SeaMicro SM10000-64 Server

Building Datacenter Servers Using Cell Phone Chips

Ashutosh Dhodapkar, Gary Lauterbach, Sean Lie, Dhiraj Mallick, Jim Bauman, Sundar Kanthadai, Toru Kuzuhara, Gene Shen, Min Xu, Chris Zhang

Overview

- Power in the Datacenter
- Application Trends
- SeaMicro Architecture
 - CPU Selection
 - Interconnect Fabric
 - I/O Virtualization
 - Management Software
- Application Performance
- Summary

Power: The Issue in the Datacenter

- Power is the largest Op-Ex item for an Internet company; >30% of Op Ex
- Volume servers consume 1% of the electricity in the US – More than \$3 Billion dollars per year *
- Datacenters reaching power limits
 - Reducing power will extend life of existing datacenters – saving 100's of millions of dollars in CapEx

 ²⁰⁰⁷ EPA Report to Congress on Server and Data Center Efficiency, Public Law 109-43
 Power Provisioning for a Warehoused Sized Compute

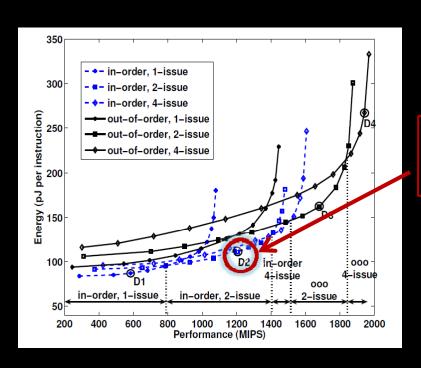
Cloud's Killer Apps

- Compute moving to server side
 - Clients primarily for display: smart phones, tablets, etc.
- Free to users cost amortized over large user base
 - Optimizing datacenter TCO is critical to profitability
 - Costs: bandwidth, power, servers, switching, storage, firewalls, load balancers, buildings, management
- Growing exponentially
 - Datacenters facing new challenges around logistics of "super-size"
- Killer apps
 - are collections of small, simple, and bursty workloads
 - have big data sets, high concurrency, lots of communication

Hiotik@intexse2(0)/iiii

SeaMicro Architecture

- Cluster in a box: integrated compute, storage, and network
- Large number of inexpensive, energy-efficient "Cell Phone" CPUs interconnected using a low-latency, high-bandwidth fabric
- Unlike multi-core, provides natural scaling of all system resources:
 - O/S threads, networking stack
 - Memory bandwidth and capacity
 - NICs and network bandwidth
 - Disk controllers, disk bandwidth/capacity
- Purpose built for Cloud's Killer Apps: architecture maps well to internet workloads


Hot Chips 2011

SeaMicro Architecture: CPU

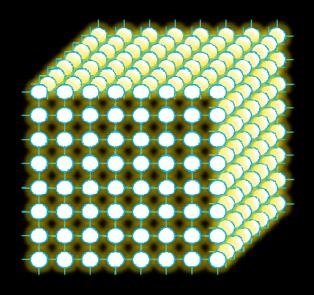
Purpose built for Cloud's Killer Apps

- Collection of small, simple, and bursty workloads
- Big data sets, high concurrency, lots of communication

CPU: Intel Atom™, a "Cell Phone" CPU

- Better match the workload
- Leverage efficiencies of Scale Down: operate at a more efficient point on the energy-performance curve*
- Derive cost advantage from smaller silicon area and higher volumes
- Superior Performance/Watt/\$
 compared to server class CPUs

ot Chips 2011

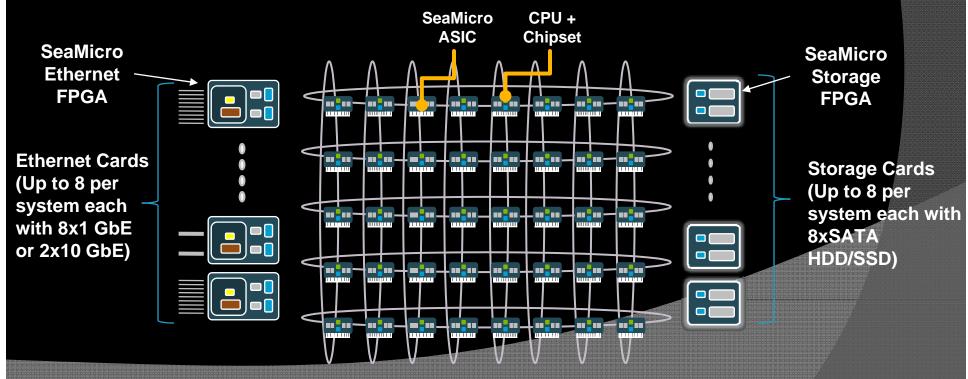

^{*} Adapted from Azizi et al. "Energy-Performance Tradeoffs in Processor Architecture and Circuit Design: A Marginal Cost Analysis," ISCA 2010

