
Power Reduction Techniques For Microprocessor Systems

VASANTH VENKATACHALAM AND MICHAEL FRANZ

University of California, Irvine

Power consumption is a major factor that limits the performance of computers. We
survey the “state of the art” in techniques that reduce the total power consumed by a
microprocessor system over time. These techniques are applied at various levels
ranging from circuits to architectures, architectures to system software, and system
software to applications. They also include holistic approaches that will become more
important over the next decade. We conclude that power management is a multifaceted
discipline that is continually expanding with new techniques being developed at every
level. These techniques may eventually allow computers to break through the “power
wall” and achieve unprecedented levels of performance, versatility, and reliability. Yet it
remains too early to tell which techniques will ultimately solve the power problem.

Categories and Subject Descriptors: C.5.3 [Computer System Implementation]:
Microcomputers—Microprocessors; D.2.10 [Software Engineering]: Design—
Methodologies; I.m [Computing Methodologies]: Miscellaneous

General Terms: Algorithms, Design, Experimentation, Management, Measurement,
Performance

Additional Key Words and Phrases: Energy dissipation, power reduction

1. INTRODUCTION

Computer scientists have always tried to
improve the performance of computers.
But although today’s computers are much
faster and far more versatile than their
predecessors, they also consume a lot

Parts of this effort have been sponsored by the National Science Foundation under ITR grant CCR-0205712
and by the Office of Naval Research under grant N00014-01-1-0854.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and should not be interpreted as necessarily representing the official views, policies or endorsements,
either expressed or implied, of the National Science foundation (NSF), the Office of Naval Research (ONR),
or any other agency of the U.S. Government.
The authors also gratefully acknowledge gifts from Intel, Microsoft Research, and Sun Microsystems that
partially supported this work.
Authors’ addresses: Vasanth Venkatachalam, School of Information and Computer Science, University of
California at Irvine, Irvine, CA 92697-3425; email: vvenkata@uci.edu; Michael Franz, School of Information
and Computer Science, University of California at Irvine, Irvine, CA 92697-3425; email: franz@uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212)
869-0481, or permissions@acm.org.
c©2005 ACM 0360-0300/05/0900-0195 $5.00

of power; so much power, in fact, that
their power densities and concomitant
heat generation are rapidly approaching
levels comparable to nuclear reactors
(Figure 1). These high power densities
impair chip reliability and life expectancy,
increase cooling costs, and, for large

ACM Computing Surveys, Vol. 37, No. 3, September 2005, pp. 195–237.

196 V. Venkatachalam and M. Franz

Fig. 1. Power densities rising. Figure adapted from
Pollack 1999.

data centers, even raise environmental
concerns.

At the other end of the performance
spectrum, power issues also pose prob-
lems for smaller mobile devices with lim-
ited battery capacities. Although one could
give these devices faster processors and
larger memories, this would diminish
their battery life even further.

Without cost effective solutions to
the power problem, improvements in
micro-processor technology will eventu-
ally reach a standstill. Power manage-
ment is a multidisciplinary field that in-
volves many aspects (i.e., energy, temper-
ature, reliability), each of which is complex
enough to merit a survey of its own. The
focus of our survey will be on techniques
that reduce the total power consumed by
typical microprocessor systems.

We will follow the high-level taxonomy
illustrated in Figure 2. First, we will de-
fine power and energy and explain the
complex parameters that dynamic and
static power depend on (Section 2). Next,
we will introduce techniques that reduce
power and energy (Section 3), starting
with circuit (Section 3.1) and architec-
tural techniques (Section 3.2, Section 3.3,
and Section 3.4), and then moving on to
two techniques that are widely applied in
hardware and software, dynamic voltage
scaling (Section 3.5) and resource hiberna-
tion (Section 3.6). Third, we will examine
what compilers can do to manage power
(Section 3.7). We will then discuss recent
work in application level power manage-
ment (Section 3.8), and recent efforts (Sec-
tion 3.9) to develop a holistic solution to

the power problem. Finally, we will dis-
cuss some commercial power management
systems (Section 3.10) and provide a
glimpse into some more radical technolo-
gies that are emerging (Section 3.11).

2. DEFINING POWER

Power and energy are commonly defined
in terms of the work that a system per-
forms. Energy is the total amount of work
a system performs over a period of time,
while power is the rate at which the sys-
tem performs that work. In formal terms,

P = W/T (1)

E = P ∗ T, (2)
where P is power, E is energy, T is a spe-
cific time interval, and W is the total work
performed in that interval. Energy is mea-
sured in joules, while power is measured
in watts.

These concepts of work, power, and en-
ergy are used differently in different con-
texts. In the context of computers, work
involves activities associated with run-
ning programs (e.g., addition, subtraction,
memory operations), power is the rate at
which the computer consumes electrical
energy (or dissipates it in the form of heat)
while performing these activities, and en-
ergy is the total electrical energy the com-
puter consumes (or dissipates as heat)
over time.

This distinction between power and en-
ergy is important because techniques that
reduce power do not necessarily reduce en-
ergy. For example, the power consumed
by a computer can be reduced by halv-
ing the clock frequency, but if the com-
puter then takes twice as long to run
the same programs, the total energy con-
sumed will be similar. Whether one should
reduce power or energy depends on the
context. In mobile applications, reducing
energy is often more important because
it increases the battery lifetime. How-
ever, for other systems (e.g., servers), tem-
perature is a larger issue. To keep the
temperature within acceptable limits, one
would need to reduce instantaneous power
regardless of the impact on total energy.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 197

Fig. 2. Organization of this survey.

2.1. Dynamic Power Consumption

There are two forms of power consump-
tion, dynamic power consumption and
static power consumption. Dynamic power
consumption arises from circuit activity
such as the changes of inputs in an
adder or values in a register. It has two
sources, switched capacitance and short-
circuit current.

Switched capacitance is the primary
source of dynamic power consumption and
arises from the charging and discharging
of capacitors at the outputs of circuits.

Short-circuit current is a secondary
source of dynamic power consumption and
accounts for only 10-15% of the total power
consumption. It arises because circuits are
composed of transistors having opposite
polarity, negative or NMOS and positive
or PMOS. When these two types of tran-
sistors switch current, there is an instant
when they are simultaneously on, creat-
ing a short circuit. We will not deal fur-
ther with the power dissipation caused by
this short circuit because it is a smaller
percentage of total power, and researchers
have not found a way to reduce it without
sacrificing performance.

As the following equation shows, the
more dominant component of dynamic
power, switched capacitance (Pdynamic), de-
pends on four parameters namely, supply
voltage (V), clock frequency (f), physical

capacitance (C) and an activity factor (a)
that relates to how many 0 → 1 or 1 → 0
transitions occur in a chip:

Pdynamic ∼ aCV 2 f . (3)

Accordingly, there are four ways to re-
duce dynamic power consumption, though
they each have different tradeoffs and not
all of them reduce the total energy con-
sumed. The first way is to reduce the phys-
ical capacitance or stored electrical charge
of a circuit. The physical capacitance de-
pends on low level design parameters
such as transistor sizes and wire lengths.
One can reduce the capacitance by re-
ducing transistor sizes, but this worsens
performance.

The second way to lower dynamic power
is to reduce the switching activity. As com-
puter chips get packed with increasingly
complex functionalities, their switching
activity increases [De and Borkar 1999],
making it more important to develop tech-
niques that fall into this category. One
popular technique, clock gating, gates
the clock signal from reaching idle func-
tional units. Because the clock network
accounts for a large fraction of a chip’s
total energy consumption, this is a very
effective way of reducing power and en-
ergy throughout a processor and is imple-
mented in numerous commercial systems

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

198 V. Venkatachalam and M. Franz

Fig. 3. ITRS trends for leakage power dissipation.
Figure adapted from Meng et al., 2005.

including the Pentium 4, Pentium M, Intel
XScale and Tensilica Xtensa, to mention
but a few.

The third way to reduce dynamic power
consumption is to reduce the clock fre-
quency. But as we have just mentioned,
this worsens performance and does not al-
ways reduce the total energy consumed.
One would use this technique only if
the target system does not support volt-
age scaling and if the goal is to re-
duce the peak or average power dissi-
pation and indirectly reduce the chip’s
temperature.

The fourth way to reduce dynamic power
consumption is to reduce the supply volt-
age. Because reducing the supply voltage
increases gate delays, it also requires re-
ducing the clock frequency to allow the cir-
cuit to work properly.

The combination of scaling the supply
voltage and clock frequency in tandem is
called dynamic voltage scaling (DVS). This
technique should ideally reduce dynamic
power dissipation cubically because dy-
namic power is quadratic in voltage and
linear in clock frequency. This is the most
widely adopted technique. A growing num-
ber of processors, including the Pentium
M, mobile Pentium 4, AMD’s Athlon, and
Transmeta’s Crusoe and Efficieon proces-
sors allow software to adjust clock fre-
quencies and voltage settings in tandem.
However, DVS has limitations and cannot
always be applied, and even when it can
be applied, it is nontrivial to apply as we
will see in Section 3.5.

2.2. Understanding Leakage Power
Consumption

In addition to consuming dynamic
power, computer components consume
static power, also known as idle power
or leakage. According to the most re-
cently published industrial roadmaps
[ITRSRoadMap], leakage power is rapidly
becoming the dominant source of power
consumption in circuits (Figure 3) and
persists whether a computer is active or
idle. Because its causes are different from
those of dynamic power, dynamic power
reduction techniques do not necessarily
reduce the leakage power.

As the equation that follows illustrates,
leakage power consumption is the product
of the supply voltage (V) and leakage cur-
rent (Ileak), or parasitic current, that flows
through transistors even when the tran-
sistors are turned off.

Pleak = V Ileak. (4)

To understand how leakage current
arises, one must understand how transis-
tors work. A transistor regulates the flow
of current between two terminals called
the source and the drain. Between these
two terminals is an insulator, called the
channel, that resists current. As the volt-
age at a third terminal, the gate, is in-
creased, electrical charge accumulates in
the channel, reducing the channel’s resis-
tance and creating a path along which
electricity can flow. Once the gate volt-
age is high enough, the channel’s polar-
ity changes, allowing the normal flow of
current between the source and the drain.
The threshold at which the gate’s voltage
is high enough for the path to open is called
the threshold voltage.

According to this model, a transistor is
similar to a water dam. It is supposed
to allow current to flow when the gate
voltage exceeds the threshold voltage but
should otherwise prevent current from
flowing. However, transistors are imper-
fect. They leak current even when the gate
voltage is below the threshold voltage. In
fact, there are six different types of cur-
rent that leak through a transistor. These

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 199

include reverse-biased-junction leakage,
gate-induced-drain leakage, subthreshold
leakage, gate-oxide leakage, gate-current
leakage, and punch-through leakage. Of
these six, subthreshold leakage and gate-
oxide leakage dominate the total leakage
current.

Gate-oxide leakage flows from the gate of
a transistor into the substrate. This type
of leakage current depends on the thick-
ness of the oxide material that insulates
the gate:

Iox = K2W
(

V
Tox

)2

e−α
Tox
V . (5)

According to this equation, the gate-
oxide leakage Iox increases exponentially
as the thickness Tox of the gate’s oxide ma-
terial decreases. This is a problem because
future chip designs will require the thick-
ness to be reduced along with other scaled
parameters such as transistor length and
supply voltage. One way of solving this
problem would be to insulate the gate us-
ing a high-k dialectric material instead
of the oxide materials that are currently
used. This solution is likely to emerge over
the next decade.

Subthreshold leakage current flows be-
tween the drain and source of a transistor.
It is the dominant source of leakage and
depends on a number of parameters that
are related through the following equa-
tion:

Isub = K1We
−Vth

nT
(
1 − e

−V
T

)
. (6)

In this equation, W is the gate width
and K and n are constants. The impor-
tant parameters are the supply voltage
V , the threshold voltage Vth, and the
temperature T. The subthreshold leak-
age current Isub increases exponentially
as the threshold voltage Vth decreases.
This again raises a problem for future
chip designs, because as technology scales,
threshold voltages will have to scale along
with supply voltages.

The increase in subthreshold leakage
current causes another problem. When the
leakage current increases, the tempera-

ture increases. But as the Equation (6)
shows, this increases leakage further,
causing yet higher temperatures. This vi-
cious cycle is known as thermal runaway.
It is the chip designer’s worst nightmare.

How can these problems be solved?
Equations (4) and (6) indicate four ways to
reduce leakage power. The first way is to
reduce the supply voltage. As we will see,
supply voltage reduction is a very common
technique that has been applied to compo-
nents throughout a system (e.g., processor,
buses, cache memories).

The second way to reduce leakage power
is to reduce the size of a circuit because the
total leakage is proportional to the leak-
age dissipated in all of a circuit’s tran-
sistors. One way of doing this is to de-
sign a circuit with fewer transistors by
omitting redundant hardware and using
smaller caches, but this may limit perfor-
mance and versatility. Another idea is to
reduce the effective transistor count dy-
namically by cutting the power supplies to
idle components. Here, too, there are chal-
lenges such as how to predict when dif-
ferent components will be idle and how to
minimize the overhead of shutting them
on or off. This, is also a common approach
of which we will see examples in the sec-
tions to follow.

The third way to reduce leakage power
is to cool the computer. Several cooling
techniques have been developed since
the 1960s. Some blow cold air into the
circuit, while others refrigerate the
processor [Schmidt and Notohardjono
2002], sometimes even by costly means
such as circulating cryogenic fluids like
liquid nitrogen [Krane et al. 1988]. These
techniques have three advantages. First
they significantly reduce subthreshold
leakage. In fact, a recent study [Schmidt
and Notohardjono 2002] showed that cool-
ing a memory cell by 50 degrees Celsius
reduces the leakage energy by five times.
Second, these techniques allow a circuit to
work faster because electricity encounters
less resistance at lower temperatures.
Third, cooling eliminates some negative
effects of high temperatures, namely the
degradation of a chip’s reliability and life
expectancy. Despite these advantages,

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

200 V. Venkatachalam and M. Franz

Fig. 4. The transistor stacking effect. The cir-
cuits in both (a) and (b) are leaking current be-
tween Vdd and Ground. However, Ileak1, the leak-
age in (a), is less than Ileak2, the leakage in (b).
Figure adapted from Butts and Sohi 2000.

there are issues to consider such as the
costs of the hardware used to cool the
circuit. Moreover, cooling techniques
are insufficient if they result in wide
temperature variations in different parts
of a circuit. Rather, one needs to prevent
hotspots by distributing heat evenly
throughout a chip.

2.2.1. Reducing Threshold Voltage. The
fourth way of reducing leakage power is to
increase the threshold voltage. As Equa-
tion (6) shows, this reduces the subthresh-
old leakage exponentially. However, it also
reduces the circuit’s performance as is ap-
parent in the following equation that re-
lates frequency (f), supply voltage (V), and
threshold voltage (Vth) and where α is a
constant:

f ∞ (V − Vth)α

V
. (7)

One of the less intuitive ways of
increasing the threshold voltage is to
exploit what is called the stacking effect
(refer to Figure 4). When two or more tran-
sistors that are switched off are stacked
on top of each other (a), then they dis-
sipate less leakage than a single tran-
sistor that is turned off (b). This is be-
cause each transistor in the stack induces
a slight reverse bias between the gate and
source of the transistor right below it,

Fig. 5. Multiple threshold circuits with
sleep transistors.

and this increases the threshold voltage
of the bottom transistor, making it more
resistant to leakage. As a result, in Fig-
ure 4(a), in which all transistors are in
the Off position, transistor B leaks less
current than transistor A, and transistor
C leaks less current than transistor B.
Hence, the total leakage current is atten-
uated as it flows from Vdd to the ground
through transistors A, B, and C. This is not
the case in the circuit shown in Figure 4
(b), which contains only a single off
transistor.

Another way to increase the thresh-
old voltage is to use Multiple Thresh-
old Circuits With Sleep Transistors (MTC-
MOS) [Calhoun et al. 2003; Won et al.
2003] . This involves isolating a leaky cir-
cuit element by connecting it to a pair
of virtual power supplies that are linked
to its actual power supplies through sleep
transistors (Figure 5). When the circuit is
active, the sleep transistors are activated,
connecting the circuit to its power sup-
plies. But when the circuit is inactive, the
sleep transistors are deactivated, thus dis-
connecting the circuit from its power sup-
plies. In this inactive state, almost no leak-
age passes through the circuit because the
sleep transistors have high threshold volt-
ages. (Recall that subthreshold leakage
drops exponentially with a rise in thresh-
old voltage, according to Equation (6).)

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 201

Fig. 6. Adaptive body biasing.

This technique effectively confines the
leakage to one part of the circuit, but is
tricky to implement for several reasons.
The sleep transistors must be sized prop-
erly to minimize the overhead of acti-
vating them. They cannot be turned on
and off too frequently. Moreover, this tech-
nique does not readily apply to memories
because memories lose data when their
power supplies are cut.

A third way to increase the threshold
is to employ dual threshold circuits. Dual
threshold circuits [Liu et al. 2004; Wei
et al. 1998; Ho and Hwang 2004] reduce
leakage by using high threshold (low leak-
age) transistors on noncritical paths and
low threshold transistors on critical paths,
the idea being that noncritical paths can
execute instructions more slowly without
impairing performance. This is a diffi-
cult technique to implement because it re-
quires choosing the right combination of
transistors for high-threshold voltages. If
too many transistors are assigned high
threshold voltages, the noncritical paths
in the circuit can slow down too much.

A fourth way to increase the thresh-
old voltage is to apply a technique known
as adaptive body biasing [Seta et al.
1995; Kobayashi and Sakurai 1994; Kim
and Roy 2002]. Adaptive body biasing is
a runtime technique that reduces leak-
age power by dynamically adjusting the
threshold voltages of circuits depending
on whether the circuits are active. When
a circuit is not active, the technique in-
creases its threshold voltage, thus saving
leakage power exponentially, although at
the expense of a delay in circuit operation.
When the circuit is active, the technique
decreases the threshold voltage to avoid
slowing it down.

To adjust the threshold voltage, adap-
tive body biasing applies a voltage to the
transistor’s body known as a body bias
voltage (Figure 6). This voltage changes
the polarity of a transistor’s channel, de-
creasing or increasing its resistance to
current flow. When the body bias voltage
is chosen to fill the transistor’s channel
with positive ions (b), the threshold volt-
age increases and reduces leakage cur-
rents. However, when the voltage is cho-
sen to fill the channel with negative ions,
the threshold voltage decreases, allowing
higher performance, though at the cost of
more leakage.

