<A NVvIDIA. *

A FORMAL ANALYSIS OF THE NVIDIA
PTX MEMORY CONSISTENCY MODEL

Dan Lustig, Sameer Sahasrabuddhe, Oliyier Giroux, Apr 15, 2019 (ASPLOS 2019)



THE NVIDIA PTX MEMORY CONSISTENCY MODEL
Memory consistency model: a set n
of rules defining the values that
loads can legally return

Unified Memory

This paper: a new scoped memory consistency model for NVIDIA GPUs

enables flexible intra-GPU, GPU-GPU, and CPU-GPU communication

PTX documentation online, and axiomatic formalization in paper

C++ compiler mappings tested using Alloy and verified using Coq
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MOTIVATION

Why create a new memory consistency model for NVIDIA GPUs?
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GOAL #1: FIX BUGS IN PRIOR GENERATIONS

Implementation (compiler + hardware) must respect software specs

Exposing Errors Related to Weak Memory in GPU Applications
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Abstract

We present the systematic design of a testing environment
that uses stressing and fuzzing to reveal errors in GPU appli-
cations that arise due to weak memory effects. We evaluate
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Abstract

Concurrency is pervasive and perplexing, particularly on
graphics processing units (GPUs). Current specifications of
languages and hardware are inconclusive; thus programmers
often rely on folklore asqumplmm when writing software.
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GPU Concurrency:
Weak Behaviours and Programming Assumptions
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Yet GPU concurrency is poorly specified. The vendors’
documentation and programming guides suffer from signif-
icant omissions and ambiguities, which force programmers
to rely on folklore assumptions when writing software.

To distinguish assumptions from ground truth, we ques-
tioned the hardware guarantees and the assumptions made
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GOAL #2: ENABLE AN IMPROVED SIMT MODEL

Avoid starvation/livelock scenarios possible under prior SIMT model

Pre-Volta
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32 thread warp with independent scheduling

» Time

https://devblogs.nvidia.com/inside-volta/
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THE NVIDIA MEMORY CONSISTENCY MODEL

A High-Level Overview

IIIIIII
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NVIDIA MEMORY MODEL: GENERAL APPROACH

1. Start with the least common denominator of modern CPU weak
memory consistency models

* As weak as possible (better performance, more microarchitectural
flexibility), as long as the result is properly programmable
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Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019



PTX MEMORY MODEL STARTING POINT

The “Least Common Denominator” of existing models

Causality

» Release/Acquire, CTA Execution Barriers, Fences (transitively)
Coherence Order
Sequential Consistency per Location

» expected single-threaded and same-address behavior
Atomicity of RMWs
No Out-of-Thin-Air Executions

» still-open theoretical problem: how to prevent self-justifying speculation?
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SCOPES OR NO SCOPES?

Early GPU memory models exposed scopes

HSA/HRF [ASPLOS’14], OpenCL L2S
Later papers: HW coherence protocols can GPU O
track scopes instead of user, delivering
simpler model with no performance loss [ SM ][ SM ][ SM ]

Remote Scope Promotion [ASPLOS’15],
DeNovo+DRF [MICRO’15], Relativistic Cache L1S || L1S || L1S
coherence [HPCA’17], ...

But: that required extra hardware support is L25
a non-trivial cost we can’t/won’t commit to! GPU 1
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SCOPES AND MORAL STRENGTH

System
r -, ~ Ascopeis a set of
GPU threads
. - NP
U ..
>
Cooperative Thread Array (CTA) Cooperative Thread Array (CTA) Threads Each synchronizing
A A memory instruction

~ =\ r N\ specifies a scope, e.g.,
“ld.acquire.gpu”

> Morally strong aka
mutually scope inclusive:
a pair of instructions
where the scope of each
includes the other

Shared Address Space
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SCOPES AND MORAL STRENGTH
ﬁrelease.gpu ]< morally strong! >_l(\j.acquire.gpu ]

GPU threads

System
A \ ~ » A scope is a set of
_AL

N\ CPU
Cooperativg hread Array (CTA) Cooperative Thread Arr¢  (CTA) Threads

e

» Each synchronizing
memory instruction

™ ' specifies a scope, e.g.,

_AL
“ld.acquire.gpu”
% > Morally strong aka

mutually scope inclusive:
a pair of instructions
where the scope of each
includes the other

Shared Address Space

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

12 <A NVIDIA.



