<A NVvIDIA. *

A FORMAL ANALYSIS OF THE NVIDIA
PTX MEMORY CONSISTENCY MODEL

Dan Lustig, Sameer Sahasrabuddhe, Oliyier Giroux, Apr 15, 2019 (ASPLOS 2019)

THE NVIDIA PTX MEMORY CONSISTENCY MODEL
Memory consistency model: a set n
of rules defining the values that
loads can legally return

Unified Memory

This paper: a new scoped memory consistency model for NVIDIA GPUs

enables flexible intra-GPU, GPU-GPU, and CPU-GPU communication

PTX documentation online, and axiomatic formalization in paper

C++ compiler mappings tested using Alloy and verified using Coq

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

MOTIVATION

Why create a new memory consistency model for NVIDIA GPUs?

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

GOAL #1: FIX BUGS IN PRIOR GENERATIONS

Implementation (compiler + hardware) must respect software specs

Exposing Errors Related to Weak Memory in GPU Applications

Tyler Sorensen

Imperial College London, UK
t.sorensen15@imperial.ac.uk

[PLDI’16]

Abstract

We present the systematic design of a testing environment
that uses stressing and fuzzing to reveal errors in GPU appli-
cations that arise due to weak memory effects. We evaluate

Alastair F. Donaldson

Imperial
alastair.dof

have been shown to

’ Jeroen Ketema® Daniel Poetz1®
behaviours beyond tf

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

leavings are possible ! University College London 2 Microsoft Research ~ * University of Cambridge
even more challengi 4 Imperial College London ® University of Utah ® University of Oxford
Li | b
[ASPLOS’15]
Abstract

Concurrency is pervasive and perplexing, particularly on
graphics processing units (GPUs). Current specifications of
languages and hardware are inconclusive; thus programmers
often rely on folklore asqumplmm when writing software.

I{l FEmeqy II 15 state |‘,|I A :] s we conduc {:|| A IAroe eI

GPU Concurrency:
Weak Behaviours and Programming Assumptions

Jade Alglave'? Mark Batty® Alastair F. Donaldson” Ganesh Gopalakrishnan®

Tyler Sorensen'®> John Wickerson*

Yet GPU concurrency is poorly specified. The vendors’
documentation and programming guides suffer from signif-
icant omissions and ambiguities, which force programmers
to rely on folklore assumptions when writing software.

To distinguish assumptions from ground truth, we ques-
tioned the hardware guarantees and the assumptions made

4 <A NVIDIA.

GOAL #2: ENABLE AN IMPROVED SIMT MODEL

Avoid starvation/livelock scenarios possible under prior SIMT model

Pre-Volta

oo | LU LT

and Stack (5)

32 thread warp

Volta

QOLUOOLOOOLOOLOLOOLODOLUOLODOLOOLOLOLOOLOOLDOLOOLOLDOLODODOLOLDOOLVOLOODOLOLOOV
Convergence [a Ty a W Y o WY o WY n Y Y MY n Y Y Y n T n Y Y Y n T WY n Y n WY A m R Y WY Y n Y n Y WY Y o WY Y WY 0 8

Z;

B 5 055550555599555599339933564

32 thread warp with independent scheduling

» Time

https://devblogs.nvidia.com/inside-volta/

5 <A NVIDIA.

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

THE NVIDIA MEMORY CONSISTENCY MODEL

A High-Level Overview

IIIIIII

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

NVIDIA MEMORY MODEL: GENERAL APPROACH

1. Start with the least common denominator of modern CPU weak
memory consistency models

* As weak as possible (better performance, more microarchitectural
flexibility), as long as the result is properly programmable

IIIIIII

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

PTX MEMORY MODEL STARTING POINT

The “Least Common Denominator” of existing models

Causality

» Release/Acquire, CTA Execution Barriers, Fences (transitively)
Coherence Order
Sequential Consistency per Location

» expected single-threaded and same-address behavior
Atomicity of RMWs
No Out-of-Thin-Air Executions

» still-open theoretical problem: how to prevent self-justifying speculation?

8 <A NVIDIA.

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

NVIDIA MEMORY MODEL: GENERAL APPROACH

1. Start with the least common denominator of modern CPU weak
memory consistency models

* As weak as possible (better performance, more microarchitectural
flexibility), as long as the result is properly programmable

IIIIIII

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

sm || sm || sm |

L1S L1S L1S

SCOPES OR NO SCOPES?

Early GPU memory models exposed scopes

HSA/HRF [ASPLOS’14], OpenCL L2S
Later papers: HW coherence protocols can GPU O
track scopes instead of user, delivering
simpler model with no performance loss [SM][SM][SM]

Remote Scope Promotion [ASPLOS’15],
DeNovo+DRF [MICRO’15], Relativistic Cache L1S || L1S || L1S
coherence [HPCA’17], ...

But: that required extra hardware support is L25
a non-trivial cost we can’t/won’t commit to! GPU 1

IIIIIII

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

SCOPES AND MORAL STRENGTH

System
r -, ~ Ascopeis a set of
GPU threads
. - NP
U ..
>
Cooperative Thread Array (CTA) Cooperative Thread Array (CTA) Threads Each synchronizing
A A memory instruction

~ =\ r N\ specifies a scope, e.g.,
“ld.acquire.gpu”

> Morally strong aka
mutually scope inclusive:
a pair of instructions
where the scope of each
includes the other

Shared Address Space

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

1 <A NVIDIA.