3. REDUCING POWER

3.1. Circuit And Logic Level Techniques

3.1.1. Transistor Sizing. Transistor siz-
ing [Penzes et al. 2002; Ebergen et al.
2004] reduces the width of transistors
to reduce their dynamic power consump-
tion, using low-level models that relate the
power consumption to the width. Accord-
ing to these models, reducing the width
also increases the transistor’s delay and
thus the transistors that lie away from
the critical paths of a circuit are usually
the best candidates for this technique. Al-
gorithms for applying this technique usu-
ally associate with each transistor a toler-
able delay which varies depending on how
close that transistor is to the critical path.
These algorithms then try to scale each
transistor to be as small as possible with-
out violating its tolerable delay.

3.1.2. Transistor Reordering. The ar-
rangement of transistors in a circuit
affects energy consumption. Figure 7

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

202 V. Venkatachalam and M. Franz

Fig. 7. Transistor Reordering. Figure
adapted from Hossain et al. 1996.

shows two possible implementations of
the same circuit that differ only in their
placement of the transistors marked A
and B. Suppose that the input to transis-
tor A is 1, the input to transistor B is 1,
and the input to transistor C is 0. Then
transistors A and B will be on, allowing
current from Vdd to flow through them
and charge the capacitors C1 and C2.

Now suppose that the inputs change and
that A’s input becomes 0, and C’s input be-
comes 1. Then A will be off while B and C
will be on. Now the implementations in (a)
and (b) will differ in the amounts of switch-
ing activity. In (a), current from ground
will flow past transistors B and C, dis-
charging both the capacitors C1 and C2.
However, in (b), the current from ground
will only flow past transistor C; it will not
get past transistor A since A is turned off.
Thus it will only discharge the capacitor
C2, rather than both C1 and C2 as in part
(a). Thus the implementation in (b) will
consume less power than that in (a).

Transistor reordering [Kursun et al.
2004; Sultania et al. 2004] rearranges
transistors to minimize their switching
activity. One of its guiding principles is
to place transistors closer to the circuit’s
outputs if they switch frequently in or-
der to prevent a domino effect where
the switching activity from one transistor
trickles into many other transistors caus-
ing widespread power dissipation. This re-
quires profiling techniques to determine
how frequently different transistors are
likely to switch.

3.1.3. Half Frequency and Half Swing Clocks.
Half-frequency and half-swing clocks re-
duce frequency and voltage, respectively.
Traditionally, hardware events such as
register file writes occur on a rising
clock edge. Half-frequency clocks synchro-
nize events using both edges, and they
tick at half the speed of regular clocks,
thus cutting clock switching power in
half. Reduced-swing clocks also often use
a lower voltage signal and thus reduce
power quadratically.

3.1.4. Logic Gate Restructuring. There are
many ways to build a circuit out of logic
gates. One decision that affects power con-
sumption is how to arrange the gates and
their input signals.

For example, consider two implementa-
tions of a four-input AND gate (Figure 8),
a chain implementation (a), and a tree
implementation (b). Knowing the signal
probabilities (1 or 0) at each of the pri-
mary inputs (A, B, C, D), one can easily cal-
culate the transition probabilities (0→1)
for each output (W, X, F, Y, Z). If each in-
put has an equal probability of being a
1 or a 0, then the calculation shows that
the chain implementation (a) is likely to
switch less than the tree implementation
(b). This is because each gate in a chain
has a lower probability of having a 0→1
transition than its predecessor; its tran-
sition probability depends on those of all
its predecessors. In the tree implementa-
tion, on the other hand, some gates may
share a parent (in the tree topology) in-
stead of being directly connected together.
These gates could have the same transi-
tion probabilities.

Nevertheless, chain implementations
do not necessarily save more energy than
tree implementations. There are other is-
sues to consider when choosing a topology.
One is the issue of glitches or spurious
transitions that occur when a gate does not
receive all of its inputs at the same time.
These glitches are more common in chain
implementations where signals can travel
along different paths having widely vary-
ing delays. One solution to reduce glitches
is to change the topology so that the dif-
ferent paths in the circuit have similar

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 203

Fig. 8. Gate restructuring. Figure adapted from the Pennsylvania State
University Microsystems Design Laboratory’s tutorial on low power design.

delays. This solution, known as path bal-
ancing often transforms chain implemen-
tations into tree implementations. An-
other solution, called retiming, involves
inserting flip-flops or registers to slow
down and thereby synchronize the signals
that pass along different paths but recon-
verge to the same gate. Because flip-flops
and registers are in sync with the proces-
sor clock, they sample their inputs less fre-
quently than logic gates and are thus more
immune to glitches.

3.1.5. Technology Mapping. Because of
the huge number of possibilities and
tradeoffs at the gate level, designers rely
on tools to determine the most energy-
optimal way of arranging gates and sig-
nals. Technology mapping [Chen et al.
2004; Li et al. 2004; Rutenbar et al. 2001]
is the automated process of constructing a
gate-level representation of a circuit sub-
ject to constraints such as area, delay, and
power. Technology mapping for power re-
lies on gate-level power models and a li-
brary that describes the available gates,
and their design constraints. Before a cir-
cuit can be described in terms of gates, it
is initially represented at the logic level.
The problem is to design the circuit out of
logic gates in a way that will mimimize the
total power consumption under delay and
cost constraints. This is an NP-hard Di-
rected Acyclic Graph (DAG) covering prob-
lem, and a common heuristic to solve it is
to break the DAG representation of a cir-
cuit into a set of trees and find the optimal
mapping for each subtree using standard
tree-covering algorithms.

3.1.6. Low Power Flip-Flops. Flip-flops
are the building blocks of small memories

such as register files. A typical master-
slave flip-flop consists of two latches, a
master latch, and a slave latch. The inputs
of the master latch are the clock signal
and data. The inputs of the slave latch
are the inverse of the clock signal and the
data output by the master latch. Thus
when the clock signal is high, the master
latch is turned on, and the slave latch
is turned off. In this phase, the master
samples whatever inputs it receives and
outputs them. The slave, however, does
not sample its inputs but merely outputs
whatever it has most recently stored. On
the falling edge of the clock, the master
turns off and the slave turns on. Thus the
master saves its most recent input and
stops sampling any further inputs. The
slave samples the new inputs it receives
from the master and outputs it.

Besides this master-slave design are
other common designs such as the pulse-
triggered flip-flop and sense-amplifier flip-
flop. All these designs share some common
sources of power consumption, namely
power dissipated from the clock signal,
power dissipated in internal switching ac-
tivity (caused by the clock signal and by
changes in data), and power dissipated
when the outputs change.

Researchers have proposed several al-
ternative low power designs for flip-flops.
Most of these approaches reduce the
switching activity or the power dissipated
by the clock signal. One alternative is the
self-gating flip-flop. This design inhibits
the clock signal to the flip-flop when the in-
puts will produce no change in the outputs.
Strollo et al. [2000] have proposed two ver-
sions of this design. In the double-gated
flip-flop, the master and slave latches
each have their own clock-gating circuit.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

204 V. Venkatachalam and M. Franz

The circuit consists of a comparator that
checks whether the current and previous
inputs are different and some logic that in-
hibits the clock signal based on the output
of the comparator. In the sequential-gated
flip-flop, the master and the slave share
the same clock-gating circuit instead of
having their own individual circuit as in
the double-gated flip-flop.

Another low-power flip-flop is the condi-
tional capture FLIP-FLOP [Kong et al. 2001;
Nedovic et al. 2001]. This flip-flop detects
when its inputs produce no change in the
output and stops these redundant inputs
from causing any spurious internal cur-
rent switches. There are many variations
on this idea, such as the conditional dis-
charge flip-flops and conditional precharge
flip-flops [Zhao et al. 2004] which elim-
inate unnecessary precharging and dis-
charging of internal elements.

A third type of low-power flip-flop is the
dual edge triggered FLIP-FLOP [Llopis and
Sachdev 1996]. These flip-flops are sensi-
tive to both the rising and falling edges
of the clock, and can do the same work
as a regular flip-flop at half the clock fre-
quency. By cutting the clock frequency
in half, these flip-flops save total power
consumption but may not save total en-
ergy, although they could save energy by
reducing the voltage along with the fre-
quency. Another drawback is that these
flip-flops require more area than regu-
lar flip-flops. This increase in area may
cause them to consume more power on the
whole.

3.1.7. Low-Power Control Logic Design.
One can view the control logic of a pro-
cessor as a Finite State Machine (FSM).
It specifies the possible processor states
and conditions for switching between
the states and generates the signals that
activate the appropriate circuitry for each
state. For example, when an instruction
is in the execution stage of the pipeline,
the control logic may generate signals to
activate the correct execution unit.

Although control logic optimizations
have traditionally targeted performance,
they are now also targeting power. One

way of reducing power is to encode the
FSM states in a way that minimizes the
switching activity throughout the proces-
sor. Another common approach involves
decomposing the FSM into sub-FSMs
and activating only the circuitry needed
for the currently executing sub-FSM.
Some researchers [Gao and Hayes 2003]
have developed tools that automate this
process of decomposition, subject to some
quality and correctness constraints.

3.1.8. Delay-Based Dynamic-Supply Voltage
Adjustment. Commercial processors that
can run at multiple clock speed normally
use a lookup table to decide what supply
voltage to select for a given clock speed.
This table is use built ahead of time
through a worst-case analysis. Because
worst-case analyses may not reflect real-
ity, ARM Inc. has been developing a more
efficient runtime solution known as the
Razor pipeline [Ernst et al. 2003].

Instead of using a lookup table, Razor
adjusts the supply voltage based on the
delay in the circuit. The idea is that when-
ever the voltage is reduced, the circuit
slows down, causing timing errors if the
clock frequency chosen for that voltage is
too high. Because of these errors, some in-
structions produce inconsistent results or
fail altogether. The Razor pipeline peri-
odically monitors how many such errors
occur. If the number of errors exceeds a
threshold, it increases the supply voltage.
If the number of errors is below a thresh-
old, it scales the voltage further to save
more energy.

This solution requires extra hardware
in order to detect and correct circuit
errors. To detect errors, it augments
the flip-flops in delay-critical regions of
the circuit with shadow-latches. These
latches receive the same inputs as the
flip-flops but are clocked more slowly to
adapt to the reduced supply voltage. If
the output of the flip-flop differs from
that of its shadow-latch, then this sig-
nifies an error. In the event of such an
error, the circuit propagates the output
of the shadow-latch instead of the flip-
flop, delaying the pipeline for a cycle if
necessary.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 205

Fig. 9. Crosstalk prevention through shielding.

3.2. Low-Power Interconnect

Interconnect heavily affects power con-
sumption since it is the medium of most
electrical activity. Efforts to improve chip
performance are resulting in smaller chips
with more transistors and more densely
packed wires carrying larger currents. The
wires in a chip often use materials with
poor thermal conductivity [Banerjee and
Mehrotra 2001].

3.2.1. Bus Encoding And CrossTalk. A pop-
ular way of reducing the power consumed
in buses is to reduce the switching activity
through intelligent bus encoding schemes,
such as bus-inversion [Stan and Burleson
1995]. Buses consist of wires that trans-
mit bits (logical 1 or 0). For every data
transmission on a bus, the number of wires
that switch depends on the current and
previous values transmitted. If the Ham-
ming distance between these values is
more than half the number of wires, then
most of the wires on the bus will switch
current. To prevent this from happening,
bus-inversion transmits the inverse of the
intended value and asserts a control sig-
nal alerting recipients of the inversion.
For example, if the current binary value to
transmit is 110 and the previous was 000,
the bus instead transmits 001, the inverse
of 110.

Bus-inversion ensures that at most half
of the bus wires switch during a bus trans-
action. However, because of the cost of the
logic required to invert the bus lines, this
technique is mainly used in external buses
rather than the internal chip interconnect.

Moreover, some researchers have ar-
gued that this technique makes the sim-
plistic assumption that the amount of
power that an interconnect wire consumes
depends only on the number of bit tran-
sitions on that wire. As chips become

smaller, there arise additional sources of
power consumption. One of these sources
is crosstalk [Sylvester and Keutzer 1998].
Crosstalk is spurious activity on a wire
that is caused by activity in neighboring
wires. As well as increasing delays and im-
pairing circuit integrity, crosstalk can in-
crease power consumption.

One way of reducing crosstalk [Taylor
et al. 2001] is to insert a shield wire
(Figure 9) between adjacent bus wires.
Since the shield remains deasserted, no
adjacent wires switch in opposite direc-
tions. This solution doubles the number of
wires. However, the principle behind it has
sparked efforts to develop self-shielding
codes [Victor and Keutzer 2001; Patel and
Markov 2003] resistant to crosstalk. As
in traditional bus encoding, a value is en-
coded and then transmitted. However, the
code chosen avoids opposing transitions on
adjacent bus wires.

3.2.2. Low Swing Buses. Bus-encoding
schemes attempt to reduce transitions on
the bus. Alternatively, a bus can transmit
the same information but at a lower
voltage. This is the principle behind low
swing buses [Zhang and Rabaey 1998].
Traditionally, logical one is represented
by 5 volts and logical zero is represented
by −5 volts. In a low-swing system
(Figure 10), logical one and zero are
encoded using lower voltages, such as
+300mV and −300mV. Typically, these
systems are implemented with differen-
tial signaling. An input signal is split into
two signals of opposite polarity bounded
by a smaller voltage range. The receiver
sees the difference between the two
transmitted signals as the actual signal
and amplifies it back to normal voltage.
Low Swing Differential Signaling has
several advantages in addition to reduced
power consumption. It is immune to

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

206 V. Venkatachalam and M. Franz

Fig. 10. Low voltage differential signaling

Fig. 11. Bus segmentation.

crosstalk and electromagnetic radiation
effects. Since the two transmitted signals
are close together, any spurious activity
will affect both equally without affecting
the difference between them. However,
when implementing this technique, one
needs to consider the costs of increased
hardware at the encoder and decoder.

3.2.3. Bus Segmentation. Another effec-
tive technique is bus segmentation. In a
traditional shared bus architecture, the
entire bus is charged and discharged upon
every access. Segmentation (Figure 11)
splits a bus into multiple segments con-
nected by links that regulate the traffic be-
tween adjacent segments. Links connect-
ing paths essential to a communication are
activated independently, allowing most of
the bus to remain powered down. Ideally,
devices communicating frequently should
be in the same or nearby segments to avoid
powering many links. Jone et al. [2003]
have examined how to partition a bus
to ensure this property. Their algorithm
begins with an undirected graph whose
nodes are devices, edges connect commu-
nicating devices, and edge weights dis-
play communication frequency. Applying
the Gomory and Hu algorithm [1961], they
find a spanning tree in which the prod-
uct of communication frequency and num-
ber of edges between any two devices is
minimal.

3.2.4. Adiabatic Buses. The preceding
techniques work by reducing activity
or voltage. In contrast, adiabatic cir-
cuits [Lyuboslavsky et al. 2000] reduce to-
tal capacitance. These circuits reuse ex-
isting electrical charge to avoid creating
new charge. In a traditional bus, when
a wire becomes deasserted, its previous
charge is wasted. A charge-recovery bus
recycles the charge for wires about to be
asserted.

Figure 12 illustrates a simple design for
a two-bit adiabatic bus [Bishop and Ir-
win 1999]. A comparator in each bitline
tests whether the current bit is equal to
the previously sent bit. Inequality signi-
fies a transition and connects the bitline
to a shorting wire used for sharing charge
across bitlines. In the sample scenario,
Bitline1 has a falling transition while Bit-
line0 has a rising transition. As Bitline1
falls, its positive charge transfers to Bit-
line0, allowing Bitline0 to rise. The power
saved depends on transition patterns. No
energy is saved when all lines rise. The
most energy is saved when an equal num-
ber of lines rise and fall simultaneously.

The biggest drawback of adiabatic cir-
cuits is a delay for transfering shared
charge.

3.2.5. Network-On-Chip. All of the above
techniques assume an architecture in

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 207

Fig. 12. Two bit charge recovery bus.

which multiple functional units share one
or more buses. This shared-bus paradigm
has several drawbacks with respect to
power and performance. The inherent bus
bandwidth limits the speed and volume
of data transfers and does not suit the
varying requirements of different execu-
tion units. Only one unit can access the
bus at a time, though several may be re-
questing bus access simultaneously. Bus
arbitration mechanisms are energy inten-
sive. Unlike simple data transfers, every
bus transaction involves multiple clock
cycles of handshaking protocols that in-
crease power and delay.

As a consequence, researchers have
been investigating the use of generic in-
terconnection networks to replace buses.
Compared to buses, networks offer higher
bandwidth and support concurrent con-
nections. This design makes it easier to
troubleshoot energy-intensive areas of the
network. Many networks have sophisti-
cated mechanisms for adapting to varying
traffic patterns and quality-of-service re-
quirements. Several authors [Zhang et al.
2001; Dally and Towles 2001; Sgroi et al.
2001] propose the application of these
techniques at the chip level. These claims
have yet to be verified, and interconnect
power reduction remains a promising area
for future research.

Wang et al. [2003] have developed
hardware-level optimizations for differ-
ent sources of energy consumption in
an on-chip network. One of the alterna-
tive network topologies they propose is
the segmented crossbar topology which
aims to reduce the energy consumption
of data transfers. When data is trans-
fered over a regular network grid, all rows

and columns corresponding to the inter-
section points end up switching current
even though only parts of these rows and
columns are actually traversed. To elim-
inate this widespread current switching,
the segmented crossbar topology divides
the rows and columns into segments de-
marcated by tristate buffers. The differ-
ent segments are selectively activated as
the data traverses through them, hence
confining current switches to only those
segments along which the data actually
passes.

3.3. Low-Power Memories and Memory
Hierarchies

3.3.1. Types of Memory. One can classify
memory structures into two categories,
Random Access Memories (RAM) and
Read-Only-Memories (ROM). There are
two kinds of RAMs, static RAMs (SRAM)
and dynamic RAMs (DRAM) which dif-
fer in how they store data. SRAMs store
data using flip-flops and DRAMs store
each bit of data as a charge on a capac-
itor; thus DRAMs need to refresh their
data periodically. SRAMs allow faster ac-
cesses than DRAMs but require more
area and are more expensive. As a result,
normally only register files, caches, and
high bandwidth parts of the system are
made up of SRAM cells, while main mem-
ory is made up of DRAM cells. Although
these cells have slower access times
than SRAMs, they contain fewer transis-
tors and are less expensive than SRAM
cells.

