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Problem: Memory latency
• Long latency memory operations

– disrupt pipeline and stall back-end

• Very large caches
– inefficient performance
– negatively impact die size

• Very large instruction window (>4K)
– memory parallelism and latency tolerance
– conventional methods intractable

Need high performance using small caches and buffers
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TPC-C profile
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What happened?
• L2 miss and dependents (blocked)

– comprise small fraction of window
– block ROB and other resources

• Miss-independents
– comprise large fraction of window
– can proceed but don’t have resources

• ROB cannot overlap L2 miss
– memory latency exposed
– pipeline disrupted—backend stalls
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Solution: Continual Flow Pipelines
Treat Blocked & Independents differently

• Blocked (Miss-dependents, Slice)
– create self-contained slice and drain out
– free critical resources
– execute when miss returns

• Independents
– execute and “pseudo-retire”
– retain ability to undo using checkpoint

• Automatic result integration
– no re-execution!
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Outline
• Introduction
• Motivation
• Continual Flow Pipelines

– Concepts
– Performance
– Analysis

• Summary
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Motivation (1/3)
• No misses � no problem

– instructions execute quickly, free resources
– critical resources sized for L2 hit

• Long latency miss � stalls backend
– blocked instructions cannot execute

• occupy and block resources

– large window needed (>4K instructions)
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Motivation (2/3)
• Blocked instructions cannot execute

– may continue to occupy scheduler entries
– put pressure on register file

I2
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Completed Sources
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Motivation (3/3)
• Scheduler

– non-blocking proposals exist
• Pentium 4-style replay
• WIB (as large as instruction window)

• Registers
– no solution for completed source registers
– late allocation of blocked destinations 

• significant pipeline changes

No unified non-blocking solution exists
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Outline
• Introduction
• Motivation
• Continual Flow Pipelines

– Concepts
– Performance
– Analysis

• Summary
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Continual Flow Pipelines
Treat Blocked & Independents differently

1. Blocked
– create self-contained slice and drain out
– free critical resources

2. Independents
– execute and “pseudo-retire”
– free critical resources
– can undo

3. Automatic result integration
– no re-execution
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CFP key actions
Detect L2 miss and save state
1. Drain slice (incl. completed sources)
2. Process, execute, “retire” independents
3. When L2 miss serviced, process slice
4. Merge outputs of slice and independents
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1. Identifying and draining slice
• Propagate poison (NAV) bits to consumers

– registers
– store queue (for memory poisoning)

• Blocked instructions (Slice)
– treat NAV source reg. as “ready” and “read”
– read completed source reg. and mark “read”
– flow through pipeline

• allow release of registers and scheduler entry

– enter buffer along with completed source value
• record renamed names for registers
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2. Processing slice & independents
• Independents execute normally

– “pseudo retire”
– release critical resources

• Rename map filter
– track live outs (independent or slice)
– “all” allocated instructions update filter
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3. Executing slice
• When L2 miss data returns
• Blocked instructions in slice buffer

– have completed source “value”
• don’t re-read register file for completed sources
• become immediates

– re-acquire register names
• physical-to-physical register renaming
• filter read to ensure appropriate live-out linking

– re-acquire scheduler entry
– execute normally through pipeline
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4. Merging outputs
• Automatic integration

– no explicit operation required
– rename map filter tracks live outs continuously

Wait for next miss…
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Key components
• Slice Data Buffer

– dense FIFO SRAM structure
– significantly smaller than target window

• Slice filter and remapper
– fixed size structure

• Checkpoints
– for recovering if necessary

• L2 load buffer and L2 store queue
– for memory buffering and ordering

Simple dense structures off the critical path
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Block diagram for CFP
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Outline
• Introduction
• Motivation
• Continual Flow Pipelines

– Concepts
– Performance
– Analysis

• Summary
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CFP performance
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CFP performance intuition
• Memory latency tolerance

– significant useful independent work
– no re-execution, automatic result integration
– can tolerate first and isolated misses

• Memory level parallelism
– when clustered misses occur
– overlap multiple misses

CFP achieves BOTH
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Analysis: Base description
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Analysis: SFP2K overlay
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Analysis: TPC-C overlay (events)
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Analysis: CFP and Runahead

0

500

1000

1500

2000

2500

3000

3500

4000

1 299 597 895 1193 1491 1789 2087 2385 2683 2981 3279 3577 3875 4173 4471 4769 5067 5365 5663 5961 6259

Retired Uop ID

C
yc

le

1st UL2 Miss

2nd UL2 Miss

3rd UL2 Miss

Slice Reinsertion

Slice Reinsertion

RA: 2 “stalls”, hides 2nd miss

BASE: 3 stalls

CFP: 0 stalls, hides ALL misses

BASE

CFP

RA



26
© Intel Corporation©© Intel CorporationIntel Corporation

1500

2000

2500

3000

3500

4000

4500

1 274 547 820 1093 1366 1639 1912 2185 2458 2731 3004 3277 3550 3823 4096 4369 4642 4915 5188 5461 5734

Retired Uops ID

C
yc

le

Impact for core changes

CFP+CPR slope < than CFP+ROB
lower core CPI

CFP on ROB

CFP on CPR



27
© Intel Corporation©© Intel CorporationIntel Corporation

Summary
• Treat miss-dependents differently

– buffer “self-contained” slice outside pipeline
– execute, retire indeps., don’t re-execute

• Unified non-blocking proposal
– high memory-latency tolerance

• enables high cache efficiency

– high single-thread performance
– enables more cores instead of more cache


