
IBM POWER6
microarchitecture

H. Q. Le
W. J. Starke

J. S. Fields
F. P. O’Connell

D. Q. Nguyen
B. J. Ronchetti

W. M. Sauer
E. M. Schwarz

M. T. Vaden

This paper describes the implementation of the IBM POWER6e

microprocessor, a two-way simultaneous multithreaded (SMT)
dual-core chip whose key features include binary compatibility with
IBM POWER5e microprocessor-based systems; increased
functional capabilities, such as decimal floating-point and vector
multimedia extensions; significant reliability, availability, and
serviceability enhancements; and robust scalability with up to 64
physical processors. Based on a new industry-leading high-
frequency core architecture with enhanced SMT and driven by a
high-throughput symmetric multiprocessing (SMP) cache and
memory subsystem, the POWER6 chip achieves a significant
performance boost compared with its predecessor, the POWER5
chip. Key extensions to the coherence protocol enable POWER6
microprocessor-based systems to achieve better SMP scalability
while enabling reductions in system packaging complexity and cost.

Introduction

IBM introduced POWER6* microprocessor-based

systems in 2007. Based upon the proven simultaneous

multithreaded (SMT) implementation and dual-core

technology in the POWER5* chip [1], the design of the

POWER6 microprocessor extends IBM leadership by

introducing a high-frequency core design coupled with a

cache hierarchy and memory subsystem specifically tuned

for the ultrahigh-frequency multithreaded cores.

The POWER6 processor implements the 64-bit IBM

Power Architecture* technology. Each POWER6 chip

(Figure 1) incorporates two ultrahigh-frequency dual-

threaded SMT processor cores, a private 4-MB level 2

cache (L2) for each processor, a 32-MB L3 cache

controller shared by the two processors, two integrated

memory controllers, an integrated I/O controller, an

integrated symmetric multiprocessor (SMP) coherence

and data interconnect switch, and support logic for

dynamic power management, dynamic configuration and

recovery, and system monitoring. The SMP switch

enables scalable connectivity for up to 32 POWER6 chips

for a 64-way SMP.

The ultrahigh-frequency core represents a significant

change from prior designs. Driven by the latency and

throughput requirements of the new core, the large,

private L2 caches represent a departure from the designs

of the POWER4* [2] and POWER5 [1] processors, which

employed a smaller, shared L2 cache. The large, victim L3

cache, shared by both cores on the chip and accessed in

parallel with the L2 caches, is similar in principle to the

POWER5 L3 cache, despite differences in the underlying

implementation resulting from the private L2 caches.

Likewise, the integrated memory and I/O controllers are

similar in principle to their POWER5 counterparts. The

SMP interconnect fabric and associated logical system

topology represent broad changes brought on by the need

to enable improved reliability, availability, and

serviceability (RAS), virtualization [3], and dynamic

configuration capabilities. The enhanced coherence

protocol facilitates robust scalability while enabling

improved system packaging economics.

In this paper, we focus on the microarchitecture and its

impact on performance, power, system organization, and

cost. We begin with an overview of the key features of the

POWER6 chip, followed by detailed descriptions of the

ultrahigh-frequency core, the cache hierarchy, the

memory and I/O subsystems, the SMP interconnect, and

the advanced data prefetch capability. Next, we describe

how the POWER6 chipset can be employed in diverse

system organizations.

High-frequency core design

The POWER6 core is a high-frequency design that is

optimized for performance for the server market as well

as power. It provides additional enterprise functions and

RAS characteristics that approach mainframe offerings.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

639

0018-8646/07/$5.00 ª 2007 IBM

Its 13-FO41 pipeline structure yields a core whose

frequency is two times that of the 23-FO4 POWER5 core.

The function in each pipeline stage is tuned to minimize

excessive circuitry, which causes delay and consumes

excessive power. Speculation, which is costly at high

frequency, is minimized to prevent wasted power

dissipation. As a result, register renaming and massive

out-of-order execution as implemented in the POWER4

[2, 4] and POWER5 [1] processor designs are not

employed. The internal core pipeline, which begins with

instruction fetching from the instruction cache (I-cache)

through instruction dispatch and execution, is kept as

short as possible. The instruction decode function, which

consumed three pipe stages in the POWER5 processor

design, is moved to the pre-decode stages before

instructions are written into the I-cache. Delay stages are

added to reduce the latency between dependent

instructions. Execution latencies are kept as low as

possible while cache capacities and associativity are

increased. The POWER6 core has twice the cache

capacity of its predecessor, providing one-cycle back-to-

back fixed-point (FX) execution on dependent

instructions, a two-cycle load for FX instructions, and a

six-cycle floating-point (FP) execution pipe. The number

of pipeline stages of the POWER6 processor design (from

instruction fetch to an execution that produces a result) is

similar to the POWER5 processor stages, yet the

POWER6 core operates at twice the frequency of the

POWER5 core.

In place of speculative out-of-order execution that

requires costly circuit renaming, the POWER6 processor

design concentrates on providing data prefetch. Limited

out-of-order execution is implemented for FP

instructions.

Dispatch and completion bandwidth for SMT has

been improved. The POWER6 core can dispatch and

complete up to seven instructions from both threads

simultaneously. The bandwidth improvement, the

increased cache capacity, cache associativity, and other

innovations allow the POWER6 core to deliver better

SMT speedup than the POWER5 processor-based

system.

Power management was implemented throughout the

core, allowing a clock gating efficiency2 of better than 50%.

Balanced system throughput
While the frequency trade-offs were appropriate for the

core, it did not make sense to extend ultrahigh frequency

to the cache hierarchy, SMP interconnect, memory

subsystem, and I/O subsystem. In the POWER5 processor

design, the L2 cache operates at core frequency, and the

remaining components at half that frequency. Preserving

this ratio with the higher relative frequency of the

POWER6 core would not improve performance but

would actually impair it, since many latency penalties

outside the core are more tied to wire distance than device

speeds. Because the latencies in absolute time tend to

remain constant, incorporating a higher-frequency clock

results in added pipeline stages. Given that some time is

lost every cycle because of clocking overhead, the net effect

is to increase total latency in absolute time while increasing

the power dissipation due to the increase in pipeline stages.

Therefore, for the POWER6 processor design, the L2

cache, SMP interconnect, and parts of the memory and

I/O subsystems operate at half the core frequency, while

the L3 cache operates at one-quarter, and part of the

memory controller operates at up to 3.2 GHz. With lower

power and slower devices, chip power is reduced. Because

of their lower speed relative to the core, these components

must overcome latency and bandwidth challenges to meet

the balanced system performance requirements.

To achieve a balanced system design, all major

subsystems must realize similar throughput

improvements, not merely the cores. The cache hierarchy,

SMP interconnect fabric, memory subsystem, and I/O

subsystem must keep up with the demands for data

generated by the more-powerful cores. Therefore, for the

POWER6 processor design, the internal data throughput

Figure 1

Evolution of the POWER6 chip structure. (SMT2: a dual-threaded

simultaneous multithread.)

POWER5 chip

High-

frequency

POWER5

SMT2

core

~2-MB L2

36-MB

L3

controller

3
6
-M

B
 L

3
 c

h
ip

3
2
-M

B
 L

3
 c

h
ip

(s
)

SMP interconnect

fabric

Memory controller

Buffer

chips

POWER6 chip

Ultrahigh-

frequency

POWER6

SMT2

core

4-MB L2

32-MB

L3

controller

SMP interconnect

fabric

Memory

controller

Memory

controller

Buffer

chips

Buffer

chips

High-

frequency

POWER5

SMT2

core

4-MB L2

Ultrahigh-

frequency

POWER6

SMT2

core

1FO4, or fanout of 4, is the equivalent delay of an inverter driving four typical loads.
FO4 is used to measure the amount of logic implemented in a cycle independent of
technology. 2Percent of latches being gated off while running a typical workload.

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

640

was increased commensurately with the increase in

processing power, as shown in Table 1.

Since the L2 cache was designed to operate at half the

frequency of the core, the width of the load and store

interfaces was doubled; instead of driving 32 bytes of data

per core cycle into the core, the POWER6 processor L2

drives an aggregate of 64 bytes every other core cycle.

While the POWER5 processor L2 can obtain higher peak

bandwidth when simultaneously delivering data to the

data cache (D-cache) and I-cache, in realistic situations

the D-cache and I-cache do not drive high-throughput

requirements concurrently. This is because high bus

utilization due to D-cache misses typically occurs in

highly tuned single-threaded scenarios when there are

multiple outstanding load instructions continuously in

the pipeline, while I-cache misses interrupt the flow of

instructions into the pipeline.