The techniques we will introduce are not
confined to any specific type of RAM or
ROM. Rather they are high-level architec-
tural principles that apply across the spec-
trum of memories to the extent that the
required technology is available. They at-
tempt to reduce the energy dissipation of
memory accesses in two ways, either by
reducing the energy dissipated in a mem-
ory accesses, or by reducing the number of
memory accesses.

3.3.2. Splitting Memories Into Smaller Sub-
systems. An effective way to reduce the
energy that is dissipated in a memory

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

208 V. Venkatachalam and M. Franz

access is to activate only the needed mem-
ory circuits in each access. One way to ex-
pose these circuits is to partition memo-
ries into smaller, independently accessible
components. This can be done as different
granularities.

At the lowest granularity, one can de-
sign a main memory system that is split
up into multiple banks each of which
can independently transition into differ-
ent power modes. Compilers and operating
systems can cluster data into a minimal
set of banks, allowing the other unused
banks to power down and thereby save en-
ergy [Luz et al. 2002; Lebeck et al. 2000].

At a higher granularity, one can parti-
tion the separate banks of a partitioned
memory into subbanks and activate only
the relevant subbank in every memory ac-
cess. This is a technique that has been ap-
plied to caches [Ghose and Kamble 1999].
In a normal cache access, the set-selection
step involves transferring all blocks in all
banks onto tag-comparison latches. Since
the requested word is at a known off-
set in these blocks, energy can be saved
by transfering only words at that offset.
Cache subbanking splits the block array of
each cache line into multiple banks. Dur-
ing set-selection, only the relevant bank
from each line is active. Since a single sub-
bank is active at a time, all subbanks of
a line share the same output latches and
sense amplifiers to reduce hardware com-
plexity. Subbanking saves energy with-
out increasing memory access time. More-
over, it is independent of program locality
patterns.

3.3.3. Augmenting the Memory Hierarchy
With Specialized Cache Structures. The sec-
ond way to reduce energy dissipation in
the memory hierarchy is to reduce the
number of memory hierarchy accesses.
One group of researchers [Kin et al. 1997]
developed a simple but effective technique
to do this. Their idea was to integrate a
specialized cache into the typical mem-
ory hierarchy of a modern processor, a
hierarchy that may already contain one
or more levels of caches. The new cache
they were proposing would sit between the

processor and first level cache. It would
be smaller than the first level cache and
hence dissipate less energy. Yet it would
be large enough to store an application’s
working set and filter out many mem-
ory references; only when a data request
misses this cache would it require search-
ing higher levels of cache, and the penalty
for a miss would be offset by redirecting
more memory references to this smaller,
more energy efficient cache. This was the
principle behind the filter cache. Though
deceptively simple, this idea lies at the
heart of many of the low-power cache de-
signs used today, ranging from simple ex-
tensions of the cache hierarchy (e.g., block
buffering) to the scratch pad memories
used in embedded systems, and the com-
plex trace caches used in high-end gener-
ation processors.

One simple extension is the technique of
block buffering. This technique augments
caches with small buffers to store the most
recently accessed cache set. If a data item
that has been requested belongs to a cache
set that is already in the buffer, then one
does not have to search for it in the rest of
the cache.

In embedded systems, scratch pad mem-
ories [Panda et al. 2000; Banakar et al.
2002; Kandemir et al. 2002] have been
the extension of choice. These are soft-
ware controlled memories that reside on-
chip. Unlike caches, the data they should
contain is determined ahead of time and
remains fixed while programs execute.
These memories are less volatile than
conventional caches and can be accessed
within a single cycle. They are ideal for
specialized embedded systems whose ap-
plications are often hand tuned.

General purpose processors of the lat-
est generation sometimes rely on more
complex caching techniques such as the
trace cache. Trace caches were originally
developed for performance but have been
studied recently for their power bene-
fits. Instead of storing instructions in
their compiled order, a trace cache stores
traces of instructions in their executed
order. If an instruction sequence is al-
ready in the trace cache, then it need
not be fetched from the instruction cache

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 209

but can be decoded directly from the
trace cache. This saves power by re-
ducing the number of instruction cache
accesses.

In the original trace cache design, both
the trace cache and the instruction cache
are accessed in parallel on every clock cy-
cle. Thus instructions are fetched from the
instruction cache while the trace cache is
searched for the next trace that is pre-
dicted to executed. If the trace is in the
trace cache, then the instructions fetched
from the instruction cache are discarded.
Otherwise the program execution pro-
ceeds out of the instruction cache and si-
multaneously new traces are created from
the instructions that are fetched.

Low-power designs for trace caches typi-
cally aim to reduce the number of instruc-
tion cache accesses. One alternative, the
dynamic direction prediction-based trace
cache [Hu et al. 2003], uses branch predi-
tion to decide where to fetch instructions
from. If the branch predictor predicts the
next trace with high confidence and that
trace is in the trace cache, then the in-
structions are fetched from the trace cache
rather than the instruction cache.

The selective trace cache [Hu et al. 2002]
extends this technique with compiler sup-
port. The idea is to identify frequently exe-
cuted, or hot traces, and bring these traces
into the trace cache. The compiler inserts
hints after every branch instruction, indi-
cating whether it belongs to a hot trace. At
runtime, these hints cause instructions to
be fetched from either the trace cache or
the instruction cache.

3.4. Low-Power Processor Architecture
Adaptations

So far we have described the energy sav-
ing features of hardware as though they
were a fixed foundation upon which pro-
grams execute. However, programs exhibit
wide variations in behavior. Researchers
have been developing hardware structures
whose parameters can be adjusted on de-
mand so that one can save energy by
activating just the minimum hardware
resources needed for the code that is
executing.

Fig. 13. Drowsy cache line.

3.4.1. Adaptive Caches. There is a
wealth of literature on adaptive caches,
caches whose storage elements (lines,
blocks, or sets) can be selectively acti-
vated based on the application workload.
One example of such a cache is the
Deep-Submicron Instruction (DRI)
cache [Powell et al. 2001]. This cache
permits one to deactivate its individual
sets on demand by gating their supply
voltages. To decide what sets to activate at
any given time, the cache uses a hardware
profiler that monitors the application’s
cache-miss patterns. Whenever the cache
misses exceed a threshold, the DRI cache
activates previously deactivated sets.
Likewise, whenever the miss rate falls
below a threshold, the DRI deactivates
some of these sets by inhibiting their
supply voltages.

A problem with this approach is that
dormant memory cells lose data and need
more time to be reactivated for their next
use. Thus an alternative to inhibiting their
supply voltages is to reduce their voltages
as low as possible without losing data.
This is the aim of the drowsy cache, a cache
whose lines can be placed in a drowsy
mode where they dissipate minimal power
but retain data and can be reactivated
faster.

Figure 13 illustrates a typical drowsy
cache line [Kim et al. 2002]. The wakeup
signal chooses between voltages for the
active, drowsy, and off states. It also
regulates the word decoder’s output to
prevent data in a drowsy line from be-
ing accessed. Before a cache access, the
line circuitry must be precharged. In a

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

210 V. Venkatachalam and M. Franz

Fig. 14. Dead block elimination.

traditional cache, the precharger is contin-
uously on. To save power, the drowsy cir-
cuitry regulates the wakeup signal with a
precharge signal. The precharger becomes
active only when the line is woken up.

Many heuristics have been developed
for controlling these drowsy circuits. The
simplest policy for controlling the drowsy
cache is cache decay [Kaxiras et al. 2001]
which simply turns off unused cache lines
after a fixed interval. More sophisticated
policies [Zhang et al. 2002; 2003; Hu et al.
2003] consider information about runtime
program behavior. For example, Hu et
al. [2003] have proposed hardware that
detects when an execution moves into a
hotspot and activates only those cache
lines that lie within that hotspot. The
main idea of their approach is to count
how often different branches are taken.
When a branch is taken sufficiently many
times, its target address is a hotspot, and
the hardware sets special bits to indicate
that cache lines within that hotspot should
not be shut down. Periodically, a runtime
routine disables cache lines that do not
have these bits set and decays the profil-
ing data. Whenever it reactivates a cache
line before its next use, it also reactivates
the line that corresponds to the next sub-
sequent memory access.

There are many other heuristics for con-
trolling cache lines. Dead-block elimina-
tion [Kabadi et al. 2002] powers down
cache lines containing basic blocks that
have reached their final use. It is a
compiler-directed technique that requires
a static control flow analysis to identify
these blocks. Consider the control flow
graph in Figure 14. Since block B1 exe-
cutes only once, its cache lines can power
down once control reaches B2. Similarly,
the lines containing B2 and B3 can power
down once control reaches B4.

3.4.2. Adaptive Instruction Queues. Buyu-
ktosunoglu et al. [2001] developed one of

the first adaptive instruction issue queues,
a 32-bit queue consisting of four equal size
partitions that can be independently acti-
vated. Each partition consists of wakeup
logic that decides when instructions are
ready to execute and readout logic that
dispatches ready instructions into the
pipeline. At any time, only the partitions
that contain the currently executing in-
structions are activated.

There have been many heuristics devel-
oped for configuring these queues. Some
require measuring the rate at which in-
structions are executed per processor clock
cycles, or IPC. For example, Buyukto-
sunoglu et al.’s heuristic [2001] periodi-
cally measures the IPC over fixed length
intervals. If the IPC of the current inter-
val is a factor smaller than that of the
previous interval (indicating worse per-
formance), then the heuristic increases
the instruction queue size to increase the
throughput. Otherwise it may decrease
the queue size.

Bahar and Manne [2001] propose a
similar heuristic targeting a simulated
8-wide issue processor that can be re-
configured as a 6-wide issue or 4-wide
issue. They also measure IPC over fixed
intervals but measure the floating point
IPC separately from the integer IPC since
the former is more critical for floating
point applications. Their heuristic, like
Buyuktosunoglu et al.’s [2001], compares
the measured IPC with specific thresholds
to determine when to downsize the issue
queue.

Folegnani and Gonzalez [2001], on the
other hand, use a different heuristic. They
find that when a program has little par-
allelism, the youngest part of the issue
queue (which contains the most recent in-
structions) contributes very little to the
overall IPC in that instructions in this
part are often committed late. Thus their
heuristic monitors the contribution of the
youngest part of this queue and deacti-
vates this part when its contribution is
minimal.

3.4.3. Algorithms for Reconfiguring Multi-
ple Structures. In addition to this work,

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 211

researchers have also been tackling the
problem of problem of reconfiguring mul-
tiple hardware units simultaneously.

One group [Hughes et al. 2001; Sasanka
et al. 2002; Hughes and Adve 2004]
has been developing heuristics for com-
bining hardware adaptations with dy-
namic voltage scaling during multime-
dia applications. Their strategy is to run
two algorithms while individual video
frames are being processed. A global algo-
rithm chooses the initial DVS setting and
baseline hardware configuration for each
frame, while a local algorithm tunes var-
ious hardware parameters (e.g., instruc-
tion window sizes) while the frame is ex-
ecuting to use up any remaining slack
periods.

Another group [Iyer and Marculescu
2001, 2002a] has developed heuristics that
adjust the pipeline width and register up-
date unit (RUU) size for different hotspots
or frequently executed program regions.
To detect these hotspots, their technique
counts the number of times each branch
instruction is taken. When a branch is
taken enough times, it is marked as a can-
didate branch.

To detect how often candidate branches
are taken, the heuristic uses a hotspot
detection counter. Initially the hotspot
counter contains a positive integer. Each
time a candidate branch is taken, the
counter is decremented, and each time a
noncandidate branch is taken, the counter
is incremented. If the counter becomes
zero, this means that the program execu-
tion is inside a hotspot.

Once the program execution is in a
hotspot, this heuristic tests the energy
consumption of different processor config-
urations at fixed length intervals. It finally
chooses the most energy saving configura-
tion as the one to use the next time the
same hotspot is entered. To measure en-
ergy at runtime, the heuristic relies on
hardware that monitors usage statistics of
the most power hungry units and calcu-
lates the total power based on energy per
access values.

Huang et al.[2000; 2003] apply hard-
ware adaptations at the granularity of
subroutines. To decide what adaptations

to apply, they use offline profiling to plot
an energy-delay tradeoff curve. Each point
in the curve represents the energy and de-
lay tradeoff of applying an adaptation to
a subroutine. There are three regions in
the curve. The first includes adaptations
that save energy without impairing per-
formance; these are the adaptations that
will always be applied. The third repre-
sents adaptations that worsen both per-
formance and energy; these are the adap-
tations that will never be applied. Be-
tween these two extremes are adaptations
that trade performance for energy savings;
some of these may be applied depending on
the tolerable performance loss. The main
idea is to trace the curve from the ori-
gin and apply every adaptation that one
encounters until the cumulative perfor-
mance loss from applying all the encoun-
tered adaptations reaches the maximum
tolerable performance loss.

Ponomarev et al. [2001] develop heuris-
tics for controlling a configurable issue
queue, a configurable reorder buffer and a
configurable load/store queue. Unlike the
IPC based heuristics we have seen, this
heuristic is occupancy-based because the
occupancy of hardware structures indi-
cates how congested these structures are,
and congestion is a leading cause of perfor-
mance loss. Whenever a hardware struc-
ture (e.g., instruction queue) has low oc-
cupancy, the heuristic reduces its size. In
contrast, if the structure is completely full
for a long time, the heuristic increases its
size to avoid congestion.

Another group of researchers [Albonesi
et al. 2003; Dropsho et al. 2002] ex-
plore the complex problem of configur-
ing a processor whose adaptable compo-
nents include two levels of caches, integer
and floating point issue queues, load/store
queues, register files, as well as a reorder
buffer. To dodge the sheer explosion of pos-
sible configurations, they tune each com-
ponent based only on its local usage statis-
tics. They propose two heuristics for doing
this, one for tuning caches and another for
tuning buffers and register files.

The caches they consider are selec-
tive way caches; each of their multiple
ways can independently be activated or

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

212 V. Venkatachalam and M. Franz

disabled. Each way has a most recently
used (MRU) counter that is incremented
every time that a cache searche hits the
way. The cache tuning heuristic samples
this counter at fixed intervals to determine
the number of hits in each way and the
number of overall misses. Using these ac-
cess statistics, the heuristic computes the
energy and performance overheads for all
possible cache configurations and chooses
the best configuration dynamically.

The heuristic for controlling other struc-
tures such as issue queues is occupancy
based. It measures how often different
components of these structures fill up with
data and uses this information to de-
cide whether to upsize or downsize the
structure.

3.5. Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) addresses
the problem of how to modulate a pro-
cessor’s clock frequency and supply volt-
age in lockstep as programs execute. The
premise is that a processor’s workloads
vary and that when the processor has less
work, it can be slowed down without af-
fecting performance adversely. For exam-
ple, if the system has only one task and it
has a workload that requires 10 cycles to
execute and a deadline of 100 seconds, the
processor can slow down to 1/10 cycles/sec,
saving power and meeting the deadline
right on time. This is presumably more ef-
ficient than running the task at full speed
and idling for the remainder of the pe-
riod. Though it appears straightforward,
this naive picture of how DVS works is
highly simplified and hides serious real-
world complexities.

3.5.1. Unpredictable Nature Of Workloads.
The first problem is how to predict work-
loads with reasonable accuracy. This re-
quires knowing what tasks will execute
at any given time and the work re-
quired for these tasks. Two issues com-
plicate this problem. First, tasks can
be preempted at arbitrary times due to
user and I/O device requests. Second,
it is not always possible to accurately
predict the future runtime of an arbi-
trary algorithm (c.f., the Halting Problem

[Turing 1937]). There have been ongoing
efforts [Nilsen and Rygg 1995; Lim et al.
1995; Diniz 2003; Ishihara and Yasuura
1998] in the real-time systems community
to accurately estimate the worst case exe-
cution times of programs. These attempts
use either measurement-based prediction,
static analysis, or a mixture of both. Mea-
surement involves a learning lag whereby
the execution times of various tasks are
sampled and future execution times are
extrapolated. The problem is that, when
workloads are irregular, future execu-
tion times may not resemble past execu-
tion times. Microarchitectural innovations
such as pipelining, hyperthreading and
out-of-order execution make it difficult to
predict execution times in real systems
statically. Among other things, a compiler
needs to know how instructions are inter-
leaved in the pipeline, what the probabili-
ties are that different branches are taken,
and when cache misses and pipeline haz-
ards are likely to occur. This requires mod-
eling the pipeline and memory hierarchy.
A number of researchers [Ferdinand 1997;
Clements 1996] have attempted to inte-
grate complete pipeline and cache mod-
els into compilers. It remains nontrivial
to develop models that can be used ef-
ficiently in a compiler and that capture
all the complexities inherent in current
systems.

3.5.2. Indeterminism And Anomalies In Real
Systems. Even if the DVS algorithm pre-
dicts correctly what the processor’s work-
loads will be, determining how fast to run
the processor is nontrivial. The nondeter-
minism in real systems removes any strict
relationships between clock frequency, ex-
ecution time, and power consumption.
Thus most theoretical studies on voltage
scaling are based on assumptions that
may sound reasonable but are not guar-
anteed to hold in real systems.

One misconception is that total micro-
processor system power is quadratic in
supply voltage. Under the CMOS transis-
tor model, the power dissipation of indi-
vidual transistors are quadratic in their
supply voltages, but there remains no

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 213

precise way of estimating the power dis-
sipation of an entire system. One can
construct scenarios where total system
power is not quadratic in supply voltage.
Martin and Siewiorek [2001] found that
the StrongARM SA-1100 has two supply
voltages, a 1.5V supply that powers the
CPU and a 3.3V supply that powers the I/O
pins. The total power dissipation is domi-
nated by the larger supply voltage; hence,
even if the smaller supply voltage were al-
lowed to vary, it would not reduce power
quadratically. Fan et al. [2003] found that,
in some architectures where active mem-
ory banks dominate total system power
consumption, reducing the supply voltage
dramatically reduces CPU power dissi-
pation but has a miniscule effect on to-
tal power. Thus, for full benefits, dynamic
voltage scaling may need to be combined
with resource hibernation to power down
other energy hungry parts of the chip.

