
Dan Lustig, Sameer Sahasrabuddhe, Olivier Giroux, Apr 15, 2019 (ASPLOS 2019)

A FORMAL ANALYSIS OF THE NVIDIA 
PTX MEMORY CONSISTENCY MODEL



2

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

THE NVIDIA PTX MEMORY CONSISTENCY MODEL

Memory consistency model: a set
of rules defining the values that
loads can legally return

This paper: a new scoped memory consistency model for NVIDIA GPUs

• enables flexible intra-GPU, GPU-GPU, and CPU-GPU communication

• PTX documentation online, and axiomatic formalization in paper

• C++ compiler mappings tested using Alloy and verified using Coq

Image: https://devblogs.nvidia.com/unified-memory-cuda-beginners/



3

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

MOTIVATION

Why create a new memory consistency model for NVIDIA GPUs?



4

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

GOAL #1: FIX BUGS IN PRIOR GENERATIONS
Implementation (compiler + hardware) must respect software specs

[PLDI’16]

[ASPLOS’15]



5

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

GOAL #2: ENABLE AN IMPROVED SIMT MODEL
Avoid starvation/livelock scenarios possible under prior SIMT model

https://devblogs.nvidia.com/inside-volta/

WAIT

SEND

ld.acq.cta

st.rel.cta



6

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

THE NVIDIA MEMORY CONSISTENCY MODEL

A High-Level Overview



7

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

NVIDIA MEMORY MODEL: GENERAL APPROACH

1. Start with the least common denominator of modern CPU weak 
memory consistency models

• As weak as possible (better performance, more microarchitectural 
flexibility), as long as the result is properly programmable

2. Add scopes



8

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

PTX MEMORY MODEL STARTING POINT

Causality

Release/Acquire, CTA Execution Barriers, Fences (transitively)

Coherence Order

Sequential Consistency per Location

expected single-threaded and same-address behavior

Atomicity of RMWs

No Out-of-Thin-Air Executions

still-open theoretical problem: how to prevent self-justifying speculation?

The “Least Common Denominator” of existing models



9

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

NVIDIA MEMORY MODEL: GENERAL APPROACH

1. Start with the least common denominator of modern CPU weak 
memory consistency models

• As weak as possible (better performance, more microarchitectural 
flexibility), as long as the result is properly programmable

2. Add scopes



10

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

SCOPES OR NO SCOPES?

Early GPU memory models exposed scopes

HSA/HRF [ASPLOS’14], OpenCL

Later papers: HW coherence protocols can 
track scopes instead of user, delivering 
simpler model with no performance loss

Remote Scope Promotion [ASPLOS’15], 
DeNovo+DRF [MICRO’15], Relativistic Cache 
coherence [HPCA’17], …

But: that required extra hardware support is 
a non-trivial cost we can’t/won’t commit to!

GPU 0

L1$ L1$ L1$

L2$

SM SM SM

GPU 1

L1$ L1$ L1$

L2$

SM SM SM



11

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

SCOPES AND MORAL STRENGTH

A scope is a set of 
threads

Each synchronizing 
memory instruction 
specifies a scope, e.g., 
“ld.acquire.gpu”

Morally strong aka 
mutually scope inclusive: 
a pair of instructions 
where the scope of each 
includes the other

Cooperative Thread Array (CTA)

CPU
Threads

GPU

System

Shared Address Space

Cooperative Thread Array (CTA)



12

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

SCOPES AND MORAL STRENGTH

A scope is a set of 
threads

Each synchronizing 
memory instruction 
specifies a scope, e.g., 
“ld.acquire.gpu”

Morally strong aka 
mutually scope inclusive: 
a pair of instructions 
where the scope of each 
includes the other

Cooperative Thread Array (CTA)

CPU
Threads

GPU

System

Shared Address Space

Cooperative Thread Array (CTA)

st.release.gpu ld.acquire.gpumorally strong!



13

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

SCOPES AND MORAL STRENGTH

A scope is a set of 
threads

Each synchronizing 
memory instruction 
specifies a scope, e.g., 
“ld.acquire.gpu”

Morally strong aka 
mutually scope inclusive: 
a pair of instructions 
where the scope of each 
includes the other

Cooperative Thread Array (CTA)

CPU
Threads

GPU

System

Shared Address Space

Cooperative Thread Array (CTA)

st.release.cta ld.acquire.ctanot morally strong!



