
1

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(1)

Unbounded Transactional Memory

C. Scott Ananian, Krste Asanović,
Bradley C. Kuszmaul, Charles E. Leiserson,

Sean Lie
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{cananian,krste,bradley,cel}@mit.edu,

sean@slie.ca

Thanks to Marty Deneroff (then at SGI)

This research supported in part by a DARPA HPCS grant with SGI,
DARPA/AFRL Contract F33615-00-C-1692, NSF Grants ACI-0324974 and
CNS-0305606, NSF Career Grant CCR00093354, and the Singapore-MIT

Alliance

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(2)

Transactional Memory
(definition)
● A transaction is a sequence of

memory loads and stores that either commits or aborts
● If a transaction commits, all the loads and stores

appear to have executed atomically
● If a transaction aborts, none of its stores take effect
● Transaction operations aren't visible until they commit

or abort
● Simplified version of traditional ACID database

transactions (no durability, for example)
● For this talk, we assume no I/O within transactions

2

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(3)

Locks are not our friends
void pushFlow(Vertex v1, Vertex v2,

double flow) {
lock_t lock1, lock2;
if (v1.id < v2.id) {/* avoid deadlock */

lock1 = v1.lock; lock2 = v2.lock;
} else {

lock1 = v2.lock; lock2 = v1.lock;
}
lock(lock1);
lock(lock2);
if (v2.excess > f) {

/* move excess flow */
v1.excess += f;
v2.excess -= f;

}
unlock(lock2);
unlock(lock1);

}

● Deadlocks/ordering
● Multi-object operations
● Priority inversion
● Faults in critical regions
● Inefficient

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(4)

Invisible transactions?
● Rajwar & Goodman: Speculative Lock

Elision and Transactional Lock Removal
– speculatively identify locks; make xactions

● Martinez & Torrellas: Speculative
Synchronization
– guarantee fwd progress w/ non-speculative

thread
Keep
transactions
visible

3

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(5)

Infrequent, Small, Mostly-Serial?
To date, xactions assumed to be:
● Small

– BBN Pluribus (~1975): 16 clock-
cycle bus-locked “transaction”

– Knight; Herlihy & Moss:
transactions which fit in cache

● Infrequent
– Software Transactional Memory (Shavit &

Touitou; Harris & Fraser; Herlihy et al)
● Mostly-serial

– Transactional Coherence & Consistency
(Hammond, Wong, et al)

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(6)

Transact-ifying Linux
● Experiment to discover xaction

properties of large real-world app.
– First complete OS investigated!

● User-Mode Linux 2.4.19
– instrumented every load and store, all locks
– locks→xactions; locks not held over I/O!
– run 2-way SMP (two processes; two processors)

● Two workloads
– Parallel make of Linux kernel ('make linux')
– dbench running three clients

● Run program to get a trace; run trace through
Transactional Memory simulator
– 1MB 4-way set-associative 64-byte-line cache
– Paper also has simulation runs for SpecJVM98

4

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(7)

9.355x10^6

10^6

10^4

10^2

 1
 8144 1000 100 10 1N

um
be

r o
f o

ve
rf

lo
w

in
g

tr
an

sa
ct

io
ns

Fully associative cache size (64 byte lines)

make
dbench

TM Cache-size requirements (Linux)

● # of overflowing xactions as a function of (fully-
associative) cache size for make_linux & dbench

● Almost all of the xactions require < 100 cache lines
– 99.9% need fewer than 54 cache lines

● There are, however, some very large transactions!
– >500k-byte fully-associative cache required

Note: log-log scale

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(8)

May Be Large, Frequent, and
Concurrent

● Lots of small xactions
– Millions of xactions in these benchmarks
– Problem for software-only schemes

● Significant tail: large xactions are few, but
very large
– Thousands of cache lines touched
– Problem for bounded transactional schemes

● Potential for additional concurrency
– Distribution of hot cache lines suggest that 4x

more concurrency may be possible on our
Linux benchmarks

Programmers want unbounded xactions…

5

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(9)

Transactional Programming
● Locks: the devil we know
● Complex sync techniques: library-only

– Nonblocking synchronization
– Bounded transactions

● Compilers don't expose memory references
(Indirect dispatch, optimizations, constants)

● Not portable! Changing cache-size breaks apps.

● Unbounded Transactions:
– Can be thought about at high-level
– Match programmer's intuition about atomicity
– Allow black box code to be composed safely
– Promise future excitement!

● Fault-tolerance / exception-handling
● Speculation / search

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(10)

LTM: Visible, Large, Frequent, Scalable
● “Large Transactional Memory”

– not truly unbounded, but simple and cheap
● Minimal architectural changes, high

performance
– Small mods to cache and processor core
– No changes to main memory, cache

coherence protocols or messages
– Can be pin-compatible with conventional proc

● Design presented here based on SGI Origin
3000 shared-memory multi-proc
– distributed memory
– directory-based write-invalidate coherency

protocol

6

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(11)

Two new instructions
● XBEGIN pc

– Begin a new transaction. Entry point
to an abort handler specified by pc.