Another misconception is that it is
most power efficient to run a task at
the slowest constant speed that allows
it to exactly meet its deadline. Several
theoretical studies [Ishihara and Yasuura
1998] attempt to prove this claim. These
proofs rest on idealistic assumptions such
as “power is a convex linearly increasing
function of frequency”, assumptions that
ignore how DVS affects the system as a
whole. When the processor slows down,
peripheral devices may remain activated
longer, consuming more power. An impor-
tant study of this issue was done by Fan
et al. [2003] who show that, for specific
DRAM architectures, the energy versus
slowdown curve is “U” shaped. As the pro-
cessor slows down, CPU energy decreases
but the cumulative energy consumed in
active memory banks increases. Thus the
optimal speed is actually higher than the
processor’s lowest speed; any speed lower
than this causes memory energy dissipa-
tion to overshadow the effects of DVS.

A third misconception is that execution
time is inversely proportional to clock fre-
quency. It is actually an open problem
how slowing down the processor affects
the execution time of an arbitrary appli-
cation. DVS may result in nonlinearities
[Buttazzo 2002]. Consider a system with

Fig. 15. Scheduling effects. When DVS is applied
(a), task one takes a longer time to enter its criti-
cal section, and task two is able to preempt it right
before it does. When DVS is not applied (b), task
one enters its critical section sooner and thus pre-
vents task two from preempting it until it finishes
its critical section. This figure has been adopted from
Buttazzo [2002].

two tasks (Figure 15). When the processor
slows down (a), Task One takes longer to
enter its critical section and is thus pre-
empted by Task Two as soon as Task Two
is released into the system. When the pro-
cessor instead runs at maximum speed (b),
Task One enters its critical section earlier
and blocks Task Two until it finishes this
section. This hypothetical example sug-
gests that DVS can affect the order in
which tasks are executed. But the order in
which tasks execute affects the state of the
cache which, in turn, affects performance.
The exact relationship between the cache
state and execution time is not clear. Thus,
it is too simplistic to assume that execu-
tion time is inversely proportional to clock
frequency.

All of these issues show that theo-
retical studies are insufficient for un-
derstanding how DVS will affect system
state. One needs to develop an experi-
mental approach driven by heuristics and
evaluate the tradeoffs of these heuristics
empirically.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

214 V. Venkatachalam and M. Franz

Most of the existing DVS approaches
can be classified as interval-based ap-
proaches, intertask approaches, or in-
tratask approaches.

3.5.3. Interval-Based Approaches.
Interval-based DVS algorithms mea-
sure how busy the processor is over
some interval or intervals, estimate how
busy it will be in the next interval, and
adjust the processor speed accordingly.
These algorithms differ in how they
estimate future processor utilization.
Weiser et al. [1994] developed one of the
earliest interval-based algorithms. This
algorithm, Past, periodically measures
how long the processor idles. If it idles
longer than a threshold, the algorithm
slows it down; if it remains busy longer
than a threshold, it speeds it up. Since
this approach makes decisions based
only on the most recent interval, it is
error prone. It is also prone to thrashing
since it computes a CPU speed for every
interval. Govil et al. [1995] examine a
number of algorithms that extend Past
by considering measurements collected
over larger windows of time. The Aged
Averages algorithm, for example, esti-
mates the CPU usage for the upcoming
interval as a weighted average of usages
measured over all previous intervals.
These algorithms save more energy than
Past since they base their decisions on
more information. However, they all
assume that workloads are regular. As we
have mentioned, it is very difficult, if not
impossible, to predict irregular workloads
using history information alone.

3.5.4. Intertask Approaches. Intertask
DVS algorithms assign different speeds
for different tasks. These speeds remain
fixed for the duration of each task’s exe-
cution. Weissel and Bellosa [2002] have
developed an intertask algorithm that
uses hardware events as the basis for
choosing the clock frequencies for differ-
ent processes. The motivation is that, as
processes execute, they generate various
hardware events (e.g., cache misses, IPC)
at varying rates that relate to their per-

formance and energy dissipation. Weissel
and Bellosa’s technique involves moni-
toring these event rates using hardware
performance counters and attributing
them to the processes that are executing.
At each context switch, the heuristic
adjusts the clock frequency for the process
being activated based on its previously
measured event rates. To do this, the
heuristic refers to a previously con-
structed table of event rate combinations,
divided into frequency domains. Weissel
and Bellosa construct this table through
a detailed offline simulation where, for
different combinations of event rates, they
determine the lowest clock frequency that
does not violate a user-specified threshold
for performance loss.

Intertask DVS has two drawbacks.
First, task workloads are usually un-
known until tasks finish running. Thus
traditional algorithms either assume per-
fect knowledge of these workloads or es-
timate future workloads based on prior
workloads. When workloads are irregular,
estimating them is nontrivial. Flautner
et al. [2001] address this problem by
classifying all workloads as interactive
episodes and producer-consumer episodes
and using separate DVS algorithms for
each. For interactive episodes, the clock
frequency used depends not only on the
predicted workload but also on a percep-
tion threshold that estimates how fast the
episode would have to run to be accept-
able to a user. To recover from prediction
error, the algorithm also includes a panic
threshold. If a session lasts longer than
this threshold, the processor immediately
switches to full speed.

The second drawback of intertask ap-
proaches is that they are unaware of pro-
gram structure. A program’s structure
may provide insight into the work re-
quired for it, insight that, in turn, may
provide opportunities for techniques such
as voltage scaling. Within specific program
regions, for example, the processor may
spend significant time waiting for mem-
ory or disk accesses to complete. During
the execution of these regions, the proces-
sor can be slowed down to meet pipeline
stall delays.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 215

3.5.5. Intratask Approaches. Intratask
approaches [Lee and Sakurai 2000; Lorch
and Smith 2001; Gruian 2001; Yuan and
Nahrstedt 2003] adjust the processor
speed and voltage within tasks. Lee and
Sakurai [2000] developed one of the earli-
est approaches. Their approach, run-time
voltage hopping, splits each task into
fixed length timeslots. The algorithm as-
signs each timeslot the lowest speed that
allows it to complete within its preferred
execution time which is measured as
the worst case execution time minus the
elapsed execution time up to the current
timeslot. An issue not considered in this
work is how to divide a task into timeslots.
Moreover, the algorithm is pessimistic
since tasks could finish before their worst
case execution time. It is also insensitive
to program structure.

There are many variations on this idea.
Two operating system-level intratask al-
gorithms are PACE [Lorch and Smith
2001] and Stochastic DVS [Gruian 2001].
These algorithms choose a speed for ev-
ery cycle of a task’s execution based on the
probability distribution of the task work-
load measured over previous cycles. The
difference between PACE and stochastic
DVS lies in their cost functions. Stochastic
DVS assumes that energy is proportional
to the square of the supply voltage, while
PACE assumes it is proportional to the
square of the clock frequency. These sim-
plifying assumptions are not guaranteed
to hold in real systems.

Dudani et al. [2002] have also developed
intratask policies at the operating system
level. Their work aims to combine in-
tratask voltage scaling with the earliest-
deadline-first scheduling algorithm.
Dudani et al. split into two subprograms
each program that the scheduler chooses
to execute. The first subprogram runs at
the maximum clock frequency, while the
second runs slow enough to keep the com-
bined execution time of both subprograms
below the average execution time for the
whole program.

In addition to these schemes, there
have been a number of intratask poli-
cies implemented at the compiler level.
Shin and Kim [2001] developed one of

the first of these algorithms. They no-
ticed that programs have multiple exe-
cution paths, some more time consum-
ing than others, and that whenever con-
trol flows away from a critical path, there
are opportunities for the processor to slow
down and still finish the programs within
their deadlines. Based on this observation,
Shin and Kim developed a tool that pro-
files a program offline to determine worst
case and average cycles for different exe-
cution paths, and then inserting instruc-
tions to change the processor frequency at
the start of different paths based on this
information.

Another approach, program checkpoint-
ing [Azevedo et al. 2002], annotates a pro-
gram with checkpoints and assigns tim-
ing constraints for executing code between
checkpoints. It then profiles the program
offline to determine the average number
of cycles between different checkpoints.
Based on this profiling information and
timing constraints, it adjusts the CPU
speed at each checkpoint.

Perhaps the most well known approach
is by Hsu and Kremer [2003]. They pro-
file a program offline with respect to all
possible combinations of clock frequencies
assigned to different regions. They then
build a table describing how each combi-
nation affects execution time and power
consumption. Using this table, they select
the combination of regions and frequen-
cies that saves the most power without in-
creasing runtime beyond a threshold.

3.5.6. The Implications of Memory Bounded
Code. Memory bounded applications
have become an attractive target for DVS
algorithms because the time for a memory
access, on most commercial systems, is
independent of how fast the processor is
running. When frequent memory accesses
dominate the program execution time,
they limit how fast the program can finish
executing. Because of this “memory wall”,
the processor can actually run slower
and save a lot of energy without losing
as much performance as it would if it
were slowing down a compute-intensive
code.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

216 V. Venkatachalam and M. Franz

Fig. 16. Making the best of the memory wall.

Figure 16 illustrates this idea. For ease
of exposition, we call a sequence of exe-
cuted instructions a task. Part (a) depicts
a processor executing three tasks. Task 1
is followed by a memory load instruction
that causes a main memory access. While
this access is taking place, task 2 is able
to execute since it does not depend on the
results of task 1. However task 3, which
comes after task 2, depends on the result
of task 1, and thus can execute only af-
ter the memory access completes. So im-
mediately after executing task 2, the pro-
cessor sits idle until the memory access
finishes. What the processor could have
done is illustrated in part (b). Here instead
of running task 2 as fast as possible and
idling until the memory access completes,
the processor slows down the execution of
task 2 to overlap exactly with the main
memory access. This, of course, saves en-
ergy without impairing performance.

But there are many idealized assump-
tions at work here such as the assumption
that a DVS algorithm can predict with
complete accuracy a program’s future
behavior and switch the clock frequency
without any hidden costs. In reality,
things are far more complex. A funda-
mental problem is how to detect program
regions during which the processor stalls,
waiting for a memory, disk, or network
access to complete. Modern processors
contain counters that measure events
such as cache misses, but it is difficult
to extrapolate the nature of these stalls
from observing these events.

Nevertheless, a growing number of
researchers are addressing the DVS prob-
lem from this angle; that is, they are devel-
oping techniques for modulating the pro-
cessor frequency based on memory access
patterns. Because it is difficult to reason
abstractly about the complex events occur-
ring in modern processors, the research in
this area has a strong experimental flavor;
many of the techniques used are heuristics
that are validated through detailed simu-
lations and experiments on real systems.

One recent work is by Kondo and
Nakamura [2004]. It is an interval-based
approach driven by cache misses. The
heuristic periodically calculates the num-
ber of outstanding cache misses and
increments one of three counters depend-
ing on whether the number of outstand-
ing misses is zero, one, or greater than
one. The cost function that Kondo and
Nakamura use expresses the memory
boundedness of the code as a weighted
sum of the three counters. In particular,
the third counter which is incremented
each time there are multiple outstanding
misses, receives the heaviest weight. At
fixed length intervals, the heuristic com-
pares the memory boundedness, so com-
puted, with respect to an upper and lower
threshold. If the memory boundedness is
greater than the upper threshold, then
the heuristic decreases the frequency and
voltage by one setting; otherwise if the
memory boundedness is below the lower
threshold, then it increases the frequency
and voltage settings by one unit.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 217

Stanley-Marbell et al. [2002] propose a
similar approach, the Power Adaptation
Unit. This is a finite state machine that de-
tects the program counter values for which
memory stalls often occur. When a stall is
initially detected, the unit would enter a
transient state where it counts the num-
ber of stall cycles, and after the stall cy-
cles exceeded a threshold, it would mark
the initial program counter value as hot.
Thus the next time the program counter
assumes the same value, the PAU would
automatically reduce the clock frequency
and voltage.

Another recent work is by Choi et al.
[2004]. Their work is based on an exe-
cution time model where a program’s to-
tal runtime is split into two parts, time
that the program spends on-chip, and time
that it spends in main memory accesses.
The on-chip time can be calculated from
the number of on-chip instructions, the
average cycles for each of these instruc-
tions, and the processor clock frequency.
The off-chip time is similarly a function
of the number of off-chip (memory refer-
ence) instructions, the average cycles per
off-chip instruction, and the memory clock
frequency.

Using this model, Choi et al. [2004] de-
rive a formula for the lowest clock fre-
quency that would keep the performance
loss within a tolerable threshold. They find
that the key to computing this formula
is determining the average number of cy-
cles for an on-chip instruction CPUon

avg; this
essential information determines the ra-
tio of on-chip to off-chip instructions. They
also found that the average cycles per in-
struction (CPIavg) is a linear function of
the average stall cycles per instruction
(SPIavg). This reduced their problem to
calculating SPIavg. To calculate this, they
used data-cache miss statistics provided
by hardware counters. Reasoning that the
cycles spent in stalls increase with re-
spect to the number of cache misses, Choi
et al. built a table that associated different
cache miss ranges with different values
of SPIavg; this would allow their heuris-
tic to calculate in real time the work-
load decomposition and appropriate clock
frequency.

Unlike the previous approaches which
attempt to monitor memory boundedness,
a recent technique by Hsu and Feng [2004]
attempts to monitor CPU boundedness.
Their algorithm periodically measures the
rate at which instructions are executed
(expressed in million instructions per sec-
ond) to determine how compute-intensive
the workload is. The authors find that
this approach is as accurate as other ap-
proaches that measure memory bounded-
ness, but may be easier to implement be-
cause of its simpler cost model.

3.5.7. Dynamic Voltage Scaling In Multiple
Clock Domain Architectures. A Globally
Asynchronous, Locally Synchronous
(GALS) chip is split into multiple do-
mains, each of which has its own local
clock. Each domain is synchronous with
respect to its clock, but the different
domains are mutually asynchronous in
that they may run at different clock
frequencies. This design has three ad-
vantages. First, the clocks that power
different domains are able to distribute
their signals over smaller areas, thus
reducing clock skew. Second, the effects
of changing the clock frequency are felt
less outside the given domain. This is an
important advantage that GALS has over
conventional CPUs. When a conventional
CPU scales its clock frequency, all of the
hardware structures that receive the clock
signal slow down causing widespread per-
formance loss. In GALS, on the other
hand, one can choose to slow down some
parts of the circuit, while allowing others
to operate at their maximum frequencies.
This creates more opportunities for saving
energy. In compute bound applications,
for example, a GALS system can keep the
critical paths of the circuit running as
fast as possible but slow down other parts
of the circuit.

Nevertheless, it is nontrivial to create
voltage scaling algorithms for GALS pro-
cessors. First, these processors require
special mechanisms allowing the different
domains to communicate and synchronize.
Second, it is unclear how to split the pro-
cessor into domains. Because communica-
tion energy can be large, domains must be

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

218 V. Venkatachalam and M. Franz

chosen so that there is minimal commu-
nication between them. One possibility is
to cluster similar functionalities into the
same domain. In a GALS processor devel-
oped by Semeraro et al. [2002], all the in-
teger execution units are in the same do-
main. If instead the integer issue queue
were in a different domain than the in-
teger ALU, these two units would waste
more energy communicating since they
are often accessed together.

Another factor that makes it hard to de-
sign algorithms is that one needs to con-
sider possible interdependencies between
domains. For example, if one domain is
slowed down, data may take more time to
move through it and reach other domains.
This may impact the overall congestion in
the circuit and affect performance. A DVS
algorithm would need to be aware of these
global effects.

Numerous researchers have tackled the
complex problem of controlling GALS sys-
tems [Magklis et al. 2003; Marculescu
2004; Dropsho et al. 2004; Semeraro et al.
2002; Iyer and Marculescu 2002b; Magklis
et al. 2003]. We follow with two recent ex-
amples, the first being an interval-based
heuristic and the second being a compiler-
based heuristic.

Semeraro et al. [2002] developed one
of the first runtime algorithms for dy-
namic voltage scaling in a GALS system.
They observed that each domain has an in-
struction issue queue that indicates how
fast instructions are flowing through the
pipeline, thus giving insight into the work-
load. They propose to monitor the issue
queue utilization over fixed length inter-
vals and to respond swiftly to sudden
changes by rapidly increasing or decreas-
ing the domain’s clock frequency, but to de-
crease the clock frequency very gradually
when there are little observable changes
in the workload.

One of the first compiler-based algo-
rithms for controlling GALS systems is
by Magklis et al. [2003]. Their main algo-
rithm is called the shaker algorithm due to
its resemblance to a salt shaker. It repeat-
edly traverses the Directed Acyclic Graph
(DAG) representation of a program from
root to leaves and from leaves to root,

searching for operations whose energy dis-
sipation exceeds a threshold. It stretches
out the workload of such operations un-
til the energy dissipation is below a given
threshold, repeating this process until ei-
ther no more operations dissipate exces-
sive energy or until all of the operations
have used up their slack. The information
provided by this algorithm would be used
by a compiler to select clock frequencies for
different GALS domains in different pro-
gram regions.

3.6. Resource Hibernation

Though switching activity causes power
consumption, computer components con-
sume power even when idle. Resource hi-
bernation techniques power down compo-
nents during idle periods. A variety of
heuristics have been developed to man-
age the power settings of different devices
such as disk drives, network interfaces,
and displays. We now give examples of
these techniques.

3.6.1. Disk Drives. Disk drives can ac-
count for a large percentage of a system’s
total energy dissipation and many tech-
niques have been developed to attack this
problem [Gurumurthi et al. 2003; Li et al.
2004]. Most of the power loss stems from
the rotating platter during disk activity
and idle periods. To save energy, operating
systems tend to pause disk rotation after
a fixed period of inactivity and restart it
during the next disk access. The decision
of when to spin down an idle disk involves
tradeoffs between power and performance.
High idle time thresholds lead to more en-
ergy loss but better performance since the
disk need not restart to process requests.
Low thresholds allow a disk to spin down
sooner when idle but increase the proba-
bility of an immediate restart to process
a spontaneous request. These immediate
restarts, called bumps, waste energy and
cause delays.