Instead of accepting 8 bytes of store data per core cycle,

the POWER6 processor L2 accepts 16 bytes of store data

every other core cycle. Note that the aggregate bandwidth

of the POWER6 processor L2 per core per cycle is two-

thirds that of the POWER5 processor L2. It does not

have to scale perfectly for the following reasons: The

POWER6 core has larger L1 caches, so there are fewer L1

misses driving fetch traffic to the L2; the POWER6

processor L2 can manage store traffic with 32-byte

granularity, as opposed to 64-byte granularity for the

POWER5 processor L2, so normally there is less L2

bandwidth expended per store. In addition, the POWER6

processor L2 is much larger per core than the POWER5

processor L2, so there are fewer L2 misses, driving fewer

castout reads and allocate writes. (The term castout refers

to the movement of deallocated, modified data from a

given level in the cache hierarchy either to the next level

of cache or to memory.)

For the POWER6 chip, the IBM Elastic Interface (EI)

logic, which is used to connect to off-chip L3 cache data

chips, I/O bridge chips, and SMP connections to other

POWER6 chips, was accelerated to operate at one-half of

the core frequency, keeping pace with corresponding

interfaces in prior designs by achieving significantly

higher frequency targets. The POWER6 processor L3

cache can read up to 16 bytes and simultaneously write up

to 16 bytes every other core cycle, just as the POWER5

processor L3.

The POWER6 processor off-chip SMP interconnect

comprises five sets of links. The organization of these is

described later in the section ‘‘SMP interconnect.’’ Each

set can import up to 8 bytes and simultaneously export up

to 8 bytes of data or coherence information every other

core cycle. While this does not match the POWER5

processor SMP interconnect bandwidth per core cycle as

seen by a given chip, the difference in system topology

(described later in the section ‘‘SMP interconnect’’) and

an increased focus on hypervisor and operating system

optimizations for scalability drive a relaxation for the

demand for interconnect data bandwidth.

The EI logic used for connectivity to off-chip memory

buffer chips was accelerated to operate at 3.2 GHz when

interacting with 800-MHz DRAM (dynamic random

access memory) technology. By using both integrated

memory controllers, a single POWER6 chip can read up

to 16 bytes of data and simultaneously write up to 8 bytes

of data or commands at 3.2 GHz. The I/O controller can

read up to 4 bytes and simultaneously write up to 4 bytes

of data to an I/O bridge chip every other core cycle.

Coherence protocol innovations to improve
scalability
The coherence protocol and structures for POWER6

processor-based systems are based upon those found in

Table 1 POWER5 processor to POWER6 processor throughput comparison (relative to core cycles).

Throughput resource POWER5 processor POWER6 processor

Data from L2 to core 32 B per cycle to data cache 64 B per 2 cycles

Data from core to L2 8 B per cycle 16 B per 2 cycles

L2 busy time 2 cycles for 64 B 4 cycles for 128 B

Aggregate L2 bandwidth 64 B 3 3 per 2 cycles (2 cores) 128 B per 4 cycles (1 core)

Data from L3 to core/L2 128 B per 16 cycles 128 B per 16 cycles

Data from L2 to L3 128 B per 16 cycles 128 B per 16 cycles

Memory data into chip 16 B per (2 3 533 MHz) peak 16 B per (4 3 800 MHz) peak

Chip data out to memory 8 B per (2 3 533 MHz) peak 8 B per (4 3 800 MHz) peak

SMP fabric data into chip 48 B per 2 cycles 67% of 40 B per 2 cycles

Chip data out to SMP fabric 48 B per 2 cycles 67% of 40 B per 2 cycles

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

641

POWER5 processor-based systems. The strength of the

POWER5 processor protocol lies in the combination of

the weakly ordered IBM PowerPC* processor storage

architecture, high-bandwidth SMP interfaces, low-latency

intervention, and optimized locking primitives.

POWER5 processor-based systems have a

nonblocking, broadcast-based coherence protocol

provided by a robust set of request, response, and

notification types. Coherence requests are broadcast to

such units as caches as well as memory and I/O controllers.

Upon snooping the requests, the units provide responses,

which are aggregated to form the basis for a coherence

transfer decision. The notification of the decision is

subsequently broadcast to the units and indicates the final

action to be taken.

The power of the protocol lies in its distributed

management, facilitated in the POWER5 processor

caches by nine associated cache states. Table 2 provides

details of these states.

With a broadcast-based snooping protocol such as that

found in the POWER5 processor, coherence traffic and

the associated bandwidth required grow proportionally

with the square of the system size. As system-packaging

cost implications of this bandwidth become more

important, alternatives to globally snooped, broadcast-

based protocols become more attractive. Approaches

such as directory-based NUMA (nonuniform memory

access) schemes have become popular [5] because they

localize broadcasts to small nodes with directories that

indicate when regions of memory owned by a given node

are checked out to other nodes. This can greatly restrict

traffic flow outside the node.

While such approaches can limit coherence traffic, they

place a strong dependence upon operating system and

hypervisor schedulers to keep processors and the memory

they use localized within the small nodes. Operations with

multinode scope incur significant latency degradation.

Also, the directories can demand large chip-area budgets

and may even reside on separate, additional hub chips,

driving complexity into the design and often requiring

additional software support to operate properly.

For some classes of POWER6 processor-based

systems, it is important to retain the robust, large SMP

scalability enjoyed by large POWER5 processor-based

systems. Typical applications perform well on these

systems but perform poorly on traditional directory-

based NUMA systems. The differentiation provides great

value in these cases and commands a premium price. For

other classes of POWER6 processor-based systems,

typical applications do not benefit from such

differentiation. These systems compete directly with

directory-based NUMA systems built from commodity

parts, so it is critical to maintain the lowest possible cost

structure. For POWER6 technology, it was necessary to

develop a single design that incorporates a robust, global-

broadcast-based protocol while also integrating a

capability styled after directory-based NUMA, but with

reduced power and area overhead and better latency.

Significant innovations have been incorporated into the

coherence protocol to address this challenge. In addition

to the globally broadcast request, response, and

notification transport, with its distributed management

using specialized cache states, a localized (or scope-

limited) broadcast transport mechanism is also

integrated. Thus, a given request can be broadcast

globally or locally.

To enable the protocol, a new set of responses and

notifications was added to provide more information for

these local broadcasts. If it can be determined that all

information necessary to resolve a coherence request

exists within the local broadcast scope, then no global

broadcast is necessary. If no such determination can be

made, the request must be broadcast globally. To ensure

a reasonable likelihood of a successful local resolution,

Table 2 POWER5 processor cache states.

State Description Authority Sharers Castout Source data

I Invalid None N/A N/A N/A

ID Deleted, do not allocate None N/A N/A N/A

S Shared Read Yes No No

SL Shared, local data source Read Yes No At request

T Formerly MU, now shared Update Yes Yes If notification

TE Formerly ME, now shared Update Yes No If notification

M Modified, avoid sharing Update No Yes At request

ME Exclusive Update No No At request

MU Modified, bias toward sharing Update No Yes At request

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

642

a mechanism similar to a NUMA directory is necessary.

Instead of a new directory structure, the protocol

introduces a new scope-state bit per 128-byte cache line in

memory and a set of new cache states for the L2 and L3

caches (Table 3).

The scope-state bit in memory is integrated into the

redundant content for error correction already stored in

memory, so no cost is added. For each 128-byte cache

line, the bit indicates whether the line might be in use

outside of the local scope where the memory resides.

Since it is stored with the data bits, the state bit is

automatically read or written whenever the data is read or

written. The four new cache states provide a means of

caching the scope-state bit in the L2 and L3 caches, either

by itself or along with the data it covers. As shown in

Table 4, a number of the original nine cache states and the

four new ones provide low-latency access to high-usage

scope state while protecting memory from increased

traffic related to scope-state queries and updates. Note

that when cached scope state is deallocated, it is typically

cast out (i.e., written back) to memory. For cases in which

the implied scope state might be global, the castout is

functionally required to ensure that coherence is

maintained. For cases in which the implied scope state is

known to be local, the castout is optional, as it is

desirable but not necessary to localize the broadcast scope

for subsequent operations.

