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Transactional Memory
(definition)
● A transaction is a sequence of

memory loads and stores that either commits or aborts
● If a transaction commits, all the loads and stores 

appear to have executed atomically
● If a transaction aborts, none of its stores take effect
● Transaction operations aren't visible until they commit 

or abort
● Simplified version of traditional ACID database 

transactions (no durability, for example)
● For this talk, we assume no I/O within transactions
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Locks are not our friends
void pushFlow(Vertex v1, Vertex v2,

double flow) {
lock_t lock1, lock2;
if (v1.id < v2.id) {/* avoid deadlock */

lock1 = v1.lock; lock2 = v2.lock;
} else {

lock1 = v2.lock; lock2 = v1.lock;
}
lock(lock1);
lock(lock2);
if (v2.excess > f) {

/* move excess flow */
v1.excess += f;
v2.excess -= f;

}
unlock(lock2);
unlock(lock1);

}

● Deadlocks/ordering
● Multi-object operations
● Priority inversion
● Faults in critical regions
● Inefficient
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Invisible transactions?
● Rajwar & Goodman: Speculative Lock 

Elision and Transactional Lock Removal
– speculatively identify locks; make xactions

● Martinez & Torrellas: Speculative 
Synchronization
– guarantee fwd progress w/ non-speculative 

thread
Keep 
transactions 
visible
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Infrequent, Small, Mostly-Serial?
To date, xactions assumed to be:
● Small

– BBN Pluribus (~1975): 16 clock-
cycle bus-locked “transaction”

– Knight; Herlihy & Moss:
transactions which fit in cache

● Infrequent
– Software Transactional Memory (Shavit & 

Touitou; Harris & Fraser; Herlihy et al)
● Mostly-serial

– Transactional Coherence & Consistency 
(Hammond, Wong, et al)
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Transact-ifying Linux
● Experiment to discover xaction

properties of large real-world app.
– First complete OS investigated!

● User-Mode Linux 2.4.19
– instrumented every load and store, all locks
– locks→xactions; locks not held over I/O!
– run 2-way SMP (two processes; two processors)

● Two workloads
– Parallel make of Linux kernel ('make linux')
– dbench running three clients

● Run program to get a trace; run trace through 
Transactional Memory simulator
– 1MB 4-way set-associative 64-byte-line cache
– Paper also has simulation runs for SpecJVM98
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TM Cache-size requirements (Linux)

● # of overflowing xactions as a function of (fully-
associative) cache size for make_linux & dbench

● Almost all of the xactions require < 100 cache lines
– 99.9% need fewer than 54 cache lines

● There are, however, some very large transactions!
– >500k-byte fully-associative cache required

Note: log-log scale
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May Be Large, Frequent, and 
Concurrent

● Lots of small xactions
– Millions of xactions in these benchmarks
– Problem for software-only schemes

● Significant tail: large xactions are few, but 
very large
– Thousands of cache lines touched
– Problem for bounded transactional schemes

● Potential for additional concurrency
– Distribution of hot cache lines suggest that 4x 

more concurrency may be possible on our 
Linux benchmarks

Programmers want unbounded xactions…
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Transactional Programming
● Locks: the devil we know
● Complex sync techniques: library-only

– Nonblocking synchronization
– Bounded transactions

● Compilers don't expose memory references
(Indirect dispatch, optimizations, constants)

● Not portable! Changing cache-size breaks apps.

● Unbounded Transactions:
– Can be thought about at high-level
– Match programmer's intuition about atomicity
– Allow black box code to be composed safely
– Promise future excitement!

● Fault-tolerance / exception-handling
● Speculation / search
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LTM: Visible, Large, Frequent, Scalable
● “Large Transactional Memory”

– not truly unbounded, but simple and cheap
● Minimal architectural changes, high 

performance
– Small mods to cache and processor core
– No changes to main memory, cache

coherence protocols or messages
– Can be pin-compatible with conventional proc

● Design presented here based on SGI Origin 
3000 shared-memory multi-proc
– distributed memory
– directory-based write-invalidate coherency 

protocol
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Two new instructions
● XBEGIN pc

– Begin a new transaction.  Entry point
to an abort handler specified by pc.