SCOPES AND MORAL STRENGTH
ﬁrelease.gpu]< morally strong! >_l(\j.acquire.gpu]

GPU threads

System
A \ ~ » A scope is a set of
_AL

N\ CPU
Cooperativg hread Array (CTA) Cooperative Thread Arr¢ (CTA) Threads

e

» Each synchronizing
memory instruction

™ ' specifies a scope, e.g.,

_AL
“ld.acquire.gpu”
% > Morally strong aka

mutually scope inclusive:
a pair of instructions
where the scope of each
includes the other

Shared Address Space

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

12 <A NVIDIA.

SCOPES AND MORAL STRENGTH
st.release.cta]< not morally strong! >u§j.acquire.cta]

System
AL \ ~ » A scope is a set of

GPU threads

AL

N\ CPU
Cooperative hread Array (CTA) Cooperative Thread Arr\ CTA) Threads

» Each synchronizing

| memory instruction
< M specifies a scope, e.g.,
“ld.acquire.gpu”

> Morally strong aka
mutually scope inclusive:
a pair of instructions
where the scope of each
includes the other

Shared Address Space

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

13 <A NVIDIA.

A\

PTX MEMORY CONSISTENCY MODEL AXIOMS

The “Least Common Denominator”, plus scopes

Causality, built out of morally strong pairs of memory accesses

» Release/Acquire, CTA Execution Barriers, Fences (transitively)

Coherence Order, for causally related/morally strone pairs of memory accesses

Sequential Consistency per Location, for morally strong pairs of memory accesses

» expected single-threaded and same-address behavior

Atomicity of RMWs, for morally strong pairs of memory accesses

No Out-of-Thin-Air Executions

» still-open theoretical problem: how to prevent self-justifying speculation?

14 “ANVIDIA.

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

PTX MEMORY CONSISTENCY MODEL AXIOMS

The “Least Common Denominator”, plus scopes

Axiom 1 (Coherence).
[W]; cause; [W] C co

Axiom 2 (FenceSC).
irreflexive(sc; cause)

Axiom 3 (Atomicity).
empty(((morally strong N fr)
(morally_strong N co)) N rmw)

Full details in PTX documentation and in paper! Figure 7. PTX Memory Model Axioms

pattern, == ([W2REL]: po loc’; [W]) U ([FREL]: po; [W])
obs := (morally_strong N rf) U (obs; rmw; obs)
patterngeg == ([R]; po_loc”; [RZAL]) U ([R]; po; [FACCQ])
sw = (morally_strong N (pattern,;; obs; patterngeg))
U Ssyncharrier U SC
CaUSEpgse = (PO?; Swy PO?)+
cause := causepase U (0bs; (causepase U po_loc))

Figure 4. PTX Memory Model Relations

Axiom 4 (No-Thin-Air).
acyclic(rf U dep)

Axiom 5 (SC-per-Location).
acyclic((morally_strong N (rf U co U fr)) U po_loc)

Axiom 6 (Causality).
irreflexive((rf U fr); cause)

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

15

y

“ANVIDIA.

VERIFIED COMPILER MAPPINGS

How do we know the model is compatible with general-purpose
languages like CUDA and C++?

IIIIIII

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

DEFINING AND VERIFYING “CORRECTNESS”

: 1. Execute according to
C++ Execlte C++ Execution abstract C++ semantics
Program Output
2. Compile to PTX,
_ /\ execute, and interpret
Compile Lift as execution of
\/ original C++ program

PTX Execute PTX Execution
) Correctness:
Binary Output #2 must always be

consistent with #1

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

C++ COMPILER MAPPINGS

Modern best practice:

non-atomic load 1d.weak PrOViqe a ﬁxed.
C++ compiler mapping from
atomic_load(addr, C++ to PTX assembl
1d.relaxed.scope y
memory order_relaxed,
Program y_ rder xed , mip ddr -

Comp] le < atomic_load(addr,

\/ nemory order acquire, ‘ld : acqu;ge .scope
scope) aaar

PTX atomic_load(addr, fence.sc.scope;
Binary memory_order_seq_cst,md 1d.acquire.scope
scope) addr
\—

18 “ANVIDIA.

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

DEFINING AND VERIFYING “CORRECTNESS”

Build models of both

C++ C++ Execution paths, and then:
P Execute Outout
rogram utpu 1. Empirically test for

counterexamples in

i the theor
Compile Lift y
2. Rigorously prove
: the theory correct
PTX PTX Execution
Binary Execute Output 3. Empirically test on

real hardware

4. Whatever else!

IIIIIII

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

VERIFYING OUR C++ COMPILER MAPPINGS
> We developed an Alloy—>Coq compiler,

Alloy formalizations of C++,
enabling a unified framework combining: PTX, and compiler mappings

Built-i
~ Alloy: Relational Model Finder K{lo;n ‘ ‘ New Alloy->Coq

C iler!
Backend omprier

~ Coq: Interactive Theorem Prover Coq Model

> Empirically test AND formally prove that

. . Fill in proofs
the compiler mappings are sound manually
> S del for both flows! SAT
ame modet Tor bo OwWs: Solver Coqg Checker
Empirical Formal
Testing Verification

. New contributions of this paper

20 <ANVIDIA.

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

THE NVIDIA PTX MEMORY CONSISTENCY MODEL

» Scoped weak memory model, designed to maximize performance, architectural
flexibility, and portability

» Allows GPU threads to freely communicate with any other thread in the system
» Fixes bugs, livelock/starvation issues in past generations

» Developed a new unified framework to empirically test AND formally prove the
correctness of C++ compiler mappings

« Extends modern best practice for hardware memory consistency models

All materials available online:

21 NVIDIA.

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

https://github.com/nvlabs/PTXMemoryModel