SeaMicro Architecture: Fabric

Purpose built for Cloud's Killer Apps

- Collection of small, simple, and bursty workloads
- Big data sets, high concurrency, lots of communication

512 CPUs interconnected using a high bandwidth fabric in a 3D torus topology

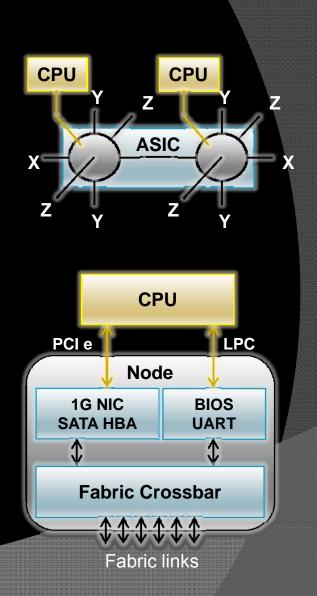

- High scalability: distributed architecture based on low-power ASICs
- High bandwidth: 1.28Tbps
- Low-latency: < 5us between any two nodes
- High resiliency: multitude of paths between two nodes allowing easy routing around failures

SeaMicro Architecture: I/O Virtualization

Virtualized I/O devices

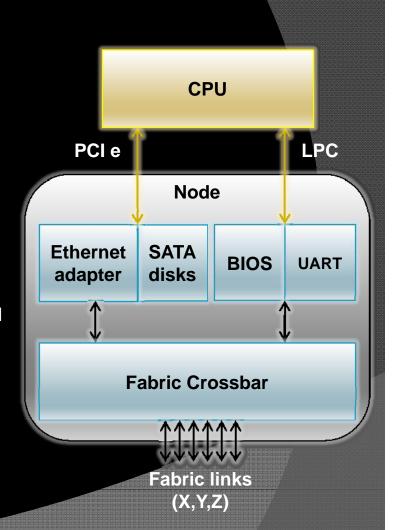
- Network/storage shared and amortized over large number of CPUs
- Improves utilization and enables optimizations, e.g. shared partitions
- Reduces components in the system, thus improving cost/power

SeaMicro ASIC

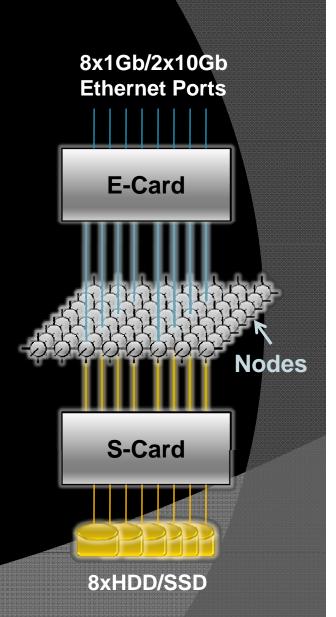

- 90nm G TSMC technology
- 15 mm² per node
- 289 pin plastic BGA package
- Low power: <1W per node</p>
- Key Features:
 - Fabric switch
 - I/O virtualization
 - Clock generation
 - Node management

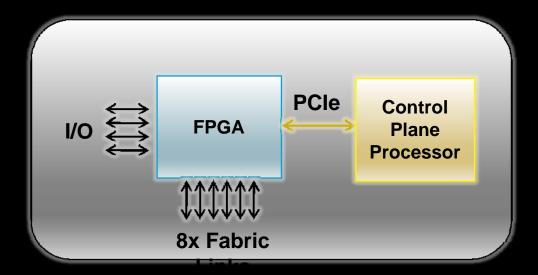
Hot Chips 2011

SeaMicro Fabric


- 512 logical fabric nodes
 - ASIC contains 2 fabric nodes
- Each node has
 - 6 fabric links (2.5Gb/s SERDES) to neighboring nodes (2X, 2Y, 2Z)
 - 1 PCle link to a CPU
 - Crossbar to switch between 7 links
- Nodes connected in an 8x8x8 3D Torus
 - Each dimension is an 8-node loop
 - Total bandwidth is 1.28 Tbps
 - High path diversity for redundancy
- Fabric is cut-through, loss-less, deadlock free, has multiple QOS levels