– If transaction must fail, roll back processor 
and memory state to what it was when
XBEGIN was executed, and jump to pc.

● Think of this as a mispredicted branch.
● XEND

– End the current transaction.  If XEND
completes, the xaction is committed and 
appeared atomic.

● Nested transactions are subsumed into 
outer transaction.
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Transaction Semantics

● Two transactions
– “A” has an abort handler at L1
– “B” has an abort handler at L2

● Here, very simplistic retry.  Other choices!
● Always need “current” and “rollback”

values for both registers and memory

XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
XEND

L2: XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

A

 B



7

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(13)

Handling conflicts

● We need to track locations read/written by 
transactional and non-transactional code

● When we find a conflict, transaction(s) 
must be aborted
– We always “kill the other guy”
– This leads to non-blocking systems

Processor 1 Processor 2
XBEGIN L1 ST 1000, 65
ADD R1, R1, R1
ST 1000, R1
XEND

L2: XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND
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Restoring register state
● Minimally invasive changes; build on 

existing rename mechanism
● Both “current” and “rollback” architectural 

register values stored in physical registers
● In conventional speculation, “rollback”

values stored until the speculative 
instruction graduates (order 100 instrs)

● Here, we keep these until the transaction 
commits or aborts (unbounded # of instrs)

● But we only need one copy!
– only one transaction in the memory system 

per processor
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Multiple in-flight transactions
Original
XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

● This example has two transactions, with abort 
handlers at L1 and L2

● Assume instruction window of length 5
– allows us to speculate into next transaction(s)

A

 B

 Instruction Window
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1

● During instruction decode:
– Maintain rename table and “saved” bits
– “Saved” bits track registers mentioned in current 

rename table
● Constant # of set bits: every time a register is added to 

“saved” set we also remove one

  
graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }

{ P2, ... }
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1
ADD P2, P1, P1 R1

● When XBEGIN is decoded:
– Snapshots taken of current Rename table and S-

bits.
– This snapshot is not active until XBEGIN 

graduates

  
graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1

{ P2, ... }
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1

ST 1000, P2 R1

  
graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND { P2, ... }
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1

R1

  
graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD R1, R1, R1
ST 2000, R1
XEND

R1

R1

● When XBEGIN graduates:
– Snapshot taken at decode becomes active, which 

will prevent P1 from being reused
– 1st transaction queued to become active in memory
– To abort, we just restore the active snapshot's 

rename table

  
graduate

decode

active
snapshot
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }

{ P3, ... }
ST 2000, R1
XEND

R1

R1
ADD P3, P2, P2

  
graduate

decode

● We're only reserving registers in the active set
– This implies that exactly #AR registers are saved
– This number is strictly limited, even as we 

speculatively execute through multiple xactions

active
snapshot
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2

{ P3, ... }
XEND

R1

R1

ST 2000, P3

  
graduate

decode

● Normally, P1 would be freed here
● Since it's in the active snapshot's “saved” set, 

we put it on the register reserved list instead

active
snapshot
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2
ST 2000, P3
XEND { P3, ... }

R1

● When XEND graduates:
– Reserved physical registers (P1) are freed, and 

active snapshot is cleared.
– Store queue is empty

  
graduate

decode
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Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2
ST 2000, P3
XEND

R1

● Second transaction becomes active in 
memory.

  
graduate

decode

active
snapshot
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Cache overflow mechanism

● Need to keep “current” values 
as well as “rollback” values
– Common-case is commit, so 

keep “current” in cache
– What if uncommitted “current”

values don't all fit in cache?
● Use overflow hashtable as 

extension of cache
– Avoid looking here if we can!

Way 0 Way 1
O T tag data T tag data

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data
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Cache overflow mechanism

● T bit per cache line
– set if accessed during xaction

● O bit per cache set
– indicates set overflow

● Overflow storage in physical 
DRAM
– allocated/resized by OS
– probe/miss: complexity of 

search ≈ page table walk

Way 0 Way 1
O T tag data T tag data

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data
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Cache overflow mechanism

● Start with non-transactional 
data in the cache

Way 0 Way 1
O T tag data T tag data

1000 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data
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Cache overflow: recording reads
Way 0 Way 1

O T tag data T tag data

T 1000 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Transactional read sets the 
T bit.