One of the techniques used at the oper-
ating system level is Predictive Dynamic
Threshold Adjustment. This technique ad-
justs at runtime the idleness threshold, or
acceptable window of time before an idle

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 219

Fig. 17. Predictive disk management.

disk can be spun down. If a disk immedi-
ately spins up after spinning down, this
technique increases the idleness thresh-
old. Otherwise, it decreases the threshold.
This is an example of a technique that uses
past disk usage information to predict
future usage patterns. These techniques
are less effective at dealing with irreg-
ular workloads, as Figure 17 illustrates.
Part (a) depicts a disk usage pattern in
which active phases are abruptly followed
by idle phases, and the idle phases keep
getting longer. Dynamic threshold adjust-
ment (b) abruptly restarts the disk ev-
erytime it spins it down and keeps the
disk activated during long idle phases.
To improve on this technique, an operat-
ing system can cluster disk requests (c),
thereby lengthening idle periods (d) when
it can spin down the disk. To create op-
portunities for clustering, the algorithm of
Papathanasiou and Scott [2002] delays
processing nonurgent disk requests and
reduces the number of remaining requests
by aggressively prefetching disk data into
memory. The delayed requests accumu-
late in a queue for later processing in a
more voluminous transaction. Thus, the

disk may remain uninterrupted in a low-
power, inactive state for longer periods.
However, dependencies between disk re-
quests can sometimes make it impossible
to apply clustering.

Moreover, idle periods for spinning
down the disk are not always avail-
able. For example, large scale servers are
continuously processing heavy workloads.
Gurumurthi et al. [2003] have recently
investigated an alternative strategy for
server environments called Dynamic RPM
control (DRPM). Instead of spinning down
the disk fully, DRPM modulates the ro-
tational speed (in rotations per minute)
according to workload demands, thereby
eliminating the overheads of transition-
ing between low power and fully active
states. As part of their study, Gurumurthi
et al. develop power models for a disk drive
that supports 15 different RPM levels. Us-
ing these models they propose a simple
heuristic for RPM modulation. The heuris-
tic involves some cooperation between the
disks and a controller that oversees the
disks. The controller initially defines a
range of RPM levels for each disk; the
disks modulate their RPMs within this

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

220 V. Venkatachalam and M. Franz

range based on their demands. They pe-
riodically monitor their input queues, and
whenever the number of requests exceeds
a threshold, they increase their RPM set-
tings by 1. Meanwhile, the controller over-
sees the response times in the system.
When the response time is above a thresh-
old, this is a sign of performance degra-
dation, and the controller immediately re-
quests the disks to switch to full power.
When on the other hand, the response
times are sufficiently low, this is a sign
that the disks could be slowed down fur-
ther, and the controller increases the min-
imum RPM threshold setting.

3.6.2. Network Interfaces. Network inter-
faces such as wireless cards present a
unique challenge for resource hibernation
techniques because the naive solution of
shutting them off would disconnect hosts
from other devices with which they may
have to communicate. Thus power man-
agement strategies also include protocols
for synchronizing the communication of
these devices with other devices in the net-
work. Kravets et al. [1998] have developed
a heuristic for doing this at the operat-
ing system level. One of its key features
is that it uses timers to track the idleness
of devices. If a device should be transmit-
ting but its idle timer expires, it enters a
listening mode or goes to sleep. To decide
how long devices should remain idle be-
fore shifting into listening mode, Kravets
et al. apply an adaptive threshold algo-
rithm. When the algorithm detects com-
munication activity, it decreases the ac-
ceptable hibernation time. When it detects
idle periods, it increases the time.

Threshold-based schemes such as this
one allow a network card to remain idle
for an extended length of time before shut-
ting down. Hom and Kremer [2003] have
argued that compilers can shut down a
card sooner using a model of future pro-
gram behavior. Their compiler-based hi-
bernation technique targets a simplified
scenario where a mobile device’s virtual
memory resides on a server. Page faults re-
quire activating the device’s wireless card
so that pages can be sent from the server

to the device. The technique identifies pro-
gram regions where the card should hyber-
nate based on the nature of array accesses
in each region. If an accessed array is not
in local memory, the card is activated to
transfer it from the remote server. To de-
termine what arrays are in memory dur-
ing each region’s execution, the compiler
simulates a least-recently-used memory
bank.

3.6.3. Displays. Displays are a major
source of power consumption. Normally,
an operating system dims the display af-
ter a sufficiently long interval with no user
response. This heuristic may not coincide
with a user’s intentions.

Two examples of more advanced tech-
niques that manage displays based on
user activity are face-off and zoned back-
lighting. They have yet to be implemented
in commercial systems.

Face-off [Dalton and Ellis 2003] is an
experimental face recognition system on
an IBM T21 Thinkpad laptop running Red
Hat Linux. It periodically photographs
the monitor’s perspective and detects a
face through large regions of skin color. It
then controls the display using the ACPI
interface. Its developers tested it on a
long network transfer during which the
user looked away from the screen. Face-off
saved more power than the default display
manager. A drawback is the repetitive
polling for face detection. For future
work, the authors suggest detecting a
user’s presence through low-power heat
microsensors. These sensors can trigger
the face recognition algorithm when they
detect a user.

Zoned backlighting [Flinn and Satya-
narayanan 1999] targets future display
systems that will allow software to selec-
tively adjust the brightness of different
regions of the screen based on usage pat-
terns and battery drain. Researchers at
Carnegie Mellon have proposed ideas for
exploiting these displays. The underlying
assumption is that users are interested
in only a small part of the screen. One
idea is to make foreground windows with
keyboard and mouse focus brighter than

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 221

Fig. 18. Performance versus power.

back-ground windows. Another is to scale
images to allow most of the screen to dim
when the battery is low.

3.7. Compiler-Level Power Management

3.7.1. What Compilers Can Do. There are
many ways a compiler can help reduce
power regardless of whether a proces-
sor explicitly supports software-controlled
power reduction. Aside from generating
code that reconfigures hardware units
or activates power reduction mechanisms
that we have seen, compilers can ap-
ply common performance-oriented opti-
mizations that also save energy by re-
ducing the execution time, optimizations
such as Common Subexpression Elimi-
nation, Partial Redundancy Elimination,
and Strength Reduction. However, some
performance optimizations increase code
size or parallelism, sometimes increas-
ing resource usage and peak power dissi-
pation. Examples include Loop Unrolling
and Software Pipelining. Researchers
[Givargis et al. 2001] have developed mod-
els for relating performance and power,
but these models are relative to specific ar-
chitectures. There is no fixed relationship
between performance and power across all
architectures and applications. Figure 18

compares the power dissipation and exe-
cution time of doing two additions in paral-
lel (as in a VLIW architecture) (a) and do-
ing them in succession (b). Doing two ad-
ditions in parallel activates twice as many
adders over a shorter period. It induces
higher peak resource usage but fewer exe-
cution cycles and is better for performance.
To determine which scenario saves more
energy, one needs more information such
as the peak power increase in scenario (a),
the execution cycle increase in scenario
(b), and the total energy dissipation per
cycle for (a) and (b). For ease of illustra-
tion, we have depicted the peak power in
(a) to be twice that of (b), but all of these
parameters may vary with respect to the
architecture.

Compilers can reduce memory accesses
to reduce energy dissipated in these ac-
cesses. One way to reduce memory ac-
cesses is to eliminate redundant load
and store operations. Another is to keep
data as close as possible to the processor,
preferably in the registers and lower-level
caches, using aggressive register alloca-
tion techniques and optimizations improv-
ing cache usage. Several loop transforma-
tions alter data traversal patterns to make
better use of the cache. Examples include
Loop Interchange, Loop Tiling, and Loop

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

222 V. Venkatachalam and M. Franz

Fusion. The assignment of data to memory
locations also influences how long data re-
mains in the cache. Though all these tech-
niques reduce power consumption along
one or more dimensions, they might be
suboptimal along others. For example, to
exploit the full bandwidth a banked mem-
ory architecture provides, one may need
to disperse data across multiple memory
banks at the expense of cache locality and
energy.

3.7.2. Remote Compilation and Remote Exe-
cution. A new area of research for compil-
ers involves compiling and executing ap-
plications jointly between mobile devices
and more powerful servers to reduce exe-
cution time and increase battery life. This
is an area frought with challenges such
as the decision of what program sections
to compile or execute remotely. Other is-
sues include application partitioning be-
tween multiple servers and handhelds, ap-
plication migration, and fault tolerance.
Though researchers have yet to address
all these issues, a number of studies pro-
vide valuable insights into the benefits of
partitioning.

Recent studies of low-power Java ap-
plication partitioning are by Palm et al.
[2002] and Chen et al. [2003]. Palm et al.
compare the energy costs of remote and
local compilation and optimization. They
examine four scenarios in which a hand-
held downloads code from a server and
executes it locally. In the first two sce-
narios, the handheld downloads bytecode,
compiles it, and executes it. In the re-
maining scenarios, the server compiles the
bytecode and the handheld downloads the
native codestream. Palm et al. find that,
when a method’s compilation time exceeds
the execution time, remote compilation is
favorable to local compilation. However, if
no optimizations are used, remote compi-
lation can be more expensive due to the
cost of downloading code from the server.
Overall, the largest energy savings are ob-
tained by compiling and optimizing code
remotely but sending results to the hand-
held exactly when needed to minimize idle
time.

While Palm et al. [2002] restrict their
studies to local and remote compilation,
Chen et al. [2003] also examine the ben-
efits of executing compiled Java code re-
motely. Their testbed consists of a 750MHz
SPARC workstation server and a client
handheld running a microSPARC-IIep
embedded processor. The programmer ini-
tially annotates a set of candidate meth-
ods that the client may execute remotely.
Before calling any of these methods, the
client decides where to compile and exe-
cute the method based on computation and
communication costs. It also selects opti-
mization levels for compilation. If remote
execution is favorable, the client transfers
all method data to the server via the object
serialization interface. The server uses re-
flection to invoke the method and serial-
ization to send back the results. Chen et al.
evaluate different compilation and execu-
tion strategies in this framework through
simulation and analytical models. They
consider seven partitioning strategies, five
of which are static and two of which are
dynamic. While the static strategies fix
the partitioning decision for all methods
of a program, the dynamic ones decide the
best strategy for each method at call time.
Chen et al. find the best static strategy to
vary depending on input size and commu-
nication channel quality. When the quality
is low, the client’s network interface must
send data at a higher transmission power
to reach the server. For large inputs and
good channel quality, static remote execu-
tion prevails over other static strategies.
Overall, Chen et al. find the highest en-
ergy savings to be achieved by a dynamic
strategy that decides where to compile and
execute each method.

The Proxy Virtual Machine [Venkat-
achalam et al. 2003] reduces the energy
consumption of mobile devices by combin-
ing application partitioning with dynamic
optimization. The framework (Figure 19)
positions a powerful server infrastructure,
the proxy, between mobile devices and the
Internet. The proxy includes a just-in-
time compiler and bytecode translator. A
high bandwidth, low-latency secure wire-
less connection mediates communication
between the proxy and mobile devices in

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 223

Fig. 19. The proxy VM framework.

the vicinity. Users can request Internet ap-
plications as they normally would through
a Web browser. The proxy intercepts these
requests and reissues them to a remote
Internet server. The server sends the
proxy the application in mobile code for-
mat. The proxy verifies the application,
compiles it to native code, and sends part
of the generated code to the target. The re-
mainder of the code executes on the proxy
itself to significantly reduce energy con-
sumption on the mobile device.

3.7.3. The Limitations of Statically Optimiz-
ing Compilers. The drawback of compiler-
based approaches is that a compiler’s
view is usually limited to the programs
it is compiling. This raises two problems.
First, compilers have incomplete informa-
tion about how a program will actually be-
have, information such as the control flow
paths and loop iterations that will be exe-
cuted. Hence, statically optimizing compil-
ers often rely on profiling data that is col-
lected from a program prior to execution,
to determine what optimizations should
be applied in different program regions.
A program’s actual runtime behavior may
diverge from its behavior in these “simu-
lation runs”, thus leading to suboptimal
decisions.

The second problem is that compiler op-
timizations tend to treat programs as if
they exist in a vacuum. While this may

be ideal for specialized embedded systems
where the set of programs that will ex-
ecute is determined ahead of time and
where execution behavior is mostly pre-
dictable, real systems tend to be more com-
plex. The events occurring within them
continuously change and compete for pro-
cessor and memory resources. For exam-
ple, context switches abruptly shift exe-
cution from a region of one program to a
completely different region of another pro-
gram. If a compiler had generated code
so that the two regions put a device into
different power mode settings, then there
will be an overhead to transition between
these settings when execution flows from
one region to another.

3.7.4. Dynamic Compilation. Dynamic
compilation addresses some of these
problems by introducing a feedback
loop. A program is compiled but is then
also monitored as it executes. As the
behavior of the program changes, possibly
along with other changes in the runtime
environment (e.g., resource levels), the
program is recompiled to adapt to these
changes. Since the program is continu-
ously recompiled in response to runtime
feedback, its code is of a significantly
higher quality than it would have been if
it had been generated by a static compiler.

There are a number of scenarios where
continuous compilation can be effective.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

224 V. Venkatachalam and M. Franz

For example, as battery capacity de-
creases, a continuous compiler can ap-
ply more aggressive transformations that
trade the quality of data output for re-
duced power consumption. (For example,
a compiler can replace expensive floating
point operations with integer operations,
or generate code that dims the display.)
However, there are tradeoffs. For example,
the cost function for a dynamic compiler
needs to weigh the overhead of recompil-
ing a program with the energy that can be
saved. Moreover, there is the issue of how
to profile an executing program in a mini-
mally invasive, low overhead way.

While there is a large body of work
in dynamic compilation for perfor-
mance [Kistler and Franz 2001; Kistler
and Franz 2003], dynamic recompilation
for power is still a young field with
many open problems. One of the earliest
commercial dynamic compilation systems
is Transmeta’s Crusoe processor [Trans-
meta Corporation 2003; Transmeta
Corporation 2001] which we will discuss
in Section 3.10. One of the earliest aca-
demic studies of power-aware dynamic
recompilation was done by Unnikrishnan
et al. [2002]. Their idea is to instrument
critical program regions with sensitiv-
ity lists that detect changes in various
energy budgets and hot-swap optimized
versions of these regions with the original
versions based on these changes. Each
optimized version is precomputed ahead
of time, using offline energy estimation
techniques. The authors target a banked
memory architecture and focus on loop
transformations such as tiling, unrolling,
and interchange. Their implementation
is based on Dyninst, a tool that allows
program regions to be patched at runtime.

Though dynamic compilation for power
is still in its infancy, there is a growing
body of work in runtime power monitor-
ing. The work that is most relevant for
dynamic compilation is that of Isci and
Martonosi [2003]. These researchers have
developed techniques for profiling the
power behavior of programs at runtime
using information from hardware perfor-
mance counters. They target a Pentium 4
processor which allows one to sample 18

different performance counter events si-
multaneously. For each of the core compo-
nents of this processor Isci and Martonosi
have developed power models that relate
their power consumption to their usage
statistics. In their actual setup, they take
two kinds of power readings in parallel.
One is based on current measurements
and the other is based on the performance
counters. These readings give the total
power as well as a breakdown of power
consumed among the various components.
Isci and Martonosi find that their perfor-
mance counter-based approach is nearly
as accurate as the current measurements
and is also able to distinguish between dif-
ferent phases in program execution.

3.8. Application-Level Power Management

Researchers have been exploring how to
give applications a larger role in power
management decisions. Most of the recent
work has two goals. The first is to de-
velop techniques that enable applications
to adapt to their runtime environment.
The second is to develop interfaces allow-
ing applications to provide hints to lower
layers of the stack (i.e., operating systems,
hardware) and likewise exposing useful
information from the lower layers to appli-
cations. Although these are two separate
goals, the techniques for achieving them
can overlap.

3.8.1. Application Transformations and Adap-
tations. As a starting point, some re-
searchers [Tan et al. 2003] have adopted
an “architecture-centric” view of applica-
tions that allows for some high-level trans-
formations. These researchers claim that
an application’s architecture consists of
fundamental elements that comprise all
applications, namely processes, event han-
dlers, and communication mechanisms.
Power is consumed when these various el-
ements interact during activities such as
context switches and interprocess commu-
nication.

They propose a low-power applica-
tion design methodology. Initially, an ap-
plication is represented as a software
architecture graph (SAG) [Tan et al. 2003]

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 225

which captures how it has been built out
of processes and events. It is then run
through a simulator to measure its base
energy consumption which is then com-
pared to its energy consumption when
transformations are applied to the SAG,
transformations that include merging pro-
cesses to reduce interprocess communica-
tion, replacing expensive IPC mechanisms
by cheaper mechanisms, and migrating
computations between processes.

To determine the optimal set of transfor-
mations, the researchers use a greedy ap-
proach. They keep applying transforma-
tions that reduce energy until no more
transformations remain to be applied.
This results in an optimized version of the
same application that has a more energy
efficient mix of processes, events, and com-
munication mechanisms.

Sachs et al. [2003] have explored a dif-
ferent kind of adaptation that involves
trading the accuracy of computations for
reduced energy consumption. They pro-
pose a video encoder that allows one to
vary its compression efficiency by selec-
tively skipping the motion search and dis-
crete cosine transform phases of the en-
coding algorithm. The extent to which it
skips these phases depends on parame-
ters chosen by the adaptation algorithm.
The target architecture is a processor with
support for DVS and architectural adapta-
tions (e.g., configurable caches). Two algo-
rithms work side by side. One algorithm
tunes the hardware parameters at the
start of each frame, while another tunes
the parameters of the video encoder while
a frame is being processed.

Yet another form of adaptation involves
reducing energy consumption by trading
off fidelity or the quality of data presented
to users. This can take many forms. One
example of a fidelity reduction system
is Odyssey [Flinn and Satyanarayanan
1999]. Odyssey is an operating system
and execution framework for multime-
dia and Web applications. It continuously
monitors the resources used by applica-
tions and alerts applications whose re-
sources fall below requested levels. In
turn, the applications lower their qual-
ity of service until resources are plenti-

ful. Originally, Odyssey supported four ap-
plications, a video player, speech recog-
nizer, map viewer, and Web browser. The
video player, for instance, would down-
load images from a server storing multi-
ple copies at different compression levels.
When bandwidth is low, it would down-
load the compressed versions of images
to transfer less data over the network. As
battery resources become scarce, it would
also reduce the size of the images to con-
serve energy.