The combination of the scope-state bit in memory and

the four new cache states provides a low-cost alternative

to a NUMA directory and integrates cleanly into the

nonblocking-broadcast distributed-coherence protocol.

As some workloads localize well and others do not, the

design of the POWER6 processor incorporates a number

of predictors to determine whether a given coherence

request should make a local attempt or immediately

broadcast globally. For workloads that exhibit a high

degree of processor-to-memory localization, and for

workloads that have varying mixtures of locally

resolvable traffic, laboratory results show that scope-

limited speculative snoop resolution is highly effective.

POWER6 chip physical overview
The POWER6 chip is manufactured using the IBM

CMOS (complimentary metal oxide semiconductor) 11S

65-nm silicon-on-insulator (SOI) copper process, which

incorporates SOI devices and a ten-level copper

interconnect. The chip size is 341 mm2. It utilizes 790

million transistors and contains 1,953 signal and test I/Os

and 5,399 power and ground I/Os. A comparison between

POWER6 and POWER5 processor signal I/O counts by

major functional group is shown in Table 5.

The POWER6 chip floorplan (Figure 2) illustrates the

balanced system design. The layout and placement of the

cores, L2 caches, interconnect buses, and memory

controllers balance and complement each other, as

described below.

A key challenge for the POWER6 processor design was

dealing with the thermal issues associated with an

ultrahigh-frequency, dual-core chip. The physical

separation of the cores provides improved thermal

properties by distributing the hottest regions (the L1

D-caches found within each core) to opposite ends of

the chip to enable more effective heat dissipation.

Another challenge for the POWER6 processor design

was scaling the latency (as measured in core cycles) to the

Table 3 POWER6 processor cache states added for multiscope coherence protocol.

State Description Authority Sharers Castout Source data

IG Invalid, cached scope-state N/A N/A N/A N/A

IN Invalid, scope predictor N/A N/A N/A N/A

TN Formerly MU, now shared Update Yes Yes If notification

TEN Formerly ME, now shared Update Yes No If notification

Table 4 POWER6 processor cache states and scope-state

implications.

State Implied scope state Scope-state castout

I None None

ID None None

S Unknown None

SL Unknown None

T Shared copies probably global Required, global

TE Shared copies probably global Required, global

M Local Optional, local

ME Local None

MU Local Optional, local

IG Existing copies probably global Required, global

IN Existing copies probably local None

TN Shared copies all local Optional, local

TEN Shared copies all local None

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

643

L2 cache, as the frequency was doubled from that of the

previous generation. Designing an architecture for a

private L2 cache for each core (a departure from the

shared L2 cache found in the designs of the POWER4

and POWER5 processors) enabled a number of

optimizations in the physical layout of the POWER6 chip

to address L2 latency and bandwidth.

Figure 2 shows what we call the butterfly layout of the

private L2 cache data arrays, with half located on the left

side of the core and the other half located on the right

side. This yields better L2 latency by reducing the

physical distance from the furthest data arrays to the L1

D-cache inside the core. Additionally, it doubles the

combined physical width of the data bus that brings data

from the L2 cache into the core. This means that twice the

wiring resource can be committed to this critical task,

enabling the use of larger, faster wires to provide further

improvements in L2 latency while increasing the

bandwidth, as described earlier in the section ‘‘Balanced

system throughput.’’

As can be seen in Figure 2, each core, the associated L2

cache controller, and the left-side set of L2 cache data

arrays are arranged in what we call the latency triangle in

order to provide the shortest physical roundtrip distance

from the generation of an L2 fetch request to the return

of L2 cache data into the core.

Together, these properties allow the L2 cache capacity

to increase from less than 1 MB per core in the POWER5

chip to 4 MB per core in the POWER6 chip while

significantly reducing the latency in absolute time,

thereby minimizing the impact of the L2 latency growth

in core cycles. The net effect of changing from shared L2

caches to private L2 caches was to improve latency and

increase per-core capacity while eliminating any impact

from multicore competition for capacity.

By placing the data interfaces at the inward-facing edge

of the L2 cache data arrays and the coherence interfaces

at the inward-facing edge of the L2 and L3 cache

controllers, it was possible to localize the high-bandwidth

interconnect fabric within a central horizontal region of

the POWER6 chip. Surrounding this region, the

symmetric layout of cores and associated L2 caches (at

the top and bottom of the chip) and the dual memory

controllers (at the left and right edges) results in a

floorplan with solid thermal properties. It also offers

balanced internal bandwidth that utilizes premium wiring

resources to improve latencies and off-chip I/O

placements well optimized for module and system

packaging.

Processor core

The POWER6 core microarchitecture was developed to

minimize logic content in a pipeline stage. Circuit area

and speculative work are minimized in order to reduce

wasted power dissipation. The result is a 13-FO4 design

with short pipeline, large split L1 instruction, andD-caches

supporting two-way SMT. Additional virtualization

functions, decimal arithmetic, and vector multimedia

arithmetic were added. Checkpoint retry and processor

sparing were implemented.

Instruction fetching and branch handling are

performed in the instruction fetch pipe (Figure 3).

Instructions from the L2 cache are decoded in precode

stages P1 through P4 before they are written into the

L1 I-cache. Branch prediction is performed using a

Table 5 POWER5 processor to POWER6 processor func-

tional signal I/O comparison.

Functional I/O group POWER5

processor

(I/Os)

POWER6

processor

(I/Os)

Memory interfaces ;410 ;400

SMP fabric interfaces ;1,440 ;900

L3 cache interfaces ;360 ;420

I/O subsystem interfaces ;100 ;100

Figure 2

Die photograph of the POWER6 chip. (ctrl: controller.)

CoreCore

CoreCore

L2L2

ctrlctrl

L2L2

ctrlctrl

L2L2

datadata

L2L2

datadata

L2L2

datadata

L2L2

datadata

L3L3

ctrlctrl

L3L3

ctrlctrl

MemoryMemory

ctrlctrl

MemoryMemory

ctrlctrl
I/OI/O

ctrlctrl

SMPSMP

interconnectinterconnect

CoreCore

CoreCore

L2L2

ctrlctrl

L2L2

ctrlctrl

L2L2

datadata

L2L2

datadata

L2L2

datadata

L2L2

datadata

L3L3

ctrlctrl

L3L3

ctrlctrl

MemoryMemory

ctrlctrl

MemoryMemory

ctrlctrl
I/OI/O

ctrlctrl

SMPSMP

interconnectinterconnect

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

644

16K-entry branch history table (BHT) that contains 2 bits

to indicate the direction of the branch. Up to eight

instructions are then fetched from the L1 I-cache and sent

through the instruction decode pipeline, which contains a

64-entry instruction buffer (I-buffer) for each thread.

Instructions from both threads are merged into a dispatch

group of up to seven instructions and sent to the

appropriate execution units.

Branch and logical condition instructions are executed

in the branch and conditional pipeline, FX instructions

are executed in the FX pipeline, load/store instructions

are executed in the load pipeline, FP instructions are

executed in the FP pipeline, and decimal and vector

multimedia extension instructions are issued through the

FP issue queue (FPQ) and are executed in the decimal

and vector multimedia execution unit. Data generated by

the execution units is staged through the checkpoint

recovery (CR) pipeline and saved in an error-correction

code (ECC)-protected buffer for recovery. The FX unit

(FXU) is designed to execute dependent instructions back

to back.

The FP execution pipe is six stages deep. Figure 4 shows

the pipeline for both the POWER6 and the POWER5

design with cycle-time delay for each stage, starting with

instruction fetching from the I-cache to the time the result

is available for subsequent instruction. FX load/store

instructions are executed in order with respect to each

other, while FP instructions are decoupled from the rest

of the other instructions and allowed to execute while

overlapping with subsequent load and FX instructions.

Additional emphasis was put in the design to minimize the

memory effect: prefetching to multiple levels of caches,

speculative execution of instructions to prefetch data into

the L1 D-cache, speculative prefetching of instructions

into the L1 I-cache, providing a load-data buffer for FP

load instructions, hardware stride prefetching, and

software-directed prefetching. Buffered stages are added

between the dispatch stage and the execution stage to

optimize certain execution latency between categories of

instructions. The following are examples:

� The FX instructions are staged for two additional

cycles prior to execution in order to achieve a one-

Figure 3
POWER6 core pipeline. (AG: address generation; BHT: branch table access and predict; BR: branch; DC: data-cache access; DISP: dispatch;

ECC: error-correction code; EX: execute; FMT: formatting; IB: instruction buffer; IC0/IC1: instruction-cache access; IFA: instruction fetch

address; ISS: issue; P1–P4: pre-decode; PD: post-decode; RF: register file access.)

