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THE NVIDIA PTX MEMORY CONSISTENCY MODEL

Memory consistency model: a set
of rules defining the values that
loads can legally return

This paper: a new scoped memory consistency model for NVIDIA GPUs

• enables flexible intra-GPU, GPU-GPU, and CPU-GPU communication

• PTX documentation online, and axiomatic formalization in paper

• C++ compiler mappings tested using Alloy and verified using Coq

Image: https://devblogs.nvidia.com/unified-memory-cuda-beginners/
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MOTIVATION

Why create a new memory consistency model for NVIDIA GPUs?
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GOAL #1: FIX BUGS IN PRIOR GENERATIONS
Implementation (compiler + hardware) must respect software specs

[PLDI’16]

[ASPLOS’15]
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GOAL #2: ENABLE AN IMPROVED SIMT MODEL
Avoid starvation/livelock scenarios possible under prior SIMT model

https://devblogs.nvidia.com/inside-volta/

WAIT

SEND

ld.acq.cta

st.rel.cta
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THE NVIDIA MEMORY CONSISTENCY MODEL

A High-Level Overview
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NVIDIA MEMORY MODEL: GENERAL APPROACH

1. Start with the least common denominator of modern CPU weak 
memory consistency models

• As weak as possible (better performance, more microarchitectural 
flexibility), as long as the result is properly programmable

2. Add scopes
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PTX MEMORY MODEL STARTING POINT

Causality

Release/Acquire, CTA Execution Barriers, Fences (transitively)

Coherence Order

Sequential Consistency per Location

expected single-threaded and same-address behavior

Atomicity of RMWs

No Out-of-Thin-Air Executions

still-open theoretical problem: how to prevent self-justifying speculation?

The “Least Common Denominator” of existing models
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SCOPES OR NO SCOPES?

Early GPU memory models exposed scopes

HSA/HRF [ASPLOS’14], OpenCL

Later papers: HW coherence protocols can 
track scopes instead of user, delivering 
simpler model with no performance loss

Remote Scope Promotion [ASPLOS’15], 
DeNovo+DRF [MICRO’15], Relativistic Cache 
coherence [HPCA’17], …

But: that required extra hardware support is 
a non-trivial cost we can’t/won’t commit to!

GPU 0

L1$ L1$ L1$

L2$

SM SM SM

GPU 1

L1$ L1$ L1$

L2$

SM SM SM
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SCOPES AND MORAL STRENGTH

A scope is a set of 
threads

Each synchronizing 
memory instruction 
specifies a scope, e.g., 
“ld.acquire.gpu”

Morally strong aka 
mutually scope inclusive: 
a pair of instructions 
where the scope of each 
includes the other

Cooperative Thread Array (CTA)

CPU
Threads

GPU

System

Shared Address Space

Cooperative Thread Array (CTA)
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Threads
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System

Shared Address Space

Cooperative Thread Array (CTA)

st.release.gpu ld.acquire.gpumorally strong!
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PTX MEMORY CONSISTENCY MODEL AXIOMS

Causality, built out of morally strong pairs of memory accesses

Release/Acquire, CTA Execution Barriers, Fences (transitively)

Coherence Order, for causally related/morally strong pairs of memory accesses

Sequential Consistency per Location, for morally strong pairs of memory accesses

expected single-threaded and same-address behavior

Atomicity of RMWs, for morally strong pairs of memory accesses

No Out-of-Thin-Air Executions

still-open theoretical problem: how to prevent self-justifying speculation?

The “Least Common Denominator”, plus scopes
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PTX MEMORY CONSISTENCY MODEL AXIOMS

Causality, built out of morally strong pairs of memory accesses

Release/Acquire, CTA Execution Barriers, Fences (transitively)

Coherence Order, for causally related/morally strong pairs of memory accesses

Sequential Consistency per Location, for morally strong pairs of memory accesses

expected single-threaded and same-address behavior

Atomicity of RMWs, for morally strong pairs of memory accesses

No Out-of-Thin-Air Executions

still-open theoretical problem: how to prevent self-justifying speculation?

The “Least Common Denominator”, plus scopes

Full details in PTX documentation and in paper!
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VERIFIED COMPILER MAPPINGS

How do we know the model is compatible with general-purpose
languages like CUDA and C++?
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DEFINING AND VERIFYING “CORRECTNESS”

C++

Program

PTX

Binary

PTX Execution

Output

C++ Execution

Output

Compile
Lift

Execute

Execute

1. Execute according to 
abstract C++ semantics

2. Compile to PTX, 
execute, and interpret 
as execution of 
original C++ program

Correctness:
#2 must always be 
consistent with #1
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C++ COMPILER MAPPINGS

C++

Program

PTX

Binary

Compile

C++ PTX

non-atomic load ld.weak

atomic_load(addr,
memory_order_relaxed,

scope)

ld.relaxed.scope
addr

atomic_load(addr,
memory_order_acquire,

scope)

ld.acquire.scope
addr

atomic_load(addr,
memory_order_seq_cst,

scope)

fence.sc.scope;
ld.acquire.scope

addr

... ...

Modern best practice:

Provide a fixed 
compiler mapping from 
C++ to PTX assembly



19

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

DEFINING AND VERIFYING “CORRECTNESS”

C++

Program

PTX

Binary

PTX Execution

Output

C++ Execution

Output

Compile
Lift

Execute

Execute

Build models of both 
paths, and then:

1. Empirically test for 
counterexamples in 
the theory

2. Rigorously prove 
the theory correct

3. Empirically test on 
real hardware

4. Whatever else!
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VERIFYING OUR C++ COMPILER MAPPINGS

We developed an Alloy→Coq compiler,
enabling a unified framework combining:

Alloy: Relational Model Finder

Coq: Interactive Theorem Prover

Empirically test AND formally prove that 
the compiler mappings are sound

Same model for both flows!

Alloy formalizations of C++,

PTX, and compiler mappings

SAT 

Solver

Empirical
Testing

Coq Model

Formal
Verification

Coq Checker

Built-in
Alloy

Backend

New Alloy→Coq
Compiler!

Fill in proofs
manually

New contributions of this paper
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THE NVIDIA PTX MEMORY CONSISTENCY MODEL

• Scoped weak memory model, designed to maximize performance, architectural 
flexibility, and portability

• Allows GPU threads to freely communicate with any other thread in the system

• Fixes bugs, livelock/starvation issues in past generations

• Developed a new unified framework to empirically test AND formally prove the 
correctness of C++ compiler mappings

• Extends modern best practice for hardware memory consistency models

All materials available online: https://github.com/nvlabs/PTXMemoryModel

Summary and Conclusion

https://github.com/nvlabs/PTXMemoryModel