One example of an operating system
that assists application adaptation is
ECOSystem [Zeng et al. 2002]. It treats
energy as a commodity assigned to the dif-
ferent resources in a system. The idea is
to allow resources to operate so long as
they have enough of the commodity. Thus
resource management in ECOSystem re-
lies on the notion of “currentcy”, an ab-
straction that models the power resource
as a monetary unit. Essentially, the dif-
ferent resources in a computer (e.g., ALU,
memory) have prices for using them, and
applications pay these prices with cur-
rentcy. Periodically, the operating system
distributes a fixed amount of currentcy
among applications, using the desired bat-
tery drain rate as the basis for deciding on
how much to distribute. Applications can
use specific resources only if they can pay
for them. As an application executes, it ex-
pends its currentcy. The application is in-
terrupted once it depletes its currentcy.

3.8.2. Application Hints. In one of the ear-
liest works on application hints, Pereira
et al. [2002] propose a software architec-
ture containing two layers of API calls,
one allowing applications to communicate
with the operating system, and the other
allowing the operating system to com-
municate with the underlying hardware.
The API layer that is exposed to appli-
cations allows applications to drop hints
to the operating system such as the start
times, deadlines, and expected execution
times of tasks. Using these hints provided
by the application, the operating system
will have a better understanding of the
possible future behavior of programs and

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

226 V. Venkatachalam and M. Franz

will thus be able to make better DVS
decisions.

Similar to this is the work by Anand
et al. [2004] which considers a setting
where applications adapt by deciding
when to access different I/O devices based
on the relative costs of accessing these
devices. For example, it may be expen-
sive to access data resident on a disk
if the disk is powered down and would
take a long time to restart. In such cases,
an application may choose instead to ac-
cess the data through the network. To aid
in these adaptations, Anand et al. pro-
pose an API layer that gives applications
control over all I/O devices but abstracts
away the details of these devices. The
API functions as a giant regulating dial
that applications can tune to specify their
desired power/performance tradeoffs and
which transparently manages all the de-
vices to achieve these tradeoffs. The API
also give applications more fine-grained
control over devices they may want to ac-
cess. One of its unique features is that it
allows applications to issue ghost hints: if
an application chose not to access a de-
vice that was deactivated but would have
saved more energy by accessing that de-
vice if it had been activated, then it can
send the device a message to this effect.
After a few of these ghost hints, the de-
vice automatically becomes activated, an-
ticipating that the application will need to
use it.

Heath et al. [2004] propose similar work
to increase opportunities for spinning
down idle hard disks and saving energy. In
their framework, a compiler performs var-
ious code transformations to cluster disk
accesses and then inserts hints that tell
the operating system how long these clus-
tered disk accesses will take. The operat-
ing system is then able to serve these disk
requests in a single batch and power down
the disk for longer periods of time.

3.9. Cross-Layer Adaptations

Because power consumption depends on
decisions spanning the entire stack from
transistors to applications, a research
question that is becoming increasingly

popular is how to develop holistic ap-
proaches that integrate information from
multiple levels (e.g., compiler, OS, hard-
ware) into power management decisions.
There are already a number of systems be-
ing developed to explore cross-layer adap-
tations. We give four examples of such sys-
tems.

Forge [Mohapatra et al. 2003] is an in-
tegrated power management framework
for networked multimedia applications.
Forge targets a typical scenario where
users request video streams for their
handheld devices and these requests are
filtered by a remote proxy that transcodes
the streams and transmits them to the
users at the most energy efficient QoS
levels.

Forge integrates multiple levels of adap-
tations. The hardware level contains a fre-
quency and voltage scaling interface, a
network card interface (allowing the net-
work card to be powered down when idle),
as well as interfaces allowing various ar-
chitectural parameters (e.g., cache ways,
register file sizes) to be tuned. A level
above hardware are the operating system
and compiler, which control the architec-
tural knobs, and a level above the oper-
ating system is a distributed middleware
frame-work, part of which resides on the
handheld devices and part of which re-
sides on the remote proxy. The middleware
on each handheld device monitors the en-
ergy statistics of the device (through the
OS), and sends feedback to the middle-
ware on the proxy. The middleware on the
proxy uses this feedback to decide how to
regulate network traffic and at what QoS
levels to stream requested video feeds.

Different heuristics are used for differ-
ent adaptations. To determine the optimal
cache parameters for a video feed, one sim-
ulates the feed offline at each QoS level
for all possible variations of cache size and
associativity and determines the most en-
ergy optimal configuration. This configu-
ration is automatically chosen when the
feed executes. The cache configuration, in
turn, affects how long it takes to decode
each video frame. If the decoding time is
less than the frame’s deadline, then the
DVS algorithm slows down the frame to

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 227

exactly meet the deadline. Meanwhile on
the proxy, the middleware layer continu-
ally receives requests for video feeds and
information about the resource levels on
various devices. When it receives a request
from a user on a handheld device, it checks
whether there is enough remaining energy
on the device allowing it to receive the
video feed at an acceptable quality. If there
is, then it transmits the feed at the high-
est quality that does not exceed the en-
ergy constraints of the device. Otherwise,
it rejects the user’s request or sends the
feed at a lower quality. When the proxy
sends a video feedback back to the users,
it transmits the feed in bursts of packets,
allowing the users’ network cards to be
shut down over longer idle periods to save
energy.

Grace [Yuan and Nahrstedt 2003] is an-
other cross-layer adaptation framework
that attempts to integrate dynamic volt-
age scaling, power-aware task schedul-
ing, and QoS setting. Its target applica-
tions are real-time multimedia tasks with
fixed periods and deadlines. Grace applies
two levels of adaptations, global and local.
Global adaptations respond to larger re-
source variations and are applied less fre-
quently because they are more expensive.
These adaptations are controlled by a cen-
tral coordinator that continuously moni-
tors battery levels and application work-
loads and responds to widespread changes
in these variables. Local adaptations, on
the other hand, respond to smaller work-
load variations within a task. These adap-
tations are controlled by local adaptors.
There are three local adaptors, one to
set the CPU frequency, another to sched-
ule tasks, and a third to adapt QoS pa-
rameters. Major changes in the runtime
environment, such as low battery levels
or wide variations in workload, trigger
the central coordinator to decide upon a
new set of global adaptations. The coor-
dinator chooses the most energy-optimal
adaptations by solving a constrained op-
timization problem. It then broadcasts its
decision to the local adaptors which imple-
ment these changes but are free to adjust
these initial settings within the execution
of specific tasks.

Another multilayer framework for mul-
timedia applications has been developed
by Fei et al. [2004]. Their framework con-
sists of four layers divided into user space
and system space. The system space con-
sists of the target platform and the oper-
ating system running on top of it. Directly
above the operating system in user space
is a middleware layer that decides how to
apply adaptations, guided by information
it receives from the other layers. All appli-
cations execute on top of the middleware
coordinator which is responsible for decid-
ing when to admit different applications
into the system and how to select their QoS
levels. When applications first enter the
system, they store their meta-information
inside the middleware layer. This includes
information about the QoS levels they of-
fer and the energy consumption for each
of these levels. The middleware layer, in
turn, monitors battery levels using coun-
ters inside the operating system. Based on
the battery levels, the middleware decides
on the most energy efficient QoS setting
for each application. It then admits appli-
cations into the system according to user-
defined priorities.

A fourth example is the work of AbouG-
hazaleh et al. [2003] which explores how
compilers and operating systems can in-
teract to save energy. This work targets
real-time applications with fixed dead-
lines and worst-case execution times. In
this approach, the compiler instruments
specific program regions with code that
saves the remaining worst-case execution
cycles into a register. The operating sys-
tem periodically reads this register and
adjusts the speed of the processor so that
the task finishes by its worst-case execu-
tion time.

3.10. Commercial Systems

To understand what power management
techniques industry is adopting, we exam-
ine the low-power techniques used in four
widely used processors, the Pentium 4,
Pentium M, the PXA27x, and Transmeta
Crusoe. We then discuss three power man-
agement strategies by IBM, ARM, and
National Semiconductor that are rapidly
gaining in importance.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

228 V. Venkatachalam and M. Franz

3.10.1. The Pentium 4 Processor. Though
its goal is high performance, the Pen-
tium 4 processor also contains features
to manage its power consumption [Gun-
ther et al. 2001; Hinton et al. 2004].
One of Intel’s goals in including these
features was to prevent the Pentium’s
internal temperatures from becoming
dangerously high due to the increased
power dissipation. To meet this goal,
the designers included a thermal de-
tection and response mechanism which
inhibits the processor clock whenever
the observed temperature exceeds a safe
threshold. To monitor temperature vari-
ations, the processor features a diode-
based thermal sensor. The sensor sits
at the hottest area of the chip and
measures temperature via voltage drops
across the diode. Whenever the tempera-
ture increases into a danger zone, the sen-
sor issues a STOPCLOCK request, caus-
ing the main clock signal to be inhibited
from reaching most of the processor until
the temperature is no longer in the dan-
ger zone. This is to guarantee response
time while the chip is cooling. The temper-
ature sensor also provides temperature
information to higher levels of software
through output signals (some of which are
in registers), allowing the compiler or op-
erating system, for instance, to activate
other techniques in response to the high
temperatures.

The Pentium 4 also supports the low-
power operating states defined by the Ad-
vanced Configuration and Power Interface
(ACPI) specification, allowing software to
control the processor power modes. In par-
ticular, it features a model-specific regis-
ter allowing software to influence the pro-
cessor clock. In addition to stopping the
clock, the Pentium 4 features the Intel
Basic Speedstep Technology which allows
two settings for the processor clock fre-
quency and voltage, a high setting for per-
formance and a low setting for power. The
high setting is normally used when the
computer is connected to a wall outlet, and
the low setting is normally used when the
computer is running on batteries as in the
case of a laptop.

3.10.2. The Pentium M Processor. The
Pentium M is the fruit of Intel’s efforts
to bring the Pentium 4 to the mobile Do-
main. It carefully balances performance
enhancing features with several power-
saving features that increase the bat-
tery lifetime [Genossar and Shamir 2003;
Gochman et al. 2003]. It uses three main
strategies to reduce dynamic power con-
sumption: reducing the total instructions
and micro-operations executed, reducing
the switching activity in the circuit, and
reducing the energy dissipated per tran-
sistor switch.

To save energy, the Pentium M in-
tegrates several techniques that reduce
the total switching activity. These include
hardware for predicting idle units and in-
hibiting their clock signals, buses whose
components are activated only when data
needs to be transferred, and a technique
called execution stacking which clusters
units that perform similar functions into
similar regions so that the processor can
selectively activate the parts of the circuit
that will be needed by an instruction.

To reduce the static power dissipation,
the Pentium M incorporates low leakage
transistors in the caches. To further re-
duce both dynamic and leakage energy
throughout the processor, the Pentium M
supports an enhanced version of the In-
tel SpeedStep technology, which unlike its
predecessor, allows the processor to tran-
sition between 6 different frequency and
voltage settings.

3.10.3. The Intel PXA27x Processors. The
Intel PXA27x processors used in many
wireless handheld devices feature the
Intel Wireless Speedstep power man-
ager [Intel Corporation 2004]. This power
manager uses memory boundedness as
the criterion for deciding how to manage
the processor’s power modes. It receives
information from an idle profiler which
monitors the system idle thread and a per-
formance profiler that monitors the pro-
cessor’s built-in performance counters to
gather statistics pertaining to cache and
TLB misses, instructions executed, and

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 229

processor stalls. Using this information,
the power manager determines how mem-
ory bounded the workload is and decides
how to adjust the processor’s power modes
as well as its clock frequency and voltage.

3.10.4. The Transmeta Crusoe Processor.
Transmeta’s Crusoe processor [Transmeta
Corporation 2001, 2003] saves power not
only by means of its LongRun Power Man-
ager but also through its overall design
which shifts many of the complexities in
instruction execution from hardware into
software. The Crusoe relies on a code mor-
phing engine, a layer of software that in-
terprets or compiles x86 programs into
the processor’s native VLIW instructions,
saving the generated code in a Transla-
tion Cache so that they can be reused.
This layer of software is also responsi-
ble for monitoring executing programs for
hotspots and reoptimizing code on the fly.
As a result, features that are typically im-
plemented in hardware (e.g., out-of-order
execution) are instead implemented in
software. This reduces the total on-chip
real estate and its accompanying power
dissipation. To further reduce the power
dissipation, Crusoe’s LongRun modulates
the clock frequency and voltage according
to workload demands. It identifies idle pe-
riods of the operating system and scales
the clock frequency and voltage accord-
ingly.

Transmeta’s later generation Efficeon
processor contains enhanced versions of
the code morphing engine and the Lon-
gRun Power Manager. Some news arti-
cles claim that the new LongRun includes
techniques to reduce leakage, but the de-
tails are proprietary.

3.10.5. IBM Dynamic Power Management.
IBM has developed an extensible oper-
ating system module [Brock and Raja-
mani 2003] that allows power manage-
ment policies to be developed for a wide
range of embedded devices. For portability,
this module abstracts away from the un-
derlying architecture and provides a sim-
ple interface allowing designers to specify

device-specific parameters (e.g., available
clock frequencies) and to integrate their
own policies in a “plug-and-play” manner.
The main idea is to model the underly-
ing hardware as a state machine composed
of different operating points and operat-
ing states. The operating points are clock
frequency and voltage settings, while the
operating states are power mode settings
such as active, idle and deep sleep. De-
signers specify the operating points and
states for their target architecture, and us-
ing this abstraction, they write policies for
transitioning between the states. IBM has
experimented with a wide range of poli-
cies for the PowerPC 405LP, from simple
policies that adjust the frequency based on
whether the processor is idle or active, to
more complex policies that integrate infor-
mation about application workloads and
deadlines.

3.10.6. Powerwise and Intelligent Energy
Management. National Semiconductor
and ARM Inc. have collaborated to
develop a single end-to-end energy
management system for embedded pro-
cessors. Their system brings together two
technologies, ARM’s Intelligent Energy
Management Software (IEM), which
modulates the processor speed based on
workloads, and National Semiconductor’s
Powerwise Adaptive Voltage Scaling
(AVS), which dynamically adjusts the
supply voltage for a given clock frequency
based on variations in temperature and
other ambient system effects.

The IEM software consists of a three-
level decision hierarchy of policies for de-
ciding how fast the processor should run.
At the bottom is a baseline algorithm
that selects the optimal frequency based
on estimating future task workloads from
past workloads measured over a sliding
history window. At the top is an algo-
rithm more suited for interactive and me-
dia applications, which considers how fast
these applications would need to run to
deliver smooth performance to users. Be-
tween these two layers is an interface al-
lowing applications to communicate their

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

230 V. Venkatachalam and M. Franz

workload requirements directly. Each of
these three layers combines its perfor-
mance prediction with a confidence rating,
which indicates how to compare its deci-
sion with that of other layers. Whenever
there is a context switch, the IEM software
analyzes the decisions and confidence rat-
ings of each layer to finally decide how fast
to run the processor.

The Powerwise Adaptive Voltage Scal-
ing technology [Dhar et al. 2002] aims to
save more energy than conventional volt-
age scaled systems by choosing the mini-
mum acceptable voltage for a given clock
frequency. Conventional DVS processors
determine the appropriate voltage for a
clock frequency by referring to a table
that is developed offline using a worst-case
model of ambient hardware characteris-
tics. As a result, the voltages chosen are
often higher than they need to be. Power-
wise gets around this problem by adding
a feedback loop. It continually monitors
variations in temperature and other am-
bient system effects through performance
counters and uses this information to dy-
namically adjust the supply voltage for
each clock frequency. This results in an ad-
ditional 45% energy savings over conven-
tional voltage scaling.

3.11. A Glimpse Into Emerging Radical
Technologies

Imagine a laptop that runs on hydrogen
fuel or a mobile phone that is powered by
the same type of engines that propel gi-
gantic aircraft. Such ideas may sound far
fetched, but they are exactly the kinds of
innovations that some researchers claim
will eventually solve the energy problem.
We close our survey by briefly discussing
two of the more radical technologies that
are likely to gain in importance over the
next decade. The focus of these techniques
is on improving energy efficiency. The
techniques include fuel cells and MEMS
systems.

3.11.1. Fuel Cells. Fuel cells [Dyer 2004]
are being developed to replace the bat-
teries used in mobile devices. Batteries
have a limited capacity. Once depleted,

they must be discarded unless they are
rechargeable, and recharging a battery
can take several hours and even recharge-
able batteries eventually die. Moreover,
battery technology has been advancing
slowly. Building more efficient batteries
still means building bigger batteries, and
bigger and heavier batteries are not suited
for small mobile devices.

Fuel cells are similar to batteries in
that they generate electricity by means
of a chemical reaction but, unlike batter-
ies, fuel cells can in principle supply en-
ergy indefinitely. The main components
of a fuel cell are an anode, a cathode, a
membrane separating the anode from the
cathode, and a link to transfer the gener-
ated electricity. The fuel enters the anode,
where it reacts with a catalyst and splits
into protons and electrons. The protons
diffuse through the membrane, while the
electrons are forced to travel through the
link generating electricity. When the pro-
tons reach the cathode, they combine with
Oxygen in the air to produce water and
heat as by-products. If the fuel cell uses a
water-diluted fuel (as some do), then this
waste water can be recycled back to the
anode.

Fuel cells have a number of advantages.
One advantage is that fuels (e.g., hydro-
gen) are abundantly available from a wide
variety of natural resources, and many of-
fer energy densities high enough to allow
portable devices to run far longer than
they do on batteries. Another advantage is
that refueling is significantly faster than
recharging a battery. In some cases, it
merely involves spraying more fuel into a
tank. A third advantage is that there is
no limit to how many times a fuel cell can
be refueled. As long as it contains fuel, it
generates electricity.

Several companies are aggressively de-
veloping fuel cell technologies for portable
devices including Micro Fuel Cell Inc.,
NEC, Toshiba, Medis, Panasonic, Mo-
torola, Samsung, and Neah Systems. Al-
ready a number of prototype cells have
emerged as well as prototype mobile com-
puters powered by hydrogen or alcohol-
based fuels. Despite these rapid advances,
some industry analysts estimate that it

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 231

will take another 5-10 years for fuel cells
to become commonplace in mobile devices.

Fuel cells also have several drawbacks.
First, they can get very hot (e.g., 500-
1000 celsius). Second, the metallic materi-
als and mechanical components that they
are composed of can be quite expensive.
Third, fuel cells are flammable. In par-
ticular, fuel-powered devices will require
safety measures as well as more flexible
laws allowing them inside airplanes.