Instruction fetch

pipeline

BR/FX/load pipeline

Floating-point pipeline Checkpoint recovery pipeline

BR/CR

FX

Load

Pre-decode stage

Instruction fetch/branch stage

Delayed/transmit stage

Instruction decode stage

Instruction dispatch/issue stage

Operand access/execution stage

Writeback stage

Completion stage

Checkpoint stage

Cache access stage

FX result bypass

Load result bypass

Float result bypass

P1

P2

P3

P4 IC0 IC1

EX1

FMTAGDISPPDIB0 IB1

RF

RF

RF

RF DC0 DC1

EX2 EX3 EX4 EX5 EX6 EX7

EX

ISS ECC

ECC

BHT

BHT

IFA

Instruction dispatch pipeline

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

645

cycle load-to-use between a load instruction and a

dependent FX instruction.
� Branch instructions are staged for two additional

cycles to line up with FX staging instructions in order

to avoid an additional branch penalty on an incorrect

guess.
� FP instructions are staged through the FPQ for six

cycles to achieve a zero-cycle load-to-use instruction

between a load instruction and the dependent FP

instruction.

The POWER6 core contains several units. The

instruction fetch unit (IFU) performs instruction

fetching, instruction pre-decoding, branch prediction, and

branch execution. The instruction dispatch unit (IDU)

performs instruction dispatch, issuing, and interrupt

handling. The two FXUs, the two binary FP units

(BFUs), the decimal FP unit (DFU), and the vector

multimedia extension (VMX) unit are responsible for

executing the corresponding set of FX, FP, decimal, and

VMX instructions. The two load/store units (LSUs)

perform data fetching. The recovery unit (RU) contains

the data representing the state of the processor that is

protected by ECC so that the state of the processor can be

restored when an error condition is detected.

Instruction fetching and branch handling

The POWER6 core contains a dedicated 64-KB four-way

set-associative L1 I-cache. Fast address translation is

performed using a 64-entry instruction effective-to-real

address translation (I-ERAT) table, which supports 4-KB

and 64-KB page sizes. Larger pages (16 MB and 16 GB)

are mapped into multiple 64-KB entries in the I-ERAT

table.

The IFU fetches instructions from the L2 cache into

the L1 I-cache. These fetches are either demand fetches

that result from I-cache misses or prefetches that result

from fetching up to two sequential cache lines after a

demand fetch. Fetch requests are made for a cache line

(128 bytes), and data is returned as four sectors of 32

bytes each. Demand and prefetch requests are made for

both instruction threads, and data may return in any

order, including interleaving of sectors for different cache

lines. Up to 32 instruction fetch requests can be initiated

from the core to the L2 cache. Instructions are fetched

from the I-cache and written into the I-buffer in the IDU.

One major difference between the design of the

POWER6 and that of the POWER4 and POWER5

processors [1, 2] is to push many of the decode and group

formation functions into pre-decode and thus out of the

critical path from the I-cache to the instruction dispatch.

The POWER6 processor also recodes some of the

instructions in the pre-decode stages to help optimize the

implementation of later pipeline stages. The POWER6

processor requires four cycles of pre-decode and group

formation before writing instructions into the I-cache,

thus increasing the L2 access latency. The POWER6

processor still accomplishes a significant performance

improvement by removing these functions from the much

more critical I-cache access path. (Performance data

shows a loss of less than 0.5% for every stage added to the

L2 instruction access latency, compared with a loss of

about 1% for each added stage after the I-cache access.)

The IFU performs the following major functions:

Instruction recoding—Instructions can be recoded as

part of the pre-decode function and before writing them

into the I-cache. An example of useful recoding is

switching register fields in some class of instructions in

order to make the instructions appear more consistent to

the execution units and save complexity and multiplexers

in critical paths.

The most extensive instruction recoding on the

POWER6 processor occurs for branches. Relative

branches contain an immediate field that specifies an

offset of the current program counter as a target address

for the branch. Pre-decode adds the immediate field in the

branch to the low-order bits of the program counter, thus

eliminating the need for an adder in the critical branch

execution path. Pre-decode also determines whether the

high-order bits of the program counter have to be

incremented, decremented, or used as is to compute the

branch target and that information is encoded in the

recoded branch. Absolute branches can also be handled

by this approach by signaling to use the sign-extended

offset as a branch target. Information about conditional

branch execution is also encoded in the branch to enable

branch execution to achieve the cycle-time target for this

type of critical instruction.

Instruction grouping—Instructions are grouped in the

pre-decode stages and the group information is stored in

Figure 4

Internal POWER6 processor pipeline compared with the POWER5

processor pipeline with cycle time.

Instruction

fetch

Instruction buffer/

decode

Instruction

dispatch/issue

Data fetch/

execute

FXU-dependent execution

Load-dependent execution

Time

POWER5 chip

POWER6 chip

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

646

the L1 I-cache. Grouping allows ease of dispatch

determination in the critical dispatch stage. Only

instructions of the same thread are allowed in the same

group. In general, the number of instructions in the group

matches the dispatch bandwidth (five instructions per

thread) as well as the execution resources. Except for FP

instructions, instructions within a group are independent

of one another. A taken branch terminates a group.

Each instruction in the I-cache carries a start bit that

controls dispatch group formation in the IDU. If the start

bit associated with an instruction is set, that instruction

starts a new group. Otherwise, it is part of a larger group

of instructions that started earlier in the instruction

stream. The POWER6 processor dispatch groups

contain, at most, five instructions. An extensive set of

rules from very simple to rather complex ones determine

whether the start bit of a particular instruction is set on

the basis of the instruction itself and the instructions

immediately preceding it.

In order to use previous instruction characteristics to

decide on the setting of a particular start bit, the

information about the immediately preceding instructions

must be available. If the preceding instructions are within

the cache sector being pre-decoded, the information is

readily available. If the preceding instructions are in a

preceding sector (e.g., the first instruction of one sector

has all of its immediately preceding instructions in

another sector), the POWER6 processor pre-decode

maintains information for the last instructions in sectors

that have recently been fetched. This information is

maintained for each thread for the demand cache line and

two prefetched cache lines. Let us assume the first sector

of a demand request for thread 0 is received from the L2

cache. Pre-decode stores the information about the last

four instructions in that sector (no more than four

are required, as there are at most five instructions in a

group). When the second sector is received, the stored

information is used by pre-decode to form correct groups

across sector boundaries. There are two major restrictions

to this process. The first restriction is that the first

instruction in the first sector of a cache line is always first

in a group because no information is maintained across

cache lines. The second major restriction is that the L2

cache tries to return the sectors of a line in order, but in

rare cases sectors may be returned in a different order. In

cases in which sectors return nonsequentially, the stored

information is useless, and the first instruction in the

sector will start a group.

Although start bits are normally set statically and

written into the I-cache, there are a few exceptions in

which start bits are set dynamically after reading the

instruction (and the static start bit) from the I-cache.

Most notably, this happens for an instruction that is the

target of a taken branch. The next instruction after a

taken branch always starts a group because no

information is available about the previous instructions

across a taken branch. There are a few cases in which a

start bit is forced—on the first instruction of a sector

fetched after certain events in the IFU—to avoid

potential problems and simplify controls.

A sample list of rules used to form instruction groups

follows. (Other, more specific rules also exist, such as

restrictions for dependencies between the first and last

instruction of a five-instruction group to simplify the pre-

decode logic.) A rule states what is not allowed to occur

within a group; consequently, the first instruction that

would violate a rule starts a new group.

� A group cannot use more resources than are available

in the POWER6 processor. Available resources are

two FXUs, two LSUs, two FP or VMX units, and

one branch unit.
� A group cannot have a write-after-write dependency

on any general-purpose register (GPR), FP register

(FPR), CR field, or the FX exception register (XER).
� A group cannot have a read-after-write dependency

on the XER.
� A group cannot have a read-after-write dependency

on a GPR, except for an FX instruction or an FX

load, followed by an FX store of the same register.
� A group cannot have a read-after-write dependency

on a CR field except for an FX instruction setting

the CR field, followed by a conditional branch

dependent on the CR field. Thus, the most important

combination of a compare followed by a dependent

conditional branch can be in one group.
� A group cannot have an FP multiply–add (FMA)

followed by an instruction reading the target FPR of

the FMA.
� A group cannot have an FP load followed by an FP

store of the same FPR.