14

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

PTX MEMORY CONSISTENCY MODEL AXIOMS

Causality, built out of morally strong pairs of memory accesses

Release/Acquire, CTA Execution Barriers, Fences (transitively)

Coherence Order, for causally related/morally strong pairs of memory accesses

Sequential Consistency per Location, for morally strong pairs of memory accesses

expected single-threaded and same-address behavior

Atomicity of RMWs, for morally strong pairs of memory accesses

No Out-of-Thin-Air Executions

still-open theoretical problem: how to prevent self-justifying speculation?

The “Least Common Denominator”, plus scopes



15

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

PTX MEMORY CONSISTENCY MODEL AXIOMS

Causality, built out of morally strong pairs of memory accesses

Release/Acquire, CTA Execution Barriers, Fences (transitively)

Coherence Order, for causally related/morally strong pairs of memory accesses

Sequential Consistency per Location, for morally strong pairs of memory accesses

expected single-threaded and same-address behavior

Atomicity of RMWs, for morally strong pairs of memory accesses

No Out-of-Thin-Air Executions

still-open theoretical problem: how to prevent self-justifying speculation?

The “Least Common Denominator”, plus scopes

Full details in PTX documentation and in paper!



16

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

VERIFIED COMPILER MAPPINGS

How do we know the model is compatible with general-purpose
languages like CUDA and C++?



17

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

DEFINING AND VERIFYING “CORRECTNESS”

C++

Program

PTX

Binary

PTX Execution

Output

C++ Execution

Output

Compile
Lift

Execute

Execute

1. Execute according to 
abstract C++ semantics

2. Compile to PTX, 
execute, and interpret 
as execution of 
original C++ program

Correctness:
#2 must always be 
consistent with #1



18

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

C++ COMPILER MAPPINGS

C++

Program

PTX

Binary

Compile

C++ PTX

non-atomic load ld.weak

atomic_load(addr,
memory_order_relaxed,

scope)

ld.relaxed.scope
addr

atomic_load(addr,
memory_order_acquire,

scope)

ld.acquire.scope
addr

atomic_load(addr,
memory_order_seq_cst,

scope)

fence.sc.scope;
ld.acquire.scope

addr

... ...

Modern best practice:

Provide a fixed 
compiler mapping from 
C++ to PTX assembly



19

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

DEFINING AND VERIFYING “CORRECTNESS”

C++

Program

PTX

Binary

PTX Execution

Output

C++ Execution

Output

Compile
Lift

Execute

Execute

Build models of both 
paths, and then:

1. Empirically test for 
counterexamples in 
the theory

2. Rigorously prove 
the theory correct

3. Empirically test on 
real hardware

4. Whatever else!



20

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

VERIFYING OUR C++ COMPILER MAPPINGS

We developed an Alloy→Coq compiler,
enabling a unified framework combining:

Alloy: Relational Model Finder

Coq: Interactive Theorem Prover

Empirically test AND formally prove that 
the compiler mappings are sound

Same model for both flows!

Alloy formalizations of C++,

PTX, and compiler mappings

SAT 

Solver

Empirical
Testing

Coq Model

Formal
Verification

Coq Checker

Built-in
Alloy

Backend

New Alloy→Coq
Compiler!

Fill in proofs
manually

New contributions of this paper



21

Lustig, Sahasrabuddhe, Giroux, “A Formal Analysis of the NVIDIA PTX Memory Consistency Model”, ASPLOS 2019

THE NVIDIA PTX MEMORY CONSISTENCY MODEL

• Scoped weak memory model, designed to maximize performance, architectural 
flexibility, and portability

• Allows GPU threads to freely communicate with any other thread in the system

• Fixes bugs, livelock/starvation issues in past generations

• Developed a new unified framework to empirically test AND formally prove the 
correctness of C++ compiler mappings

• Extends modern best practice for hardware memory consistency models

All materials available online: https://github.com/nvlabs/PTXMemoryModel

Summary and Conclusion

https://github.com/nvlabs/PTXMemoryModel