3.11.2. MEMS Systems. Microelectrical
and Mechanical Systems (MEMS) are
miniature versions of large scale devices
commonly used to convert mechanical en-
ergy into electrical energy. Researchers at
MIT and the Georgia Institute of Technol-
ogy [Epstein 2004] are exploring a radical
way of using them to solve the energy prob-
lem. They are developing prototype mil-
limeter scale versions of the gigantic gas
turbine engines that power airplanes and
drive electrical generators. These micro-
engines, they claim, will give mobile com-
puters unprecedented amounts of unteth-
ered lifetime.

The microengines work using similar
principles as their large scale counter-
parts. They suck air into a compressor
and ignite it with fuel. The compressed air
then spins a set of turbines that are con-
nected to a generator to generate electrical
power. The fuels used could be hydrogen,
diesel based, or more energy-dense solid
fuels.

Made from layers of silicon wafers, these
tiny engines are supposed to output the
same levels of electrical power per unit
of fuel as their large scale counterparts.
Their proponents claim they have two ad-
vantages. First, they can output far more
power using less fuel than fuel cells or
batteries alone. In fact, the ones under
development are expected to output 10
to 100 Watts of power almost effortlessly
and keep mobile devices powered for days.
Moreover, as a result of their high energy
density, these engines would require less
space than either fuel cells or batteries.

This technology, according to re-
searchers, is likely to be commercialized

over the next four years. However, it is too
early to tell whether it will in fact replace
batteries and fuel cells. One problem
is that jet engines produce hot exhaust
gases that could raise chip temperatures
to dangerous levels, possibly requiring
new materials for a chip to withstand
these temperatures. Other issues include
flammability and the power dissipation of
the rotating turbines.

4. CONCLUSION

Power and energy management has grown
into a multifaceted effort that brings to-
gether researchers from such diverse ar-
eas as physics, mechanical engineering,
electrical engineering, design automation,
logic and high-level synthesis, computer
architecture, operating systems, compiler
design, and application development. We
have examined how the power problem
arises and how the problem has been
addressed along multiple levels ranging
from transistors to applications. We have
also surveyed major commercial power
management technologies and provided a
glimpse into some emerging technologies.
We conclude by noting that the field is
still active, and that researchers are con-
tinually developing new algorithms and
heuristics along each level as well as ex-
ploring how to integrate algorithms from
multiple levels. Given the wide variety
of microarchitectural and software tech-
niques available today and the astound-
ingly large number of techniques that will
be available in the future, it is highly likely
that we will overcome the limits imposed
by high power consumption and continue
to build processors offering greater levels
of performance and versatility. However,
only time will tell which approaches will
ultimately succeed in solving the power
problem.

REFERENCES

ABOUGHAZALEH, N., CHILDERS, B., MOSSE, D., MEL-
HEM, R., AND CRAVEN, M. 2003. Energy man-
agement for real-time embedded applications
with compiler support. In Proceedings of the
ACM SIGPLAN Conference on Languages, Com-
pilers, and Tools for Embedded Systems. ACM
Press, 284–293.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

232 V. Venkatachalam and M. Franz

ALBONESI, D., DROPSHO, S., DWARKADAS, S., FRIEDMAN,
E., HUANG, M., KURSUN, V., MAGKLIS, G., SCOTT,
M., SEMERARO, G., BOSE, P., BUYUKTOSUNOGLU, A.,
COOK, P., AND SCHUSTER, S. 2003. Dynamically
tuning processor resources with adaptive pro-
cessing. IEEE Computer Magazine 36, 12, 49–
58.

ANAND, M., NIGHTINGALE, E., AND FLINN, J. 2004.
Ghosts in the machine: Interfaces for better
power management. In Proceedings of the Inter-
national Conference on Mobile Systems, Applica-
tions, and Services. 23–35.

AZEVEDO, A., ISSENIN, I., CORNEA, R., GUPTA, R.,
DUTT, N., VEIDENBAUM, A., AND NICOLAU, A. 2002.
Profile-based dynamic voltage scheduling using
program checkpoints. In Proceedings of the Con-
ference on Design, Automation and Test in Eu-
rope. 168–175.

BAHAR, R. I. AND MANNE, S. 2001. Power and energy
reduction via pipeline balancing. In Proceedings
of the 28th Annual International Symposium on
Computer Architecture. ACM Press, 218–229.

BANAKAR, R., STEINKE, S., LEE, B.-S., BALAKRISHNAN, M.,
AND MARWEDEL, P. 2002. Scratchpad memory:
Design alternative for cache on-chip memory in
embedded systems. In Proceedings of the 10th In-
ternational Symposium on Hardware/Software
Codesign. 73–78.

BANERJEE, K. AND MEHROTRA, A. 2001. Global in-
terconnect warming. IEEE Circuits and Devices
Magazine 17, 5, 16–32.

BISHOP, B. AND IRWIN, M. J. 1999. Databus charge
recovery: practical considerations. In Proceed-
ings of the International Symposium on Low
Power Electronics and Design. 85–87.

BROCK, B. AND RAJAMANI, K. 2003. Dynamic power
management for embedded systems. In Proceed-
ings of the IEEE International SOC Conference.
416–419.

BUTTAZZO, G. C. 2002. Scalable applications for
energy-aware processors. In Proceedings of the
2nd International Conference On Embedded
Software. Springer-Verlag, 153–165.

BUTTS, J. A. AND SOHI, G. S. 2000. A static power
model for architects. In Proceedings of the 33rd
Annual ACM/IEEE International Symposium
on Microarchitecture. Monterey, CA. 191–201.

BUYUKTOSUNOGLU, A., SCHUSTER, S., BROOKS, D., BOSE,
P., COOK, P. W., AND ALBONESI, D. 2001. An
adaptive issue queue for reduced power at high
performance. In Proceedings of the 1st Interna-
tional Workshop on Power-Aware Computer Sys-
tems. 25–39.

CALHOUN, B. H., HONORE, F. A., AND CHANDRAKASAN,
A. 2003. Design methodology for fine-grained
leakage control in MTCMOS. In Proceedings
of the International Symposium on Low Power
Electronics and Design. ACM Press, 104–109.

CHEN, D., CONG, J., LI, F., AND HE, L. 2004. Low-
power technology mapping for FPGA architec-
tures with dual supply voltages. In Proceedings

of the ACM/SIGDA 12th International Sympo-
sium on Field Programmable Gate Arrays. ACM
Press, 109–117.

CHEN, G., KANG, B., KANDEMIR, M., VIJAYKRISHNAN, N.,
AND IRWIN, M. 2003. Energy-aware compila-
tion and execution in java-enabled mobile de-
vices. In Proceedings of the 17th Parallel and
Distributed Processing Symposium. IEEE Press,
34a.

CHOI, K., SOMA, R., AND PEDRAM, M. 2004. Dynamic
voltage and frequency scaling based on work-
load decomposition. In Proceedings of the Inter-
national Symposium on Low Power Electronics
and Design. ACM Press, 174–179.

CLEMENTS, P. C. 1996. A survey of architecture de-
scription languages. In Proceedings of the 8th In-
ternational Workshop on Software Specification
and Design. IEEE Computer Society, 16–25.

DALLY, W. J. AND TOWLES, B. 2001. Route packets,
not wires: on-chip inteconnection networks. In
Proceedings of the 38th Conference on Design Au-
tomation. ACM Press, 684–689.

DALTON, A. B. AND ELLIS, C. S. 2003. Sensing user
intention and context for energy management.
In Proceedings of the 9th Workshop on Hot Topics
in Operating Systems. 151–156.

DE, V. AND BORKAR, S. 1999. Technology and de-
sign challenges for low power and high perfor-
mance. In Proceedings of the International Sym-
posium on Low Power Electronics and Design
ISLPED’99 . ACM Press, 163–168.

DHAR, S., MAKSIMOVIC, D., AND KRANZEN, B. 2002.
Closed-loop adaptive voltage scaling controller
for standard-cell asics. In Proceedings of the In-
ternational Symposium on Low Power Electron-
ics and Design ISLPED’02. ACM Press, 103–
107.

DINIZ, P. C. 2003. A compiler approach to perfor-
mance prediction using empirical-based model-
ing. In International Conference On Computa-
tional Science. 916–925.

DROPSHO, S., BUYUKTOSUNOGLU, A., BALASUBRAMONIAN,
R., ALBONESI, D. H., DWARKADAS, S., SEMERARO, G.,
MAGKLIS, G., AND SCOTT, M. L. 2002. Integrat-
ing adaptive on-chip storage structures for re-
duced dynamic power. In Proceedings of the In-
ternational Conference on Parallel Architectures
and Compilation Techniques. IEEE Computer
Society, 141–152.

DROPSHO, S., SEMERARO, G., ALBONESI, D. H., MAGKLIS,
G., AND SCOTT, M. L. 2004. Dynamically trad-
ing frequency for complexity in a gals micropro-
cessor. In Proceedings of the 37th International
Symposium on Microarchitecture. IEEE Com-
puter Society, 157–168.

DUDANI, A., MUELLER, F., AND ZHU, Y. 2002. Energy-
conserving feedback EDF scheduling for embed-
ded systems with real-time constraints. In Pro-
ceedings of the Joint Conference on Languages,
Compilers, and Tools for Embedded Systems.
ACM Press, 213–222.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 233

DYER, C. 2004. Fuel cells and portable electronics.
In Symposium On VLSI Circuits Digest of Tech-
nical Papers (2004). 124–127.

EBERGEN, J., GAINSLEY, J., AND CUNNINGHAM, P. 2004.
Transistor sizing: How to control the speed and
energy consumption of a circuit. In the 10th
International Symposium on Asynchronous Cir-
cuits and Systems. 51–61.

EPSTEIN, A. 2004. Millimeter-scale, micro-
electromechanical systems gas turbine engines.
J. Eng. Gas Turb. Power 126, 205–226.

ERNST, D., KIM, N., DAS, S., PANT, S., RAO, R., PHAM,
T., ZIESLER, C., BLAAUW, D., AUSTIN, T., FLAUT-
NER, K., AND MUDGE, T. 2003. Razor: A low-
power pipeline based on circuit-level timing
speculation. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Mi-
croarchitecture. IEEE Computer Society, 7–18.

FAN, X., ELLIS, C. S., AND LEBECK, A. R. 2003. Syn-
ergy between power-aware memory systems and
processor voltage scaling. In Proceedings of the
Workshop on Power-Aware Computer Systems.
164–179.

FEI, Y., ZHONG, L., AND JHA, N. 2004. An energy-
aware framework for coordinated dynamic soft-
ware management in mobile computers. In Pro-
ceedings of the IEEE Computer Society’s 12th
Annual International Symposium on Model-
ing, Analysis, and Simulation of Computer and
Telecommunications Systems. 306–317.

FERDINAND, C. 1997. Cache behavior prediction for
real time systems. Ph.D. thesis, Universität des
Saarlandes.

FLAUTNER, K., REINHARDT, S., AND MUDGE, T. 2001.
Automatic performance setting for dynamic volt-
age scaling. In Proceedings of the 7th Annual
International Conference on Mobile Computing
and Networking. ACM Press, 260–271.

FLINN, J. AND SATYANARAYANAN, M. 1999. Energy-
aware adaptation for mobile applications. In
Proceedings of the 17th ACM Symposium on Op-
erating Systems Principles. ACM Press, 48–63.

FOLEGNANI, D. AND GONZALEZ, A. 2001. Energy-
effective issue logic. In Proceedings of the 28th
Annual International Symposium on Computer
Architecture. ACM Press, 230–239.

GAO, F. AND HAYES, J. P. 2003. ILP-based optimiza-
tion of sequential circuits for low power. In Pro-
ceedings of the International Symposium on Low
Power Electronics and Design. ACM Press, 140–
145.

GENOSSAR, D. AND SHAMIR, N. 2003. Intel Pentium
M processor power estimation, budgeting, opti-
mization, and validation. Intel. Tech. J. 7, 2, 44–
49.

GHOSE, K. AND KAMBLE, M. B. 1999. Reducing
power in superscalar processor caches using sub-
banking, multiple line buffers, and bit-line seg-
mentation. In Proceedings of the International
Symposium on Low Power Electronics and De-
sign. ACM Press, 70–75.

GIVARGIS, T., VAHID, F., AND HENKEL, J. 2001.
System-level exploration for pareto-optimal con-
figurations in parameterized systems-on-a-chip.
In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design. IEEE
Press, 25–30.

GOCHMAN, S., RONEN, R., ANATI, I., BERKOVITS, A.,
KURTS, T., NAVEH, A., SAEED, A., SPERBER, Z., AND

VALENTINE, R. 2003. The Intel Pentium M pro-
cessor: Microarchitecture and performance. In-
tel. Tech. J. 7, 2, 21–59.

GOMORY, R. E. AND HU, T. C. 1961. Multi-terminal
network flows. J. SIAM 9, 4, 551–569.

GOVIL, K., CHAN, E., AND WASSERMAN, H. 1995. Com-
paring algorithms for dynamic speed-setting of a
low-power CPU. In Proceedings of the 1st Annual
International Conference on Mobile Computing
and Networking. ACM Press, 13–25.

GRUIAN, F. 2001. Hard real-time scheduling for
low-energy using stochastic data and DVS pro-
cessors. In Proceedings of the International Sym-
posium on Low Power Electronics and Design.
ACM Press, 46–51.

GUNTHER, S., BINNS, F., CARMEAN, D., AND HALL, J.
2001. Managing the impact of increasing mi-
croprocessor power consumption. Intel Tech. J.

GURUMURTHI, S., SIVASUBRAMANIAM, A., KANDEMIR, M.,
AND FRANKE, H. 2003. DRPM: Dynamic speed
control for power management in server class
disks. SIGARCH Comput. Architect. News 31, 2,
169–181.

HEATH, T., PINHEIRO, E., HOM, J., KREMER, U.,
AND BIANCHINI, R. 2004. Code transformations
for energy-efficient device management. IEEE
Trans. Comput. 53, 8, 974–987.

HINTON, G., SAGER, D., UPTON, M., BOGGS, D., CARMEAN,
D., KYKER, A., AND ROUSSEL, P. 2004. The mi-
croarchitecture of the Intel Pentium 4 processor
on 90nm technology. Intel Tech. J. 8, 1, 1–17.

HO, Y.-T. AND HWANG, T.-T. 2004. Low power de-
sign using dual threshold voltage. In Proceed-
ings of the Conference on Asia South Pacific De-
sign Automation IEEE Press, (Piscataway, NJ,)
205–208.

HOM, J. AND KREMER, U. 2003. Energy manage-
ment of virtual memory on diskless devices.
In Compilers and Operatings Systems for Low
Power. Kluwer Academic Publishers, Norwell,
MA. 95–113.

HOSSAIN, R., ZHENG, M. AND ALBICKI, A. 1996. Re-
ducing power dissipation in CMOS circuits by
signal probability based transistor reording. In
IEEE Trans. Comput.-Aided Design Integrated
Circuits Syst. 15, 3, 361–368.

HSU, C. AND FENG, W. 2004. Effective dynamic
voltage scaling through cpu-boundedness detec-
tion. In Workshop on Power Aware Computing
Systems.

HSU, C.-H. AND KREMER, U. 2003. The design,
implementation, and evaluation of a com-
piler algorithm for CPU energy reduction. In

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

234 V. Venkatachalam and M. Franz

Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implemen-
tation. ACM Press, 38–48.

HU, J., IRWIN, M., VIJAYKRISHNAN, N., AND KANDEMIR, M.
2002. Selective trace cache: A low power and
high performance fetch mechanism. Tech. Rep.
CSE-02-016, Department of Computer Science
and Engineering, The Pennsylvania State Uni-
versity (Oct.).

HU, J., VIJAYKRISHNAN, N., IRWIN, M., AND KANDEMIR,
M. 2003. Using dynamic branch behavior for
power-efficient instruction fetch. In Proceedings
of the IEEE Computer Society Annual Sympo-
sium on VLSI. 127–132.

HU, J. S., NADGIR, A., VIJAYKRISHNAN, N., IRWIN, M. J.,
AND KANDEMIR, M. 2003. Exploiting program
hotspots and code sequentiality for instruction
cache leakage management. In Proceedings of
the International Symposium on Low Power
Electronics and Design. ACM Press, 402–407.

HUANG, M., RENAU, J., YOO, S.-M., AND TORRELLAS, J.
2000. A framework for dynamic energy effi-
ciency and temperature management. In Pro-
ceedings of the 33rd Annual ACM/IEEE Inter-
national Symposium on Microarchitecture. ACM
Press, 202–213.

HUANG, M. C., RENAU, J., AND TORRELLAS, J. 2003.
Positional adaptation of processors: application
to energy reduction. In Proceedings of the 30th
Annual International Symposium on Computer
Architecture ISCA ’03. ACM Press, 157–168.

HUGHES, C. J. AND ADVE, S. V. 2004. A formal ap-
proach to frequent energy adaptations for mul-
timedia applications. In Proceedings of the 31st
Annual International Symposium on Computer
Architecture (ISCA’04). IEEE Computer Society,
138.

HUGHES, C. J., SRINIVASAN, J., AND ADVE, S. V. 2001.
Saving energy with architectural and frequency
adaptations for multimedia applications. In Pro-
ceedings of the 34th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture
(MICRO’34). IEEE Computer Society, 250–
261.

Intel Corporation. 2004. Wireless Intel Speedstep
Power Manager. Intel Corporation.

ISCI, C. AND MARTONOSI, M. 2003. Runtime power
monitoring in high-end processors: Methodology
and empirical data. In Proceedings of the 36th
Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’36). IEEE Com-
puter Society, 93–104.

ISHIHARA, T. AND YASUURA, H. 1998. Voltage
scheduling problem for dynamically variable
voltage processors. In Proceedings of the Inter-
national Symposium on Low Power Electronics
and Design. ACM Press, 197–202.

ITRSRoadmap. The International Technology
Roadmap for Semiconductors. Available at
http://public.itrs.net.

IYER, A. AND MARCULESCU, D. 2001. Power aware
microarchitecture resource scaling. In Proceed-

ings of the Conference on Design, Automation
and Test in Europe. IEEE Press, 190–196.

IYER, A. AND MARCULESCU, D. 2002a.
Microarchitecture-level power management.
IEEE Trans. VLSI Syst. 10, 3, 230–239.

IYER, A. AND MARCULESCU, D. 2002b. Power ef-
ficiency of voltage scaling in multiple clock,
multiple voltage cores. In Proceedings of
the IEEE/ACM International Conference on
Computer-Aided Design. ACM Press, 379–386.