Branch execution—The POWER6 processor can

predict up to eight branches in a cycle (up to the first

taken branch in a fetch group of up to eight instructions).

Prediction is made using a 16K-entry, 2-bit BHT; 8-entry,

fully associative count cache; and a 6-entry link stack.

The BHT and the count cache are shared between the two

threads. Up to ten taken branches per thread are allowed

to be pending in the machine.

The POWER6 processor is optimized to execute

branches as early as possible and as fast as possible. The

pre-decode assists by precomputing the branch target and

providing encoded information for the evaluation of

conditional branches. Another unique design technique is

allowing conditional branch execution to occur in any of

three stages in the POWER6 processor execution pipeline,

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

647

whereas instruction execution normally occurs in a fixed

pipeline stage. The stage at which the branch is actually

evaluated is determined dynamically when the branch is

dispatched to the branch execution unit. This stage

depends on the availability of the CR bits. Because

compare and dependent branches are allowed to be in the

same dispatch group, they may be dispatched in the same

cycle. In that case, the compare evaluates the CR field late

with respect to branch dispatch, and the branch execution

must wait for the result of the compare instruction. If the

condition can be evaluated earlier, the branch can be

evaluated earlier as well. If the compare dispatches one

cycle earlier than the branch, the branch execution is

performed a cycle earlier. If the dispatch distance is two or

more cycles, the branch execution is performed two cycles

earlier. When the compiler can schedule the compare

instruction earlier, this implementation reduces the

branch penalty for incorrect guesses by up to two cycles.

Another special feature is the ability to hold instruction

fetch for unpredictable branch-to-count instructions,

wait for the FX execution unit to deliver the correct

count register (CTR) value, and use that value directly to

fetch the next instructions without waiting for branch

execution. This improvement is new in the POWER6

processor design and is more valuable here because of the

relatively small count cache. This type of poorly predicted

branch is commonly used for branches beyond the

horizon of relative branches, dynamic method calls in

Java** code, and as computed branches, using a table for

switch statements.

The count cache logic maintains a confirm bit and an

unpredictable bit for every entry. When a new entry is

written into the count cache, it starts with the confirm bit

set to 1 and the unpredictable bit set to 0. An incorrect

prediction will set the confirm bit to 0. An incorrect

prediction with the confirm bit already set to 0 will set the

unpredictable bit. A given branch-to-count instruction

(bcctr) is considered unpredictable by the fetch logic

either if it does not match in the count cache or if there is

a match but the unpredictable bit is 1. An unpredictable

bcctr will cause the fetch logic to stop fetching and wait

for the execution of a move-to-CTR (mtctr) instruction,

which will put the correct CTR value on the FXU bus.

The fetch logic uses that value as the bcctr target

address.

There are a couple of special cases to be considered for

this mechanism. The branch execution unit contains a

state machine to keep track of bcctr and mtctr

instructions and cause the correct action depending on

the instruction sequence. One common problem is that a

bcctr is considered unpredictable causing fetch to stop,

but there is no mtctr instruction to set the CTR (which

could have been set much earlier). The branch execution

state machine detects this condition, activates the fetch

logic, and provides the correct fetch address. Another

interesting, though somewhat deleterious, situation

occurs if there are two mtctr instructions before the

bcctr. The fetch logic picks up the first CTR value, but

the second one is actually the correct target address. The

branch execution state machine handles this case by

forcing the bcctr to redirect to the correct address when

the bcctr executes. These special cases are unlikely to

occur in normal code. The mechanism covers the vast

majority of performance-relevant cases and improves

bcctr performance significantly.

Instruction sequencing

Instruction dispatching, tracking, issuing, and completing

are handled by the IDU. At the dispatch stage, all

instructions from an instruction group of a thread are

always dispatched together. Both threads can be

dispatched simultaneously if all of the instructions from

both threads do not exceed the total number of available

execution units. The POWER6 processor can dispatch

up to five instructions from each thread and up to seven

instructions from both threads.

In order to achieve high dispatch bandwidth, the IDU

employs two parallel instruction dataflow paths, one for

each thread. Each thread has an I-buffer that can receive

up to eight instructions per cycle from the I-cache. Both

I-buffers are read at the same time, for a maximum of five

instructions per thread. Instructions from each thread

then flow to the next stage, in which the non-FP unit

(FPU) and VMX dependency-tracking and resource-de-

termination logic is located. If all of the dependencies for

instructions in the group are resolved, then the instruction

group is dispatched. Otherwise, the group is stalled at the

dispatch stage until all of the dependencies are resolved.

Tracking of non-FPU and VMX instruction

dependencies is performed by a target table, one per

thread. The target table stores the information related to

the whereabouts of a particular instruction in the

execution pipe. As instructions flow from the I-buffer to

the dispatch stage, the target information of those

instructions is written into the target table. Subsequent

FX instructions access the target table to obtain

dependency data so that they can be dispatched

appropriately. FPU and VMX instruction dependencies

are tracked by the FPQ located downstream from the

dispatch stage.

FPU and VMX arithmetic instructions are dispatched

to the FPQ. Each FPQ can hold eight dispatch groups,

and each group can have two FPU or VMX arithmetic

instructions. The FPQ can issue up to two arithmetic

FPU or VMX instructions per cycle. In order to achieve

zero-cycle load-to-use for load floats feeding arithmetic

FPU instructions, the FPU instructions are staged six

cycles after the dispatch stage through the FPQ to line up

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

648

with load data coming from the LSU. If the load data

cannot be written into the FPR upon arrival at the FPU,

it is written into a 32-entry load target buffer (16 per

thread). The load target buffer allows up to 16 load

instructions per thread to execute ahead of arithmetic FP

instructions, thus eliminating the effect of the six-cycle FP

pipe stages. Arithmetic FPU instructions can also be

issued out of order with respect to other FPU

instructions. At most, eight FPU instructions can be

issued out of order from the FPQ.

In order to enhance performance, load lookahead

(LLA) execution is employed to facilitate load prefetching

to the L1 D-cache after a load miss or ERAT miss. When

a miss occurs, the IDU will enter LLA mode, whereby

instructions after the missed load continue to be

dispatched from the I-buffer and executed. In LLA mode,

the instructions can produce the result and pass it to the

dependent instructions before the data reaches the

writeback stage. These results are discarded once they

pass the writeback stage, and any instructions that are

dependent on these discarded results are no longer

allowed to execute. Prefetch requests are initiated for load

instructions that are successfully executed under LLA.

When a thread enters LLA mode, its thread priority is

switched to a lower priority in order to give non-LLA-

mode threads higher dispatch priority. When data for the

original load miss is returned from the L2, the original

load and all of the subsequent instructions are read out of

the I-buffer for redispatching. The thread dispatch

priority will also revert to its original setting prior to the

initiation of the LLA mode.

As a further LLA enhancement, in single-thread mode,

execution results are not discarded as they pass through

the writeback stage; instead, they are written into the

GPR of the other thread and become available for

subsequent instructions to resolve dependencies. This

mechanism enables more load instructions to be executed

for prefetching.

A completion table is employed by the IDU to track a

high number of instructions in flight. Each thread uses a

ten-entry completion table. Each completion table entry

holds the information necessary to track a cache-line’s

worth of instructions (up to 32 sequential instructions).

When a taken branch is detected in the fetching

instruction stream, a new completion table entry is

allocated for the instructions after the predicted taken

branch. A new completion table entry is also allocated

when an I-cache line is crossed. In effect, the completion

table can track up to 320 instructions, or ten taken

branches, per thread.

FX instruction execution

The POWER6 core implements two FXUs to handle FX

instructions and generate addresses for the LSUs. The

FXU executes most instructions in a single pipeline stage.

One of the signature features of the POWER6 processor

FXU is that it supports back-to-back execution of

dependent instructions with no intervening cycles

required to bypass the data to the dependent instruction.

Several enhancements to the FXU logic and circuits

relative to the previous implementations of the Power

Architecture technology were employed to achieve

this [6].

The floorplan is organized in two stacks, with the FX

circuits in one stack and the load/store operand circuits in

the other stack.

Along with the floor planning, the logic and circuits in

the execute stage were optimized to reduce delay.