Overflow hashtable
key data
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Cache overflow: recording writes
Way 0 Way 1

O T tag data T tag data

T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Most transactional writes fit 
in the cache.

Overflow hashtable
key data
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Cache overflow: spilling
Way 0 Way 1

O T tag data T tag data

O T 3000 77 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Overflow sets O bit
● New data replaces LRU
● Old data spilled to DRAM

Overflow hashtable
key data

1000 55
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Cache overflow: miss handling
Way 0 Way 1

O T tag data T tag data

O T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Miss to an overflowed line 
checks overflow table

● If found, swap overflow and 
cache line; proceed as hit

● Else, proceed as miss.

Overflow hashtable
key data

3000 77
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Cache overflow: commit/abort
Way 0 Way 1

O T tag data T tag data

O T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Abort:
– invalidate all lines with T set
– discard overflow hashtable
– clear O and T bits

● Commit:
– write back hashtable; NACK 

interventions during this
– clear O and T bits

Overflow hashtable
key data

3000 77
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Cycle-level LTM simulation
● LTM implemented on top of UVSIM (itself 

built on RSIM)
– shared-memory multiprocessor model
– directory-based write-invalidate coherence

● Contention behavior:
– C microbenchmarks w/ inline assembly
– Up to 32 processors

● Overhead measurements:
– Modified MIT FLEX Java compiler
– Compared no-sync, spin-lock, and LTM xaction
– Single-threaded, single processor
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Contention behavior

● Contention microbenchmark: 'Counter'
– 1 shared variable; each processor repeatedly adds
– locking version uses global LLSC spinlock
– Small xactions commit even with high contention
– Spin-lock causes lots of cache interventions even 

when it can't be taken (standard SGI library impl)
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LTM Overhead: SPECjvm98
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Is this good enough?
● Problems solved:

– Xactions as large as physical memory
– Scalable overflow and commit
– Easy to implement!
– Low overhead
– May speed up Linux!

● Open Problems...
– Is “physical memory” large enough?
– What about duration?

● Time-slice interrupts!
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Beyond LTM: UTM
● We can do better!
● The UTM architecture

allows transactions as large as virtual 
memory, of unlimited duration, which can 
migrate without restart

● Same XBEGIN pc/XEND ISA; same register 
rollback mechanism

● Canonical transaction info is now stored in 
single xstate data struct in main memory

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(38)

Commit Log Entry Transaction Log Log Entry
record Rollback values Blk Ptr Next Reader

P 44 ...

xstate data structure

● Transaction log in DRAM for each active transaction
– commit record: PENDING, COMMITTED, ABORTED
– vector of log entries w/ “rollback” values 

● each corresponds to a block in main memory
● Log ptr & RW bit for each application memory block

– Log ptr/next reader form linked list of all log entries 
for a given block

Application Memory
RW bit Log Ptr Memory Block

W 32 Current values
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Caching in UTM
● Most log entries don't need to be created
● Transaction state stored in cache/overflow 

DRAM and monitored using cache-
coherence, as in LTM

● Only create transaction log when thread is 
descheduled, or run out of physical mem.

● Can discard all log entries when xaction 
commits or aborts
– Commit – block left in X state in cache
– Abort – use old value in main memory

● In-cache representation need not match 
xstate representation
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Performance/Limits of UTM
● Limits:

– More-complicated implementation
● Best way to create xstate from LTM state?

– Performance impact of swapping.
● When should we abort rather than swap?

● Benefits:
– Unlimited footprint
– Unlimited duration
– Migration and paging possible
– Performance may be as fast as LTM in the 

common case
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Conclusions
● First look at xaction properties of Linux:

– 99.9% of xactions touch ≤ 54 cache lines
– but may touch > 8000 cache lines
– 4x concurrency?

● Unbounded, scalable, and efficient
Transactional Memory systems can be built.
– Support large, frequent, and concurrent xactions
– What could software for these look like?

● Allow programmers to (finally!) use our parallel 
systems!

● Two implementable architectures:
– LTM: easy to realize, almost unbounded
– UTM: truly unbounded
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Open questions
● I/O interface?
● Transaction ordering?

– Sequential threads provide inherent ordering

● Programming model?
● Conflict resolution strategies