– If transaction must fail, roll back processor
and memory state to what it was when
XBEGIN was executed, and jump to pc.

● Think of this as a mispredicted branch.
● XEND

– End the current transaction. If XEND
completes, the xaction is committed and
appeared atomic.

● Nested transactions are subsumed into
outer transaction.

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(12)

Transaction Semantics

● Two transactions
– “A” has an abort handler at L1
– “B” has an abort handler at L2

● Here, very simplistic retry. Other choices!
● Always need “current” and “rollback”

values for both registers and memory

XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
XEND

L2: XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

A

 B

7

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(13)

Handling conflicts

● We need to track locations read/written by
transactional and non-transactional code

● When we find a conflict, transaction(s)
must be aborted
– We always “kill the other guy”
– This leads to non-blocking systems

Processor 1 Processor 2
XBEGIN L1 ST 1000, 65
ADD R1, R1, R1
ST 1000, R1
XEND

L2: XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(14)

Restoring register state
● Minimally invasive changes; build on

existing rename mechanism
● Both “current” and “rollback” architectural

register values stored in physical registers
● In conventional speculation, “rollback”

values stored until the speculative
instruction graduates (order 100 instrs)

● Here, we keep these until the transaction
commits or aborts (unbounded # of instrs)

● But we only need one copy!
– only one transaction in the memory system

per processor

8

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(15)

Multiple in-flight transactions
Original
XBEGIN L1
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

● This example has two transactions, with abort
handlers at L1 and L2

● Assume instruction window of length 5
– allows us to speculate into next transaction(s)

A

 B

 Instruction Window

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(16)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD R1, R1, R1
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1

● During instruction decode:
– Maintain rename table and “saved” bits
– “Saved” bits track registers mentioned in current

rename table
● Constant # of set bits: every time a register is added to

“saved” set we also remove one

graduate

decode

9

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(17)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }

{ P2, ... }
ST 1000, R1
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1
ADD P2, P1, P1 R1

● When XBEGIN is decoded:
– Snapshots taken of current Rename table and S-

bits.
– This snapshot is not active until XBEGIN

graduates

graduate

decode

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(18)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1

{ P2, ... }
XEND
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1

ST 1000, P2 R1

graduate

decode

10

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(19)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND { P2, ... }
XBEGIN L2
ADD R1, R1, R1
ST 2000, R1
XEND

R1

R1

graduate

decode

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(20)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD R1, R1, R1
ST 2000, R1
XEND

R1

R1

● When XBEGIN graduates:
– Snapshot taken at decode becomes active, which

will prevent P1 from being reused
– 1st transaction queued to become active in memory
– To abort, we just restore the active snapshot's

rename table

graduate

decode

active
snapshot

11

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(21)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }

{ P3, ... }
ST 2000, R1
XEND

R1

R1
ADD P3, P2, P2

graduate

decode

● We're only reserving registers in the active set
– This implies that exactly #AR registers are saved
– This number is strictly limited, even as we

speculatively execute through multiple xactions

active
snapshot

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(22)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1 { P1, ... }
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2

{ P3, ... }
XEND

R1

R1

ST 2000, P3

graduate

decode

● Normally, P1 would be freed here
● Since it's in the active snapshot's “saved” set,

we put it on the register reserved list instead

active
snapshot

12

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(23)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2
ST 2000, P3
XEND { P3, ... }

R1

● When XEND graduates:
– Reserved physical registers (P1) are freed, and

active snapshot is cleared.
– Store queue is empty

graduate

decode

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(24)

Multiple in-flight transactions
Original Rename Table Saved set
XBEGIN L1
ADD P2, P1, P1
ST 1000, P2
XEND
XBEGIN L2 { P2, ... }
ADD P3, P2, P2
ST 2000, P3
XEND

R1

● Second transaction becomes active in
memory.

graduate

decode

active
snapshot

13

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(25)

Cache overflow mechanism

● Need to keep “current” values
as well as “rollback” values
– Common-case is commit, so

keep “current” in cache
– What if uncommitted “current”

values don't all fit in cache?
● Use overflow hashtable as

extension of cache
– Avoid looking here if we can!

Way 0 Way 1
O T tag data T tag data

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(26)

Cache overflow mechanism

● T bit per cache line
– set if accessed during xaction

● O bit per cache set
– indicates set overflow

● Overflow storage in physical
DRAM
– allocated/resized by OS
– probe/miss: complexity of

search ≈ page table walk

Way 0 Way 1
O T tag data T tag data

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data

14

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(27)

Cache overflow mechanism

● Start with non-transactional
data in the cache

Way 0 Way 1
O T tag data T tag data

1000 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

Overflow hashtable
key data

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(28)

Cache overflow: recording reads
Way 0 Way 1

O T tag data T tag data

T 1000 55

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Transactional read sets the
T bit.

