
Tuesday, October 12, 2004Tuesday, October 12, 2004Tuesday, October 12, 2004
© Intel Corporation©© Intel CorporationIntel Corporation

Continual Flow Pipelines

Srikanth Srinivasan, Ravi Rajwar, Haitham Akkary, 
Amit Gandhi, Mike Upton

Intel Corporation

ASPLOS-XI October 2004



2
© Intel Corporation©© Intel CorporationIntel Corporation

Problem: Memory latency
• Long latency memory operations

– disrupt pipeline and stall back-end

• Very large caches
– inefficient performance
– negatively impact die size

• Very large instruction window (>4K)
– memory parallelism and latency tolerance
– conventional methods intractable

Need high performance using small caches and buffers



3
© Intel Corporation©© Intel CorporationIntel Corporation

TPC-C profile

1400

1500

1600

1700

1800

1900

2000

2100

2200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183

 Retired Uop ID

C
yc

le

Cycle Allocated
Cycle Executed

UL2 Miss UOP 
and dependents

Alloc stalls

Miss Latency
Alloc resumes

ROB size

Slope = f (core pipeline)



4
© Intel Corporation©© Intel CorporationIntel Corporation

What happened?
• L2 miss and dependents (blocked)

– comprise small fraction of window
– block ROB and other resources

• Miss-independents
– comprise large fraction of window
– can proceed but don’t have resources

• ROB cannot overlap L2 miss
– memory latency exposed
– pipeline disrupted—backend stalls



5
© Intel Corporation©© Intel CorporationIntel Corporation

Solution: Continual Flow Pipelines
Treat Blocked & Independents differently

• Blocked (Miss-dependents, Slice)
– create self-contained slice and drain out
– free critical resources
– execute when miss returns

• Independents
– execute and “pseudo-retire”
– retain ability to undo using checkpoint

• Automatic result integration
– no re-execution!



6
© Intel Corporation©© Intel CorporationIntel Corporation

Outline
• Introduction
• Motivation
• Continual Flow Pipelines

– Concepts
– Performance
– Analysis

• Summary



7
© Intel Corporation©© Intel CorporationIntel Corporation

Motivation (1/3)
• No misses � no problem

– instructions execute quickly, free resources
– critical resources sized for L2 hit

• Long latency miss � stalls backend
– blocked instructions cannot execute

• occupy and block resources

– large window needed (>4K instructions)



8
© Intel Corporation©© Intel CorporationIntel Corporation

Motivation (2/3)
• Blocked instructions cannot execute

– may continue to occupy scheduler entries
– put pressure on register file

I2

I1
PR1 PR4 ���� LD

PR6 ���� PR1+PR4

I3

PR2

Completed Sources
Not read by slice yet
Cannot be released

Blocked dests.
Name allocated
Cannot be released



9
© Intel Corporation©© Intel CorporationIntel Corporation

Motivation (3/3)
• Scheduler

– non-blocking proposals exist
• Pentium 4-style replay
• WIB (as large as instruction window)

• Registers
– no solution for completed source registers
– late allocation of blocked destinations 

• significant pipeline changes

No unified non-blocking solution exists



10
© Intel Corporation©© Intel CorporationIntel Corporation

Outline
• Introduction
• Motivation
• Continual Flow Pipelines

– Concepts
– Performance
– Analysis

• Summary



11
© Intel Corporation©© Intel CorporationIntel Corporation

Continual Flow Pipelines
Treat Blocked & Independents differently

1. Blocked
– create self-contained slice and drain out
– free critical resources

2. Independents
– execute and “pseudo-retire”
– free critical resources
– can undo

3. Automatic result integration
– no re-execution



12
© Intel Corporation©© Intel CorporationIntel Corporation

CFP key actions
Detect L2 miss and save state
1. Drain slice (incl. completed sources)
2. Process, execute, “retire” independents
3. When L2 miss serviced, process slice
4. Merge outputs of slice and independents



13
© Intel Corporation©© Intel CorporationIntel Corporation

1. Identifying and draining slice
• Propagate poison (NAV) bits to consumers

– registers
– store queue (for memory poisoning)

• Blocked instructions (Slice)
– treat NAV source reg. as “ready” and “read”
– read completed source reg. and mark “read”
– flow through pipeline

• allow release of registers and scheduler entry

– enter buffer along with completed source value
• record renamed names for registers



14
© Intel Corporation©© Intel CorporationIntel Corporation

2. Processing slice & independents
• Independents execute normally

– “pseudo retire”
– release critical resources

• Rename map filter
– track live outs (independent or slice)
– “all” allocated instructions update filter



15
© Intel Corporation©© Intel CorporationIntel Corporation

3. Executing slice
• When L2 miss data returns
• Blocked instructions in slice buffer

– have completed source “value”
• don’t re-read register file for completed sources
• become immediates