SCOPES AND MORAL STRENGTH
st.release.cta ]< not morally strong! >u§j.acquire.cta ]

System
AL \ ~ » A scope is a set of

GPU threads

AL

N\ CPU
Cooperative hread Array (CTA) Cooperative Thread Arr\ CTA) Threads

» Each synchronizing

| memory instruction
< M specifies a scope, e.g.,
“ld.acquire.gpu”

> Morally strong aka
mutually scope inclusive:
a pair of instructions
where the scope of each
includes the other

Shared Address Space
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PTX MEMORY CONSISTENCY MODEL AXIOMS

The “Least Common Denominator”, plus scopes

Causality, built out of morally strong pairs of memory accesses

» Release/Acquire, CTA Execution Barriers, Fences (transitively)

Coherence Order, for causally related/morally strone pairs of memory accesses

Sequential Consistency per Location, for morally strong pairs of memory accesses

» expected single-threaded and same-address behavior

Atomicity of RMWs, for morally strong pairs of memory accesses

No Out-of-Thin-Air Executions

» still-open theoretical problem: how to prevent self-justifying speculation?
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PTX MEMORY CONSISTENCY MODEL AXIOMS

The “Least Common Denominator”, plus scopes

Axiom 1 (Coherence).
[W]; cause; [W] C co

Axiom 2 (FenceSC).
irreflexive(sc; cause)

Axiom 3 (Atomicity).
empty(((morally strong N fr)
(morally_strong N co)) N rmw)

Full details in PTX documentation and in paper! Figure 7. PTX Memory Model Axioms

pattern, == ([W2REL]: po loc’; [W]) U ([FREL]: po; [W])
obs := (morally_strong N rf) U (obs; rmw; obs)
patterngeg == ([R]; po_loc”; [RZAL]) U ([R]; po; [FACCQ])
sw = (morally_strong N (pattern,;; obs; patterngeg))
U Ssyncharrier U SC
CaUSEpgse = (PO?; Swy PO?)+
cause := causepase U (0bs; (causepase U po_loc))

Figure 4. PTX Memory Model Relations

Axiom 4 (No-Thin-Air).
acyclic(rf U dep)

Axiom 5 (SC-per-Location).
acyclic((morally_strong N (rf U co U fr)) U po_loc)

Axiom 6 (Causality).
irreflexive((rf U fr); cause)
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VERIFIED COMPILER MAPPINGS

How do we know the model is compatible with general-purpose
languages like CUDA and C++?

IIIIIII
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DEFINING AND VERIFYING “CORRECTNESS”

: 1. Execute according to
C++ Execlte C++ Execution abstract C++ semantics
Program Output
2. Compile to PTX,
_ /\ execute, and interpret
Compile Lift as execution of
\/ original C++ program

PTX Execute PTX Execution
) Correctness:
Binary Output #2 must always be

consistent with #1
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C++ COMPILER MAPPINGS

Modern best practice:

non-atomic load 1d.weak PrOViqe a ﬁxed.
C++ compiler mapping from
atomic_load(addr, C++ to PTX assembl
1d.relaxed.scope y
memory order_relaxed,
Program y_ rder xed , mip ddr -

Comp] le < atomic_load(addr,

\/ nemory order acquire, ‘ld : acqu;ge .scope
scope) aaar

PTX atomic_load(addr, fence.sc.scope;
Binary memory_order_seq_cst,md 1d.acquire.scope
scope) addr
\—
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DEFINING AND VERIFYING “CORRECTNESS”

Build models of both

C++ C++ Execution paths, and then:
P Execute Outout
rogram utpu 1. Empirically test for

counterexamples in

i the theor
Compile Lift y
2. Rigorously prove
: the theory correct
PTX PTX Execution
Binary Execute Output 3. Empirically test on

real hardware

4. Whatever else!
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VERIFYING OUR C++ COMPILER MAPPINGS
> We developed an Alloy—>Coq compiler,

Alloy formalizations of C++,
enabling a unified framework combining: PTX, and compiler mappings

Built-i
~ Alloy: Relational Model Finder K{lo;n ‘ ‘ New Alloy->Coq

C iler!
Backend omprier

~ Coq: Interactive Theorem Prover Coq Model

> Empirically test AND formally prove that

. . Fill in proofs
the compiler mappings are sound manually
> S del for both flows! SAT
ame modet Tor bo OwWs: Solver Coqg Checker
Empirical Formal
Testing Verification

. New contributions of this paper
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THE NVIDIA PTX MEMORY CONSISTENCY MODEL

» Scoped weak memory model, designed to maximize performance, architectural
flexibility, and portability

» Allows GPU threads to freely communicate with any other thread in the system
» Fixes bugs, livelock/starvation issues in past generations

» Developed a new unified framework to empirically test AND formally prove the
correctness of C++ compiler mappings

« Extends modern best practice for hardware memory consistency models

All materials available online:
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https://github.com/nvlabs/PTXMemoryModel