JONE, W.-B., WANG, J. S., LU, H.-I., HSU, I. P., AND

CHEN, J.-Y. 2003. Design theory and imple-
mentation for low-power segmented bus sys-
tems. ACM Trans. Design Autom. Electr. Syst.
8, 1, 38–54.

KABADI, M., KANNAN, N., CHIDAMBARAM, P., NARAYANAN,
S., SUBRAMANIAN, M., AND PARTHASARATHI, R.
2002. Dead-block elimination in cache: A
mechanism to reduce i-cache power consump-
tion in high performance microprocessors. In
Proceedings of the International Conference on
High Performance Computing. Springer Verlag,
79–88.

KANDEMIR, M., RAMANUJAM, J., AND CHOUDHARY, A.
2002. Exploiting shared scratch pad memory
space in embedded multiprocessor systems. In
Proceedings of the 39th Conference on Design Au-
tomation. ACM Press, 219–224.

KAXIRAS, S., HU, Z., AND MARTONOSI, M. 2001. Cache
decay: exploiting generational behavior to re-
duce cache leakage power. In Proceedings of the
28th Annual International Symposium on Com-
puter Architecture. ACM Press, 240–251.

KIM, C. AND ROY, K. 2002. Dynamic Vth scaling
scheme for active leakage power reduction. In
Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition. IEEE
Computer Society, 0163–0167.

KIM, N. S., FLAUTNER, K., BLAAUW, D., AND MUDGE,
T. 2002. Drowsy instruction caches: leakage
power reduction using dynamic voltage scaling
and cache sub-bank prediction. In Proceedings of
the 35th Annual ACM/IEEE International Sym-
posium on Microarchitecture. IEEE Computer
Society Press, 219–230.

KIN, J., GUPTA, M., AND MANGIONE-SMITH, W. H. 1997.
The filter cache: An energy efficient memory
structure. In Proceedings of the 30th Annual
ACM/IEEE International Symposium on Mi-
croarchitecture. IEEE Computer Society, 184–
193.

KISTLER, T. AND FRANZ, M. 2001. Continuous pro-
gram optimization: design and evaluation. IEEE
Trans. Comput. 50, 6, 549–566.

KISTLER, T. AND FRANZ, M. 2003. Continuous pro-
gram optimization: A case study. ACM Trans.
Program. Lang. Syst. 25, 4, 500–548.

KOBAYASHI AND SAKURAI. 1994. Self-adjusting
threshold voltage scheme (SATS) for low-
voltage high-speed operation. In Proceedings of
the IEEE Custom Integrated Circuits Confer-
ence. 271–274.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 235

KONDO, M. AND NAKAMURA, H. 2004. Dynamic pro-
cessor throttling for power efficient computa-
tions. In Workshop on Power Aware Computing
Systems.

KONG, B., KIM, S., AND JUN, Y. 2001. Conditional-
capture flip-flop for statistical power reduc-
tion. IEEE J. Solid State Circuits 36, 8, 1263–
1271.

KRANE, R., PARSONS, J., AND BAR-COHEN, A. 1988.
Design of a candidate thermal control system
for a cryogenically cooled computer. IEEE Trans.
Components, Hybrids, Manufact. Techn. 11, 4,
545–556.

KRAVETS, R. AND KRISHNAN, P. 1998. Power manage-
ment techniques for mobile communication. In
Proceedings of the 4th Annual ACM/IEEE Inter-
national Conference on Mobile Computing and
Networking. ACM Press, 157–168.

KURSUN, E., GHIASI, S., AND SARRAFZADEH, M. 2004.
Transistor level budgeting for power optimiza-
tion. In Proceedings of the 5th International
Symposium on Quality Electronic Design. 116–
121.

LEBECK, A. R., FAN, X., ZENG, H., AND ELLIS, C. 2000.
Power aware page allocation. In Proceedings of
the 9th International Conference on Architec-
tural Support for Programming Languages and
Operating Systems (2000). ACM Press, 105–116.

LEE, S. AND SAKURAI, T. 2000. Run-time voltage
hopping for low-power real-time systems. In Pro-
ceedings of the 37th Conference on Design Au-
tomation. ACM Press, 806–809.

LI, H., KATKOORI, S., AND MAK, W.-K. 2004. Power
minimization algorithms for LUT-based FPGA
technology mapping. ACM Trans. Design Autom.
Electr. Syst. 9, 1, 33–51.

LI, X., LI, Z., DAVID, F., ZHOU, P., ZHOU, Y., ADVE, S.,
AND KUMAR, S. 2004. Performance directed en-
ergy management for main memory and disks.
In Proceedings of the 11th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-
XI). ACM Press, New York, NY, 271–283.

LIM, S.-S., BAE, Y. H., JANG, G. T., RHEE, B.-D., MIN,
S. L., PARK, C. Y., SHIN, H., PARK, K., MOON, S.-
M., AND KIM, C. S. 1995. An accurate worst
case timing analysis for RISC processors. IEEE
Trans. Softw. Eng. 21, 7, 593–604.

LIU, M., WANG, W.-S., AND ORSHANSKY, M. 2004.
Leakage power reduction by dual-vth designs
under probabilistic analysis of vth variation. In
Proceedings of the International Symposium on
Low Power Electronics and Design ACM Press,
New York, NY, 2–7.

LLOPIS, R. AND SACHDEV, M. 1996. Low power,
testable dual edge triggered flip-flops. In Pro-
ceedings of the International Symposium on Low
Power Electronics and Design. IEEE Press, 341–
345.

LORCH, J. AND SMITH, A. 2001. Improving dynamic
voltage scaling algorithms with PACE. In Pro-
ceedings of the ACM SIGMETRICS Interna-

tional Conference on Measurement and Modeling
of Computer Systems. ACM Press, 50–61.

LUZ, V. D. L., KANDEMIR, M., AND KOLCU, I. 2002.
Automatic data migration for reducing energy
consumption in multi-bank memory systems. In
Proceedings of the 39th Conference on Design Au-
tomation. ACM Press, 213–218.

LYUBOSLAVSKY, V., BISHOP, B., NARAYANAN, V., AND IR-
WIN, M. J. 2000. Design of databus charge re-
covery mechanism. In Proceedings of the Inter-
national Conference on ASIC. ACM Press, 283–
287.

MAGKLIS, G., SCOTT, M. L., SEMERARO, G., ALBONESI,
D. H., AND DROPSHO, S. 2003. Profile-based dy-
namic voltage and frequency scaling for a mul-
tiple clock domain microprocessor. In Proceed-
ings of the 30th Annual International Sympo-
sium on Computer Architecture. ACM Press, 14–
27.

MAGKLIS, G., SEMERARO, G., ALBONESI, D., DROPSHO, S.,
DWARKADAS, S., AND SCOTT, M. 2003. Dynamic
frequency and voltage scaling for a multiple-
clock-domain microprocessor. IEEE Micro 23, 6,
62–68.

MARCULESCU, D. 2004. Application adaptive en-
ergy efficient clustered architectures. In Pro-
ceedings of the International Symposium on Low
Power Electronics and Design. 344–349.

MARTIN, T. AND SIEWIOREK, D. 2001. Nonideal bat-
tery and main memory effects on cpu speed-
setting for low power. IEEE Tran. (VLSI) Syst. 9,
1, 29–34.

MENG. Y., SHERWOOD, T., AND KASTNER, R. 2005. Ex-
ploring the limits of leakage power reduction in
caches. ACM Trans. Architecture Code Optimiz.,
1, 221–246.

MOHAPATRA, S., CORNEA, R., DUTT, N., NICOLAU, A.,
AND VENKATASUBRAMANIAN, N. 2003. Integrated
power management for video streaming to mo-
bile handheld devices. In Proceedings of the 11th
ACM International Conference on Multimedia.
ACM Press, 582–591.

NEDOVIC, N., ALEKSIC, M., AND OKLOBDZIJA, V. 2001.
Conditional techniques for low power consump-
tion flip-flops. In Proceedings of the 8th Interna-
tional Conference on Electronics, Circuits, and
Systems. 803–806.

NILSEN, K. D. AND RYGG, B. 1995. Worst-case exe-
cution time analysis on modern processors. In
Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time
Systems. ACM Press, 20–30.

PALM, J., LEE, H., DIWAN, A., AND MOSS, J. E. B. 2002.
When to use a compilation service? In Proceed-
ings of the Joint Conference on Languages, Com-
pilers, and Tools for Embedded Systems. ACM
Press, 194–203.

PANDA, P. R., DUTT, N. D., AND NICOLAU, A. 2000. On-
chip vs. off-chip memory: the data partitioning
problem in embedded processor-based systems.
ACM Trans. Design Autom. Electr. Syst. 5, 3,
682–704.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

236 V. Venkatachalam and M. Franz

PAPATHANASIOU, A. E. AND SCOTT, M. L. 2002. In-
creasing disk burstiness for energy efficiency.
Technical Report 792 (November), Department
of Computer Science, University of Rochester
(Nov.).

PATEL, K. N. AND MARKOV, I. L. 2003. Error-
correction and crosstalk avoidance in dsm
busses. In Proceedings of the International Work-
shop on System-Level Interconnect Prediction.
ACM Press, 9–14.

PENZES, P., NYSTROM, M., AND MARTIN, A. 2002.
Transistor sizing of energy-delay-efficient
circuits. Tech. Rep. 2002003, Department
of Computer Science, California Institute of
Technology.

PEREIRA, C., GUPTA, R., AND SRIVASTAVA, M. 2002.
PASA: A software architecture for building
power aware embedded systems. In Proceedings
of the IEEE CAS Workshop on Wireless Commu-
nication and Networking.

POLLACK, F. 1999. New microarchitecture chal-
lenges in the coming generations of CMOS pro-
cess technologies. International Symposium on
Microarchitecture.

PONOMAREV, D., KUCUK, G., AND GHOSE, K. 2001.
Reducing power requirements of instruction
scheduling through dynamic allocation of mul-
tiple datapath resources. In Proceedings of the
34th Annual ACM/IEEE International Sympo-
sium on Microarchitecture. IEEE Computer So-
ciety, 90–101.

POWELL, M., YANG, S.-H., FALSAFI, B., ROY, K., AND

VIJAYKUMAR, T. N. 2001. Reducing leakage in
a high-performance deep-submicron instruction
cache. IEEE Trans. VLSI Syst. 9, 1, 77–90.

RUTENBAR, R. A., CARLEY, L. R., ZAFALON, R., AND DRAG-
ONE, N. 2001. Low-power technology mapping
for mixed-swing logic. In Proceedings of the Inter-
national Symposium on Low Power Electronics
and Design. ACM Press, 291–294.

SACHS, D., ADVE, S., AND JONES, D. 2003. Cross-
layer adaptive video coding to reduce energy on
general purpose processors. In Proceedings of the
International Conference on Image Processing.
109–112.

SASANKA, R., HUGHES, C. J., AND ADVE, S. V. 2002.
Joint local and global hardware adaptations
for energy. SIGARCH Computer Architecture
News 30, 5, 144–155.

SCHMIDT, R. AND NOTOHARDJONO, B. 2002. High-end
server low-temperature cooling. IBM J. Res. De-
vel. 46, 6, 739–751.

SEMERARO, G., ALBONESI, D. H., DROPSHO, S. G., MAGK-
LIS, G., DWARKADAS, S., AND SCOTT, M. L. 2002.
Dynamic frequency and voltage control for a
multiple clock domain microarchitecture. In Pro-
ceedings of the 35th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture. IEEE
Computer Society Press, 356–367.

SEMERARO, G., MAGKLIS, G., BALASUBRAMONIAN, R., AL-
BONESI, D. H., DWARKADAS, S., AND SCOTT, M. L.

2002. Energy-efficient processor design using
multiple clock domains with dynamic voltage
and frequency scaling. In Proceedings of the 8th
International Symposium on High-Performance
Computer Architecture. IEEE Computer Society,
29–40.

SETA, K., HARA, H., KURODA, T., KAKUMU, M., AND SAKU-
RAI, T. 1995. 50% active-power saving without
speed degradation using standby power reduc-
tion (SPR) circuit. In Proceedings of the IEEE In-
ternational Solid-State Conference. IEEE Press,
318–319.

SGROI, M., SHEETS, M., MIHAL, A., KEUTZER, K., MA-
LIK, S., RABAEY, J., AND SANGIOVANNI-VENCENTELLI,
A. 2001. Addressing the system-on-a-chip in-
terconnect woes through communication-based
design. In Proceedings of the 38th Conference on
Design Automation. ACM Press, 667–672.

SHIN, D., KIM, J., AND LEE, S. 2001. Low-energy
intra-task voltage scheduling using static timing
analysis. In Proceedings of the 38th Conference
on Design Automation. ACM Press, 438–443.

STAN, M. AND BURLESON, W. 1995. Bus-invert cod-
ing for low-power i/o. IEEE Trans. VLSI, 49–58.

STANLEY-MARBELL, P., HSIAO, M., AND KREMER, U.
2002. A Hardware Architecture for Dynamic
Performance and Energy Adaptation. In Pro-
ceedings of the Workshop on Power-Aware Com-
puter Systems. 33–52.

STROLLO, A., NAPOLI, E., AND CARO, D. D. 2000. New
clock-gating techniques for low-power flip-flops.
In Proceedings of the International Symposium
on Low Power Electronics and Design. ACM
Press, 114–119.

SULTANIA, A., SYLVESTER, D., AND SAPATNEKAR, S. 2004.
Transistor and pin reordering for gate oxide
leakage reduction in dual Tox circuits. In IEEE
International Conference on Computer Design.
228–233.

SYLVESTER, D. AND KEUTZER, K. 1998. Getting to
the bottom of deep submicron. In Proceedings
of the IEEE/ACM International Conference on
Computer-Aided Design. ACM Press, 203–211.

TAN, T., RAGHUNATHAN, A., AND JHA, N. 2003. Soft-
ware architectural transformations: A new ap-
proach to low energy embedded software. In
Design, Automation and Test in Europe. 1046–
1051.

TAYLOR, C. N., DEY, S., AND ZHAO, Y. 2001. Modeling
and minimization of interconnect energy dissi-
pation in nanometer technologies. In Proceed-
ings of the 38th Conference on Design Automa-
tion. ACM Press, 754–757.

Transmeta Corporation. 2001. LongRun Power
Management: Dynamic Power Management for
Crusoe Processors. Transmeta Corporation.

Transmeta Corporation. 2003. Crusoe Processor
Product Brief: Model TM5800. Transmeta Cor-
poration.

TURING, A. 1937. Computability and lambda-
definability. J. Symbolic Logic 2, 4, 153–163.

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

Power Reduction Techniques for Microprocessor Systems 237

UNNIKRISHNAN, P., CHEN, G., KANDEMIR, M., AND

MUDGETT, D. R. 2002. Dynamic compilation
for energy adaptation. In Proceedings of
the IEEE/ACM International Conference on
Computer-Aided Design. ACM Press, 158–
163.

VENKATACHALAM, V., WANG, L., GAL, A., PROBST, C.,
AND FRANZ, M. 2003. Proxyvm: A network-
based compilation infrastructure for resource-
constrained devices. Technical Report 03-13,
University of California, Irvine.

VICTOR, B. AND KEUTZER, K. 2001. Bus encoding
to prevent crosstalk delay. In Proceedings of
the IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 57–63.

WANG, H., PEH, L.-S., AND MALIK, S. 2003. Power-
driven design of router microarchitectures in on-
chip networks. In Proceedings of the 36th An-
nual IEEE/ACM International Symposium on
Microarchitecture (MICRO’36). IEEE Computer
Society, 105–116.

WEI, L., CHEN, Z., JOHNSON, M., ROY, K., AND DE, V.
1998. Design and optimization of low voltage
high performance dual threshold CMOS circuits.
In Proceedings of the 35th Annual Conference on
Design Automation. ACM Press, 489–494.

WEISER, M., WELCH, B., DEMERS, A. J., AND SHENKER, S.
1994. Scheduling for reduced CPU energy. In
Proceedings of the 1st USENIX Symposium on
Operating Systems Design and Implementation.
13–23.

WEISSEL, A. AND BELLOSA, F. 2002. Process cruise
control: event-driven clock scaling for dynamic
power management. In Proceedings of the In-
ternational Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems. ACM
Press, 238–246.

WON, H.-S., KIM, K.-S., JEONG, K.-O., PARK, K.-T., CHOI,
K.-M., AND KONG, J.-T. 2003. An MTCMOS de-
sign methodology and its application to mobile

computing. In Proceedings of the 2003 Interna-
tional Symposium on Low Power Electronics and
Design. ACM Press, 110–115.

YUAN, W. AND NAHRSTEDT, K. 2003. Energy-efficient
soft real-time cpu scheduling for mobile multi-
media systems. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles
(SOSP’03). 149–163.

ZENG, H., ELLIS, C. S., LEBECK, A. R., AND VAHDAT, A.
2002. Ecosystem: managing energy as a first
class operating system resource. In Proceedings
of the 10th International Conference on Archi-
tectural Support for Programming Languages
and Operating Systems. ACM Press, 123–
132.

ZHANG, H. AND RABAEY, J. 1998. Low-swing inter-
connect interface circuits. In Proceedings of the
International Symposium on Low Power Elec-
tronics and Design. ACM Press, 161–166.

ZHANG, H., WAN, M., GEORGE, V., AND RABAEY, J. 2001.
Interconnect architecture exploration for low-
energy reconfigurable single-chip dsps. In Pro-
ceedings of the International Symposium on Sys-
tems Synthesis. ACM Press, 33–38.

ZHANG, W., HU, J. S., DEGALAHAL, V., KANDEMIR,
M., VIJAYKRISHNAN, N., AND IRWIN, M. J. 2002.
Compiler-directed instruction cache leakage op-
timization. In Proceedings of the 35th Annual
ACM/IEEE International Symposium on Mi-
croarchitecture. IEEE Computer Society Press,
208–218.

ZHANG, W., KARAKOY, M., KANDEMIR, M., AND CHEN, G.
2003. A compiler approach for reducing data
cache energy. In Proceedings of the 17th An-
nual International Conference on Supercomput-
ing. ACM Press, 76–85.

ZHAO, P., DARWSIH, T., AND BAYOUMI, M. 2004. High-
performance and low-power conditional dis-
charge flip-flop. IEEE Trans. VLSI Syst. 12, 5,
477–484.

Received December 2003; revised February and June 2005; accepted September 2005

ACM Computing Surveys, Vol. 37, No. 3, September 2005.