Overflow hashtable
key data

15

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(29)

Cache overflow: recording writes
Way 0 Way 1

O T tag data T tag data

T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Most transactional writes fit
in the cache.

Overflow hashtable
key data

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(30)

Cache overflow: spilling
Way 0 Way 1

O T tag data T tag data

O T 3000 77 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Overflow sets O bit
● New data replaces LRU
● Old data spilled to DRAM

Overflow hashtable
key data

1000 55

16

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(31)

Cache overflow: miss handling
Way 0 Way 1

O T tag data T tag data

O T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Miss to an overflowed line
checks overflow table

● If found, swap overflow and
cache line; proceed as hit

● Else, proceed as miss.

Overflow hashtable
key data

3000 77

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(32)

Cache overflow: commit/abort
Way 0 Way 1

O T tag data T tag data

O T 1000 55 T 2000 66

ST 1000, 55
XBEGIN L1
LD R1, 1000
ST 2000, 66
ST 3000, 77
LD R1, 1000
XEND

● Abort:
– invalidate all lines with T set
– discard overflow hashtable
– clear O and T bits

● Commit:
– write back hashtable; NACK

interventions during this
– clear O and T bits

Overflow hashtable
key data

3000 77

17

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(33)

Cycle-level LTM simulation
● LTM implemented on top of UVSIM (itself

built on RSIM)
– shared-memory multiprocessor model
– directory-based write-invalidate coherence

● Contention behavior:
– C microbenchmarks w/ inline assembly
– Up to 32 processors

● Overhead measurements:
– Modified MIT FLEX Java compiler
– Compared no-sync, spin-lock, and LTM xaction
– Single-threaded, single processor

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(34)

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

A
vg

. c
yc

le
s

pe
r i

te
ra

tio
n

Number of processors

locks
transactions

Contention behavior

● Contention microbenchmark: 'Counter'
– 1 shared variable; each processor repeatedly adds
– locking version uses global LLSC spinlock
– Small xactions commit even with high contention
– Spin-lock causes lots of cache interventions even

when it can't be taken (standard SGI library impl)

18

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(35)

LTM Overhead: SPECjvm98

check com-
press

jess db javac mpeg-
audio

jack
0%

100%

With Locks
Other
In Xaction
Overflow

Benchmark application

R
un

 t
im

e,
 %

 o
f

no
-s

yn
c

ti
m

e

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(36)

Is this good enough?
● Problems solved:

– Xactions as large as physical memory
– Scalable overflow and commit
– Easy to implement!
– Low overhead
– May speed up Linux!

● Open Problems...
– Is “physical memory” large enough?
– What about duration?

● Time-slice interrupts!

19

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(37)

Beyond LTM: UTM
● We can do better!
● The UTM architecture

allows transactions as large as virtual
memory, of unlimited duration, which can
migrate without restart

● Same XBEGIN pc/XEND ISA; same register
rollback mechanism

● Canonical transaction info is now stored in
single xstate data struct in main memory

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(38)

Commit Log Entry Transaction Log Log Entry
record Rollback values Blk Ptr Next Reader

P 44 ...

xstate data structure

● Transaction log in DRAM for each active transaction
– commit record: PENDING, COMMITTED, ABORTED
– vector of log entries w/ “rollback” values

● each corresponds to a block in main memory
● Log ptr & RW bit for each application memory block

– Log ptr/next reader form linked list of all log entries
for a given block

Application Memory
RW bit Log Ptr Memory Block

W 32 Current values

20

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(39)

Caching in UTM
● Most log entries don't need to be created
● Transaction state stored in cache/overflow

DRAM and monitored using cache-
coherence, as in LTM

● Only create transaction log when thread is
descheduled, or run out of physical mem.

● Can discard all log entries when xaction
commits or aborts
– Commit – block left in X state in cache
– Abort – use old value in main memory

● In-cache representation need not match
xstate representation

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(40)

Performance/Limits of UTM
● Limits:

– More-complicated implementation
● Best way to create xstate from LTM state?

– Performance impact of swapping.
● When should we abort rather than swap?

● Benefits:
– Unlimited footprint
– Unlimited duration
– Migration and paging possible
– Performance may be as fast as LTM in the

common case

21

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(41)

Conclusions
● First look at xaction properties of Linux:

– 99.9% of xactions touch ≤ 54 cache lines
– but may touch > 8000 cache lines
– 4x concurrency?

● Unbounded, scalable, and efficient
Transactional Memory systems can be built.
– Support large, frequent, and concurrent xactions
– What could software for these look like?

● Allow programmers to (finally!) use our parallel
systems!

● Two implementable architectures:
– LTM: easy to realize, almost unbounded
– UTM: truly unbounded

Ananian/Asanović/Kuszmaul/Leiserson/Lie: Unbounded Transactional Memory, HPCA '05(42)

Open questions
● I/O interface?
● Transaction ordering?

– Sequential threads provide inherent ordering

● Programming model?
● Conflict resolution strategies