Typically, an FXU uses an XOR circuit on one of the

operands so that the input to the adder can be

complemented for implementing subtract- and compare-

type instructions. To reduce the number of circuits in the

execute stage, the complement function of the adder was

moved to the previous cycle. As a result, complement

data or noncomplement data is bypassed to the

dependent instruction on the basis of the type of instruction

that processes the data. For example, for back-to-back

dependent instructions in which the second instruction is

a subtract instruction, the execution of the first

instruction is modified such that the result is the ones

complement of the expected result. This allows circuit

stages to be removed from the critical path of the adder.

FX multiply and divide are executed by the FPU. Data

is read from the GPR, and is sent to the BFU, and the

results are sent back to the FXU to be written to the

GPR. This implementation allows consecutive multiply

instructions to be executed in a pipeline fashion at a rate

of one multiply every two cycles.

Another structure that was modified from previous

designs is the result multiplexer. More conventional

implementations have a four- or five-input result

multiplexer that brings together the results of several

macros (such as adder, rotator, and logical) to form a

single result bus, which can then be forwarded. The

POWER6 processor FXU uses a single three-input

NAND gate to perform this function by taking input

from the adder, rotator, and logical operand macros.

Results from all other functions are multiplexed in the

logical operand macro or other pipeline stages. If a macro

is not sourcing data, then it will drive 1s into its input of

the three-input NAND.

The adder was speeded up by moving the bitwise

propagate and generate functions into the previous cycle

after all of the bypass multiplexing. The delay required to

calculate the propagate and generate functions before the

operand latch is less than the delay required if the

function were implemented after the operand latch. This

saves time in the adder functional implementation.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

649

The rotator was speeded up by removing the 2:1

multiplexer used to implement the most significant word

of the operand for the Power Architecture technology 32-

bit rotate and shift instructions. To compensate, each

byte of the byte multiplexer in the rotator has separate

controls.

The operand multiplexing and latching was speeded up

by using a dynamic circuit for the last stage of the bypass

multiplexer and by using a pulsed latch to stage the

operand. In addition, the circuit tuning for the execute

stage was done with all of the macros in the model. This

allowed us to make trade-offs to speed up the most

critical paths at the expense of less critical paths.

Another feature of the POWER6 processor FXU is the

implementation of delayed stores. This enables better

group utilization and reduces delay when stored data is

dependent on the target of an older load instruction.

Store instructions read GPRs to get the operands used to

calculate the effective address (EA) and to get the data

that is to be placed into memory. Store instructions read

operands the cycle after dispatch but cannot write the

data for several cycles until the address has been

translated, the cache directory has been checked, and

address conflicts have been resolved. This allows an

opportunity for the FXU to capture the data for the store

instruction as late as six cycles after dispatch. Consider

the following sequence of instructions:

ld r5, 0x4(r3)

std r5, 0x4(r4)

Without the delay store feature, the store dispatch and

its execution must stall for three cycles, waiting for the

data from the load instruction. With the delay store

feature, the dependent store instructions can be placed in

the same group and are executed in the same cycle as the

load instruction, thus yielding significant performance

gain.

Binary FP instruction execution

The POWER6 core includes two BFUs, essentially

mirrored copies, which have their register files next to

each other to reduce wiring. The POWER6 processor

binary FP design exceeds that of the POWER4 and

POWER5 processors by maintaining the same number of

cycles to execute an FP instruction even though the cycle

time is much more aggressive. The POWER4 and

POWER5 processor BFUs have a six-cycle pipeline that

supports an independent multiply–add instruction every

cycle and requires six cycles between dependent

operations with a cycle time of approximately 23 FO4

[7, 8]. For the POWER6 processor design, the cycle time

is much more aggressive, 13 FO4, but the infinite cache

performance is maintained [6, 9, 10]. To offset some of the

cycle-time differences, an additional pipeline stage is

used, but it is designed so that it does not have an

impact on performance. New bypass paths are added to

make up for the additional latency. Rather than waiting

for the result to be rounded, an intermediate result

is fed back to the beginning of the pipeline prior to

rounding and prior to normalization. Several performance

enhancements, such as store folding and division and

square root enhancements, are described along with the

basic pipeline.

The pipeline is shown in Figure 5. The pipeline

accepts a new fused multiply–add operation every cycle.

The operation is A3C 6 B, where A and C are the

multiplicands and B is the addend. The dataflow supports

operands up to 64 bits wide, which is especially useful for

performing FX multiplication and provides additional

guard bits for division algorithms. Data from the FPRs or

from the FXU is fed into the three operand registers, A1,

Figure 5

Binary floating-point pipeline.

B1 register A1 register C1 register

Multiplier stage 1

PP2 register

PP3 register

Alignment shift

amount calculation

B2 register

Multiplier stage 3

Align 3 register

PG4 register

Sum5 register

Normalizer

Align hi4 register

Align 2

Norm6 register

Finish normalization and

start rounding

Rnd7 register

Datapath of the seven-cycle pipeline

Register at the

start of a stage

Action being

performed within

a stage

Feedback path that supports the six-cycle

data-dependent operations

Rounding

Multiplier stage 2Align 1

Addend increment Adder

Hi sum5 register

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

650

B1, and C1, where the number 1 indicates the first stage of

the pipeline. The multiplier uses a radix-4 Booth algorithm

to reduce the 64-bit3 64-bit multiplication. The

multiplication takes three cycles to reduce 33 partial

products (PPs) to 2, and then the addend is combined. In

the fourth and in part of the fifth cycle, a 120-bit end-

around carry (EAC) adder [11] is implemented to produce

an only positive magnitude result. In the rest of the fifth

cycle, two stages of the normalizer are implemented, which

is completed in the sixth cycle with an 8:1 multiplexer. The

rest of the sixth cycle involves starting the incrementation,

and in the seventh cycle, the rounding is completed.

The latency of the pipeline is seven cycles, but it

appears to be effectively six cycles for data-dependent

operations. This is achieved by feeding back the data

prior to rounding and prior to complete normalization.

Rounding is corrected by adding terms in the

counter tree. For instance, if the result is to be fed back

into operand A, then A ¼ A0 þ 2�u, where 2�u is the

increment due to rounding. Then, A 3 Cþ B ¼ (A0 þ
2�u) 3 C þ B ¼ A0 3 C þ B þ C * 2�u.

Thus, an extra C has to be added, which must be

shifted to the 1-ulp3 position of A. Because A could be

single precision or double precision, the correction term C

could be located in two different places. Altogether there

are six different rounding correction terms that could be

added to correct for A, C, or both, and for single or

double precision.

Because the design did not meet cycle-time objectives

with this feedback path, it was modified to use an

unrounded intermediate result and was also unnormalized.

The normalizer uses leading-zero anticipation (LZA)

logic to predict the shift amount within 1 bit. This

requires a correction shift at the end of the normalizer,

which is usually implemented with a 2:1 multiplexer in

which the select signal is the most significant bit of the

data. To repower this data bit and use it as a select signal

in a 120-bit 2:1 multiplexer requires about 4.5 FO4, which

is about half a cycle of available logic in a 13-FO4 cycle.

To skip this stage of shifting and feedback, a partially

normalized result requires an additional bit in the

dataflow and a 1-bit mask function. The rounding

correction term gets more complex since the least

significant bit can now be in two different locations for

each data format, which increases the multiplexer to 12

different possibilities. Thus, a significant savings in cycle

time is possible by feeding back the partially normalized,

unrounded, intermediate result, but at the cost of

complexity.

The multiplier and multiplicand are corrected by

adding the rounding correction term in the multiplier

counter tree, but for the addend, there is no place to add

in the correction. For the addend correction, the

exponent is fed back after partial normalization and the

significand is fed back a cycle later, after rounding to the

B2 register. This is possible since the addend significand

does not have any computation in cycle 1. Thus, a six-

cycle feedback is possible to any of the input operands, or

to even more than one.

Feedback paths are also important in the execution of a

store instruction. There is an advantage to pipeline stores

with FP operations, but they are typically dependent on a

prior arithmetic instruction. Rather than wait the full

pipeline depth to resolve the dependency, feedback paths

are implemented at the bottom of the pipeline to bypass

to a store. This is called store folding. To eliminate

feedback paths to all stages of the pipeline, an additional

read port in the FPR is implemented. The read port is

used in a late cycle of a store. So, if the store is

independent, it is read in cycle 0 of the pipeline from the

FPRs and it can go through the alignment stages of the

pipeline. If it is dependent on a prior arithmetic operation

and it is of the same precision, then it can be either read

late in the pipeline or directly fed back to the bottom

stage of the pipeline. If it is dependent and of a different

precision, then the IDU stalls the store until the prior

arithmetic operation finishes, but for most cases, a store

executes as though it takes one cycle, whether it is

dependent on a prior arithmetic instruction or not.