– re-acquire register names
• physical-to-physical register renaming
• filter read to ensure appropriate live-out linking

– re-acquire scheduler entry
– execute normally through pipeline



16
© Intel Corporation©© Intel CorporationIntel Corporation

4. Merging outputs
• Automatic integration

– no explicit operation required
– rename map filter tracks live outs continuously

Wait for next miss…



17
© Intel Corporation©© Intel CorporationIntel Corporation

Key components
• Slice Data Buffer

– dense FIFO SRAM structure
– significantly smaller than target window

• Slice filter and remapper
– fixed size structure

• Checkpoints
– for recovering if necessary

• L2 load buffer and L2 store queue
– for memory buffering and ordering

Simple dense structures off the critical path



18
© Intel Corporation©© Intel CorporationIntel Corporation

Block diagram for CFP

D
ecode

A
llocate &

 R
enam

e

Q
ueue uO

P

Scheduler

R
egister File/B

ypass

D
ata C

ache/FU

L
2 C

ache

M
em

ory i/f

LD
re-renamed



19
© Intel Corporation©© Intel CorporationIntel Corporation

Outline
• Introduction
• Motivation
• Continual Flow Pipelines

– Concepts
– Performance
– Analysis

• Summary



20
© Intel Corporation©© Intel CorporationIntel Corporation

CFP performance

0%

10%

20%

30%

40%

50%

60%

SFP2K SINT2K WEB MM PROD SERVER WS

%
 S

pe
ed

up
 o

ve
r 

ba
se

Base+CFP
Base (ideal)



21
© Intel Corporation©© Intel CorporationIntel Corporation

CFP performance intuition
• Memory latency tolerance

– significant useful independent work
– no re-execution, automatic result integration
– can tolerate first and isolated misses

• Memory level parallelism
– when clustered misses occur
– overlap multiple misses

CFP achieves BOTH



22
© Intel Corporation©© Intel CorporationIntel Corporation

Analysis: Base description

1400

1500

1600

1700

1800

1900

2000

2100

2200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183

 Retired Uop ID

C
yc

le

Cycle Allocated
Cycle Executed

UL2 Miss UOP 
and dependents

Miss Latency

ROB size

Slope = f (core pipeline)



23
© Intel Corporation©© Intel CorporationIntel Corporation

Analysis: SFP2K overlay

31800

32300

32800

33300

33800

34300

1 212 423 634 845 1056 1267 1478 1689 1900 2111 2322 2533 2744 2955 3166 3377 3588 3799 4010 4221 4432 4643 4854

Retired Uops ID

C
yc

le

Slice Reinsertion

1st UL2 Miss 2nd UL2 Miss BASE

CFP

CFP: No stalls, all misses hidden



24
© Intel Corporation©© Intel CorporationIntel Corporation

Analysis: TPC-C overlay (events)

700

1200

1700

2200

2700

3200

3700

1 170 339 508 677 846 1015 1184 1353 1522 1691 1860 2029 2198 2367 2536 2705 2874 3043 3212 3381 3550 3719 3888

Retired Uops ID

C
yc

le

1st UL2 Miss

2nd UL2 Miss

3rd UL2 Miss

Slope Identical

BASE

CFP

Slice Branch 
Mispredicts

Independent Branch 
Mispredicts



25
© Intel Corporation©© Intel CorporationIntel Corporation

Analysis: CFP and Runahead

0

500

1000

1500

2000

2500

3000

3500

4000

1 299 597 895 1193 1491 1789 2087 2385 2683 2981 3279 3577 3875 4173 4471 4769 5067 5365 5663 5961 6259

Retired Uop ID

C
yc

le

1st UL2 Miss

2nd UL2 Miss

3rd UL2 Miss

Slice Reinsertion

Slice Reinsertion

RA: 2 “stalls”, hides 2nd miss

BASE: 3 stalls

CFP: 0 stalls, hides ALL misses

BASE

CFP

RA



26
© Intel Corporation©© Intel CorporationIntel Corporation

1500

2000

2500

3000

3500

4000

4500

1 274 547 820 1093 1366 1639 1912 2185 2458 2731 3004 3277 3550 3823 4096 4369 4642 4915 5188 5461 5734

Retired Uops ID

C
yc

le

Impact for core changes

CFP+CPR slope < than CFP+ROB
lower core CPI

CFP on ROB

CFP on CPR



27
© Intel Corporation©© Intel CorporationIntel Corporation

Summary
• Treat miss-dependents differently

– buffer “self-contained” slice outside pipeline
– execute, retire indeps., don’t re-execute

• Unified non-blocking proposal
– high memory-latency tolerance

• enables high cache efficiency

– high single-thread performance
– enables more cores instead of more cache


