation approaches in pre-silicon test-

1) Architecture verification looked at the “black box” func-
tionality from the programmer’s point of view. We de-
signed comprehensive tests to cover all possible aspects
of the programming model and all the Pentium proces-
sor user-visible features.

June 1993 19

Pentium microprocessor

70

60

50

E 40
0
E 30 cn

20

10

0

.-
c

Intel486 Intel486 Pentium Intel486 Intel486 Pentium
DX-33 DX2-66 processor DX-33 DX2-66 processor
CPU CPU 66 CPU CPU 66

f-- SPECint92- - SPECfp92 -
Figure 11. Pentium processor and i486 CPU performance for SPEC benchmarks.

2) Design verification checked the internal functionality from
the point of view of a logic designer who would under-
stand the behavior of every internal signal. This testing
approach is considered a “white box” technique, in which
tests are written to exercise all the internal logic and
verify its correct behavior.

3) Random instruction testing was a valuable tool to cover
all those situations that are rarely covered by the more
traditional, handwritten tests. Running finely tuned ran-
dom tests let us verify correct functionality by compar-
ing the results generated by a logic design description of
the Pentium processor to the results generated by a
software-emulated model.

4) A logic-design hardware model (QuickTurn) enabled in-
creased testing coverage capacity by allowing a much
larger software base to run on the processor model be-
fore the first silicon was avaikable. We ported the logic
model of the Pentium processor onto a QuickTurn setup,
which was capable of handling the complete design. and
tested major operating systems and application programs
before finalizing the design.

In addition to the general validation approach, we dedi-
cated a special effort to verify the new algorithms employed
by the FPU. We developed a high-level software simulator to
evaluate the intricacies of the specific add. multiply, and di-
vide algorithms used in the design. This simulator then evolved
into a testing environment, allowing the verification of the
FPU logic design model independently from the rest of the
Pentium processor. Also, the new algorithms used for the

floating-point transcendental functions
required an extensive test strategy that
verified the accuracy and monotonic-
ity of the results throughout the devel-
opment process, comparing the results
to a “super accurate” software model.
Eventually, when the first silicon of the
Pentium processor was available for
testing, we used automatic testing tech-
niques to assure the correctness of the
transcendental instructions.

Compiler optimizations
The compiler technology developed

with the Pentium microprocessor
includes machine-independent optim-
zations common to current high-
performance compilers, such as inlining,
unrolling, and other loop transforma-
tions. In addition, we used techniques
specifically developed for the X86 ar-
chitecture and tuned them for the
Pentium processor’s microarchitecture.

The X86 architecture has certain characteristics that require
specialized optimization techniques different from those for
RISC architectures. The architecture supports a variety of in-
struction formats for equivalent operations. consequently, it
is critical to select instruction formats that are decoded most
efficiently by the processor. The X86 register set includes
only eight integer and eight floating-point registers. We have
found that common global register allocation techniques that
assign variables to registers for the entire scope of a proce-
dure are ineffective with such a limited number of registers.
Registers must be allocated within a narrower scope and to-
gether with instruction scheduling.

The compiler schedules instructions to minimize interlocks
and to maximize parallel execution for the Pentium processor’s
superscalar pipelines. These techniques also benefit perfor-
mance on the i486 CPU (though to a lesser extent) because
the processors’ pipeline organizations are similar. The instruc-
tion-scheduling techniques have minimal impact on perfor-
mance for the i386 CPU since that processor uses little
pipelining. As explained in the description of the floating-
point pipeline, the compiler schedules FXCH instructions to
avoid floating-point register-stack dependencies.

THE PENTIUM MICROPROCESSOR employs superscalar in-
teger pipelines, branch prediction, and a highly pipelined
FPU to achieve the highest X86 performance levels available
elsewhere while preserving binary compatibility with the X86
architecture. Figure 11 summarizes the performance of the
Pentium microprocessor and the highest performance i486

20 IEEE Micro

Figure 12. Die photograph.

CPU for the SPEC benchmarks in well-tuned systems. Figure
12 reproduces a photograph of the packaged circuit that in-
tegrates 3.1 million transistors. Ip

Acknowledgments
The individuals who made substantial contributions to the

Pentium processor's design are too numerous to list here, so
instead we acknowledge groups of contributors. The VLSI
design team applied their creativity and determined effort
throughout the project. The compiler team developed and
implemented novel optimization techniques. Software engi-
neers in several groups developed instruction-tracing and per-
formance simulation tools. Hardware engineers and
technicians instrumented measurement and tracing systems.
Architects facilitated and integrated efforts of these other teams.
The efforts in architecture, optimizing compiler, and perfor-
mance simulation involved collaboration between teams in
Santa Clara and Israel.

References
1 . i486 Processor Programmer's Reference Manual, Intel Corporation ,

Santa Clara, Calif., 1990.
2. ANSIllEEEStandard 754- 1985 for Binary Floating-PointArithmetic,

IEEE Computer Society Press, Los Alamitos, Calif., 1985.

3. John H. Crawford, "The i486 CPU: Executing Instructions in One
Clock Cycle," /€€E Micro, Vol. 10, No. 1, Feb., 1990, pp. 27-36.

4. Tejpal ChadhaandParthaSrinivasan, "Thelnte1386CPU Family-
Architecture & Performance Analysis," Digestoffapers Compcon
Spring 1992, CS Press, Feb 1992, pp. 332-337.

5. Robert F. Cmeliketal., "An Analysisof Mipsand Sparclnstruction
Set Utilization on the SPEC Benchmarks," Proc. ASPLOS-IVConf.,
Computer Architecture News, Vol. 19, No. 2, Apr., 1991, pp.
290-302.

Donald Alpert is an architecture manager
in Intel Corporation's Microprocessor
Division. He holds responsibility for man-
aging the architecture team that developed
specifications and modeling and evaluating
performance of the Pentium processor.
Previously, he held various microproces-

sor development positions at National Semiconductor Cor-
poration and Zilog.

Alpert received a BS degree from MIT and MS and PhD
degrees from Stanford University, all in electrical engineer-
ing. He is a member of the IEEE Computer Society and the
Association of Computing Machinery.

Dror Avnon is design manager of the
floating-point unit of the Pentium proces-
sor. He holds responsibility for the micro-
architecture, design, performance analysis,
and verification for the FPU logic and
microcode. He previously held design
engineering positions at National Semicon-

ductor Corporation, Computer Consoles, and Elscint.
Avnon received a BSc degree in electronic engineering

from Technion-Israel Institute of Technology in Haifa. He is
a member of the IEEE Computer Society.

Direct questions to Dror Avnon, Intel Corporation, M/S
RN2-27, 2200 Mission College Blvd., Santa Clara, CA 95052;
davnon@mipos2.intel.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 159 Medium 160 High 161

June 1993 21

mailto:davnon@mipos2.intel.com