Another significant performance advantage of the

POWER6 processor BFU is in the divide and square root

estimate instructions. To help make the divide and square

root operations comparable in the number of cycles of

execution, an enhanced approximation technique is used.

In prior designs, a simple lookup was used, but in the

POWER6 processor design, a linear approximation is

implemented. This provides better than 14 correct bits for

both a reciprocal approximation and a reciprocal square

root estimate. A programmer can take immediate

advantage of these enhancements if they recompile for the

POWER6 processor, as the prior estimate instructions

produce only 8 correct bits for the reciprocal and 5 bits

for the reciprocal square root. This should save at least

one iteration.

In general, the POWER6 processor is an in-order

machine, but the BFU instructions can execute slightly out

of order. The divide and square root instructions havemany

empty dispatch slots, and these are utilized by independent

BFU instructions. The BFU notifies the IDU when these

slots will occur, and the IDU can dispatch in the middle of

these slots. If an exception or error occurs in the middle of

the execution of the divide, a precise exception can still be

achievedby refreshing themachine state fromtheRU.Thus,

there is a mechanism for backing out results from

instructions that would never have occurred since the RU

only commits machine state in order, though the execution

units may update the FPRs and GPRs slightly out of order.
3Unit in the last place (ulp) is the IEEE term for the least significant bit of the fraction
of a floating-point number.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

651

Data fetching

Data fetching is performed by the LSU. The LSU contains

two load/store execution pipelines, with each pipeline able

to execute a load or store operation in each cycle.

The LSU contains several subunits: the load/store

address generation and execution; the L1 D-cache array;

and the cache array supporting set-predict and directory

arrays, address translation, store queue, load miss queue

(LMQ), and data prefetch engine, which perform the

following functions:

Load/store execution—In support of the POWER6

processor high-frequency design, the LSU execution

pipeline employs a relatively simple dataflow with

minimal state machines and hold states. Most load/store

instructions are handled by executing a single operation.

A hardware state machine is employed to assist in the

handling of load/store multiple and string instructions and

in the handling of a misaligned load or store. As a result,

unaligned data within the 128-byte cache-line boundary is

handled without any performance penalty. In the case of

data straddling a cache line, the instruction is handled

with two internal operations, with the partial data from

each stitched together to provide the desired result.

The L1 D-cache load hit pipeline consists of four

cycles: approximately one cycle for address generation,

two for cache access, and one for load data formatting

and transferring to the destination register. In parallel

with the L1 D-cache array, address translation is

performed by the fully associative, content-addressable-

memory-based, 128-entry D-cache ERAT (D-ERAT).

Load/stores that miss the D-ERAT initiate a table-walk

request to the L2 cache, and LLA mode is entered. The

returned data is searched for a matching page table entry,

which is then installed in the D-ERAT. The load or store

is reexecuted, this time resulting in a D-ERAT hit, and

LLA mode is exited. The D-ERAT supports three page

sizes concurrently: 4 KB, 64 KB, and 16 MB. The 16-GB

page is mapped in the D-ERAT using multiple 16-MB

page entries.

Loads that miss the L1 D-cache initiate a cache-line

reload request to the L2 cache, and LLA mode is entered.

The LMQ tracks the loading of the cache line into the L1

D-cache and supports the forwarding of the load data to

the destination register. When the load data returns from

L2, the load instruction is reexecuted, the load data is

transferred to the destination register, and LLA mode is

exited. The LMQ consists of eight entries and is used to

track load requests to the L1 D-cache. In SMT mode, two

entries would track demand loads (one per thread), and

six entries would track some form of prefetch (hardware

initiated, software initiated using dcbt/dcbtst

instructions, or LLA).

The processor core in which the LSU resides runs at

twice the frequency of the storage subsystem in which the

L2 cache resides. Thus, the store interface from the LSU

to the L2 runs at the storage subsystem frequency. The

LSU store queue employs store chaining to improve the

store bandwidth from the processor core to the storage

subsystem. The store queue will chain two successive

stores if they are to the same cache line and send them as

a single store request to the storage subsystem.

L1 D-cache organization—The POWER6 core contains

a dedicated 64-KB, eight-way, set-associative L1 D-cache.

The cache-line size is 128 bytes, consisting of four sectors

of 32 bytes each. The reload data bus from the L2 cache is

32 bytes. The cache line is validated on a sector basis as

each 32-byte sector is returned. Loads can hit against a

valid sector before the entire cache line is validated.

The L1 D-cache has two ports that can support either

two reads (for two loads) or one write (for a store or

cache-line reload). Writes due to cache-line reloads have

the highest priority and they block load/store instructions

from being dispatched. Reads for executing loads have

the next priority. Finally, if there are no cache-line

reloads or load reads occurring, completed stores can be

written from the store queue to the L1 D-cache. The L1

D-cache is a store-through design: All stores are sent to

the L2 cache, and no L1 castouts are required.

The L1 D-cache is indexed with EA bits; the fact that it

is 64 KB and eight-way set associative results in 8 KB per

set, requiring EA bit 51 to be used to index into the L1

D-cache. With EA bit 51 being above the 4-KB page

boundary, EA aliasing conditions exist and have to be

handled. To this end, the L1 D-cache directory is indexed

with EA(52:56) and organized with visibility to EA(51)¼
00 0 and EA(52)¼ 010 such that the EA aliasing conditions

can be detected.

The L1 D-cache is protected by byte parity; hardware

recovery is invoked on detection of a parity error while

reading the L1 D-cache. Also, when a persistent hard

error is detected either in the L1 D-cache array and its

supporting directory or in the set-predict arrays, a set-

delete mechanism is used to prohibit the offending set

from being validated again. This allows the processor

core to continue execution with slightly degraded

performance until a maintenance action is performed.

Set predict—To meet the cycle time of the access path,

a set-predict array is implemented. The set-predict array

is based on the EA and is used as a minidirectory to select

which one of the eight L1 D-cache sets contains the load

data. Alternatively, the L1 D-cache directory array could

be used, but it would take more time, as it is based on the

real address (RA) and, thus, would require translation

results from the ERAT.

The set-predict array is organized as the L1 D-cache:

indexed with EA(51:56) and eight-way set associative.

Each entry or set contains 11 EA hash bits, 2 valid bits

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

652

(one per thread), and a parity bit. The 11-bit EA hash is

generated as follows: (EA(32:39) XOR EA(40:47)) plus

EA(48:50).

When a load executes, the generated EA(51:56) is used

to index into the set-predict array, and EA(32:50) is

hashed as described above and compared with the

contents of the eight sets of the indexed entry. When an

EA hash match occurs and the appropriate thread valid

bit is active, the match signal is used as the set select for

the L1 D-cache data.

When a cache line is validated, the default mode is a

shared mode in which the valid bits are activated for both

threads. A nonshared mode is dynamically entered on an

entry basis to allow only one thread valid bit to be active.

This is beneficial to avoid a thrashing condition in which

entries with the same EA hash between threads replace

each other in the cache, thus allowing the same EA hash

to exist for each thread at the same time.

Accelerator

The POWER6 core implements a vector unit to support

the PowerPC VMX instruction set architecture (ISA) and

a decimal execution unit to support the decimal ISA. A

detailed description of these accelerators is described in a

separate paper in this issue [12].

Simultaneous multithreading

The POWER6 processor implements a two-thread SMT

for each core. Software thread priority implementation in

the POWER6 core is similar to that in the POWER5

core [1]. Additionally, hardware automatically lowers

the priority of a thread when it detects that the thread is

being stalled. Several features are implemented in the

POWER6 core to improve its SMT performance,

particularly the following:

� The L1 I-cache and D-cache capacity and

associativity as well as the L2 capacity are increased

from the POWER5 design.
� The POWER6 core implements an independent

dispatch pipe with a dedicated I-buffer and decode

logic for each thread. At the dispatch stage, each

group of up to five instructions per thread is formed

independently and then merged to form a single group

of up to seven instructions to be dispatched to the

execution units.
� The completion table is dedicated per thread, which

allows significantly more outstanding instructions (up

to 320 per thread) from both threads.