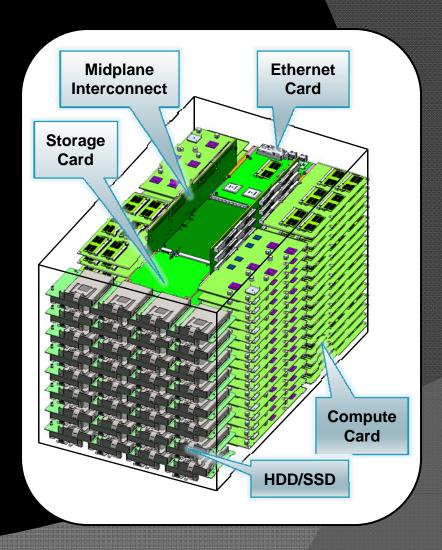
I/O Virtualization


- Node presents 4 virtual devices to CPU
 - PCIe: Ethernet adapter, 4 SATA disks
 - LPC (ISA): BIOS, UART
- Node packetizes data from CPU and routes it through the fabric to multiple shared I/O cards
 - Ethernet traffic is routed to other nodes or network I/O cards with uplink ports
 - Each node is a port on a distributed switch. Internal MAC addresses are hidden behind I/O card
 - Table at ingress port on I/O card provides fabric destination
 - Nodes keeps track of destination ports for external MACs. Fabric address encoded in Internal MAC
 - Disk, BIOS, and Console requests are routed to storage I/O cards which hold up to 8 SATA disks


I/O Aggregation Cards

- Bridge between the fabric and I/O
 - Connected to the fabric in the Y-dimension
 - Terminate fabric protocol on one side and talk to I/O devices on the other
- Two types of I/O cards
 - E-Card: 1G/10G network connectivity
 - S-Card: SATA storage, BIOS, Console
- Any node can talk to any I/O card
 - 1 E-Card and 1 S-Card per Z-plane

I/O Card Architecture


Co-designed architecture

- HW/SW boundary flexible: optimized for performance
- High speed datapaths implemented in FPGA
- Control plane implemented in microprocessor
- FPGA enables rapid feature enhancement based on customer feedback. Power/cost amortized over 100's of nodes

SM10000-64 Server

- 10 RU chassis
- Dual mid-plane fabric interconnect
- 64 compute cards
 - 4 ASICs/card: 512 fabric nodes
 - 4-6 Dual-core CPUs/card: 512-768 cores
 - 4GB DRAM/CPU: 1-1.5TB DRAM
- 1-8 shared Ethernet cards:
 - Up to 160 Gb/s external connectivity
- 1-8 shared Storage cards:
 - Up to 64 SATA/SSD drives
- Shared infrastructure:
 - N+1 redundant Power supplies, fans, management Ethernet and console

Management Software

Implements key real-time services

- Fabric routing: fault isolation and failover
- Ethernet control plane (MAC/IP learning, IGMP)
- Layer4 load balancer management
- Terminal server
- Power supply and fan control

Configuration, Management, and Monitoring

- Integrated DHCP server
- CLI and SNMP interfaces for network/storage/server management
- Performance/Fault monitoring tools

Hoil@mas 2011

Benchmark: Apache Bench

SM10000-64 consumes 1/4th the power, for equivalent performance

- Apache 2.2 with Apache Bench. CPUs running CentOS 5.4
- Retrieve 16KB files over 10 min.

	SeaMicro	1U Xeon Server
System Configuration	SM10000-64 256 x Dual Core 1.66GHz Atom processors	Industry Standard Dual Socket Quad Core Xeon L5630 2.13GHz
Systems Under Test	1	45
Apache Throughput/Sec	1,005,056	1,005,120
Apache Request File Size	16KB	16KB
System Power	2,490W	10,090W
Space consumed in Racks	10 RU	45 RU

Summary: SM10000-64

- Internet workloads are increasingly moving compute to the server side.
- Minimizing Power and thus TCO of datacenters is critical to internet businesses.
- The SM10000-64 is a major step forward to address the challenges of the datacenter
 - Provides a 4x reduction in power/space for equivalent performance, compared to traditional 1RU servers.

Shipping in volume

- 768 Intel Atom cores, 1.5 TB DRAM, 1.28Tbps fabric
- 64 SATA/SSD disks, 160Gbps uplink network bandwidth
- Integrated load balancer and management SW

Hei Onios 2011

Thank You!