As a result of these features, the POWER6 core

achieves a 15% to 30% speedup improvement in the

SMT–to–single thread ratio over the POWER5 design.

Error recovery

The POWER6 core RU contains a copy of the designed

state of the processors. Checkpoints of the data in the

core are constantly saved in the RU [13]. The data is

protected by ECC.

The L2 cache includes the L1 I-cache and D-cache.

As a result, the L1 contains temporary data that is

protected by parity. Persistent data is in the L2 and L3

caches and is protected by ECC. Major instruction flow,

dataflow, and some control logic are checked using

parity, residue, or duplication.

When an error is detected, the core is stopped and is

prevented from communicating with the rest of the chip.

Checkpoint data associated with the last successfully

saved instruction from the RU is read and re-stored to the

affected core. The L1 I- and D-caches are cleared because

the persistent data is protected and stored outside of the

core. All translation tables in the core are cleared, as

snooping actions are not seen by the core after it has

stopped. The processor then resumes at the re-stored

checkpoint. If it is determined that the core failure is a

hard error (persistent), the content of the RU can be

transferred to another idle core in the system, and

the task can be restarted on the new core from the

checkpoint.

The POWER6 core recovery capability, in conjunction

with its extensive error-checking capability, produces an

unprecedented level of resiliency for its class of machine

[14].

Cache hierarchy

The POWER6 processor cache hierarchy consists of

three levels, L1, L2, and L3. The 64-KB L1 I-cache and

64-KB L1 D-cache are integrated in the core, within the

IFU and the LSU, respectively. Each core is supported

by a private 4-MB L2 cache, which is fully contained on

the POWER6 chip. The two cores on a given chip may

also share a 32-MB L3 cache. The controller for the L3

cache is integrated in the POWER6 chip, but the data

resides off-chip. Table 6 summarizes the organizations

and characteristics of these caches. (The L1 I- and

D-caches were described in the section ‘‘Processor core.’’)

L2 cache

The private 4-MB POWER6 processor L2 cache, which

comprises 128-byte cache lines and is eight-way set

associative, is organized differently than the POWER5

processor L2 cache. Instead of dividing into three

independent address-hashed slices, the POWER6

processor L2 cache is operated by a single, centralized

controller.

The cache data arrays are organized as four interleaves,

with each interleave containing a 32-byte sector of every

cache line in the cache. Line fetch operations initiated by

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

653

the core, castout read operations, and intervention read

operations utilize all four interleaves in concert, but read-

modify-write operations (performed on behalf of

accumulated store-through operations initiated by the

core) and writeback operations (which occur when the L2

cache is reloaded) operate only upon one or more 32-byte

sectors within a given cache line and, therefore, utilize

only the interleaves that are affected by the operations.

Two interleaves, representing the lower 64 bytes in each

cache line, are located to the left of the core, while the

other two interleaves, representing the upper 64 bytes, are

located to the right. Each interleave is composed of 32

SRAM partitions [15]. In aggregate, an interleave can

read or write 32 bytes every four cycles of the core.

Instead of incurring a varying latency to each of three

slices, as in the POWER5 processor L2, the POWER6

processor L2 spreads latency variations across the four

interleaves. This results in a constant latency and fixed

order for each 32-byte sector returned from the L2 cache

to the core.

The directories and coherence management resources

are divided into two address-hashed slices. Each directory

slice can accept either a core request, a snoop request, or

an update operation every other core cycle. Unlike the

POWER5 processor L2, which used separate read ports

for core and snoop requests, the POWER6 L2

incorporates a sliding window to schedule snoop requests

such that they do not collide with core requests, thereby

eliminating the need for a second access port in order to

reduce power and area.

Both the data arrays and the directory arrays are

protected by single-error-correct double-error-detect

(SECDED) ECC. In the event of an error, correctable or

uncorrectable, soft or hard, the hardware supports

autocorrection, auto-invalidation, and autopurge

capabilities. With autocorrection, the hardware

automatically replaces data or directory information

containing a correctable soft error with an error-free copy

of the data or directory information. With auto-

invalidation, the hardware automatically changes the

coherence state of an entry in the cache to invalid if the

data or directory information in the entry contains an

uncorrectable error or a correctable hard error, and the

coherence state of the entry is S, SL, TE, ME, or TEN.

With autopurge, the hardware automatically writes a

specially marked copy of an entry in the cache back to

memory if the data or directory information in the entry

contains an uncorrectable error or a correctable hard

error, and the coherence state of the entry is T, M, MU,

or TN. Both auto-invalidation and autopurge may also

mark the directory entry as unusable by setting it to the

ID (deleted) state.

The L2 uses an enhanced pseudo-LRU (least recently

used) replacement algorithm with biasing toward various

invalid locations and away from the most recently

accessed I-cache lines.

Because the L1 D-cache is a store-through design in

order to reduce accesses to the cache arrays, the L2

accumulates individual core store operations by

employing an eight-entry, 128-byte-wide queue per

directory slice. All stores gathered by a given entry are

presented to the L2 cache with a single read-modify-write

operation. This operation uses only the cache interleaves

that are affected.

To handle all fetch operations initiated by the core and

read-modify-write operations initiated by the L2 store

queue, the L2 can employ one of 16 read/claim (RC)

machines per directory slice. RC machines manage

coherence transactions for all core-initiated cacheable

operations. The 32 total machines are needed to enable a

sufficient number of outstanding prefetch operations to

drive the memory interface to saturation while still

handling fetch and store traffic. If a fetch operation hits in

the L2 cache, the cache interleaves are read, and data is

Table 6 POWER6 processor cache attributes.

Cache attribute L1 instruction L1 data L2 L3

Capacity 64 KB 64 KB 4 MB 32 MB

Shares (cores) 1 1 1 2

Location Within core Within core On-chip Off-chip

Line size (bytes) 128 128 128 128

Associativity 4 way 8 way 8 way 16 way

Update policy Read only Store through Store in Victim

Line inclusion rules Resides in L2 Resides in L2 None None

Snooped No No Yes Yes

Error protection Parity Parity ECC ECC

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

654

forwarded to the core. If a read-modify-write operation

hits in the L2 cache, the impacted cache interleaves are

updated.

If either of these operations misses the L2 cache, the L2

waits for a response from the L3 cache. If the operation

hits in the L3, data is returned to the L2 (and possibly

independently to the core). If the operation misses the L3,

the L2 cache sends a request to the SMP coherence

interconnect fabric, and data is eventually returned from

another L2, L3, or memory via the SMP data

interconnect fabric. For cases in which these operations

result in the deallocation of a cache line from the L2 in

order to install the newly requested cache line, the L2

must additionally employ one of four castout machines

per directory slice to move data or state to the L3 victim

cache or to memory. The eight total machines are needed

to enable sufficient outstanding castout operations to

drive the L3 cache write interface to saturation.

If data is returned from the L3 cache or via the SMP

data interconnect fabric, in the case of a fetch, it is

forwarded to the core and written to the L2 cache; in the

case of a read-modify-write, it is written directly to the

nonimpacted L2 cache interleaves and merged with store

data prior to writing to the impacted L2 cache interleaves.

To handle incoming snoop requests from the SMP

coherence interconnect fabric, the L2 first consults the

directory to determine whether it is required to take any

action. If so, it can employ one of four snoop machines

per directory slice to perform the required task. The eight

total machines are needed to enable enough outstanding

interventions to drive the datapath that lies between a

likely pair of L2 caches to saturation. A snoop machine

task might involve reading the data from the cache to

send it, via the SMP data interconnect fabric, to another

processor and possibly updating the directory state; or

reading the data from the cache to send it to memory and

invalidating the directory state; or simply updating or

invalidating the directory state.

As in the POWER5 processor design, the POWER6

processor L2 cache manages the reservation flags

associated with the PowerPC lwarx, ldarx, stwcx, and

stdcx instructions, and all coherence interactions

therewith. Also consistent with the POWER5 processor

approach, the design of the POWER6 processor uses a

noncacheable unit to manage irregular and complicated

storage operations, such as cache-inhibited loads and

stores, memory barriers, and translation management

operations.

Since the L2 is private and there are two such L2 caches

on a chip, it is possible that the data requested by a given

core may be found in the L2 cache associated with the

other core, leading to an intervention of data between two

L2 caches on the same chip. To improve latency in such a

scenario, a high-speed cache-to-cache interface was

created. Whenever a fetch operation initiated by a core

checks its own L2 directory, the operation is forwarded

to the other L2 as well. If the operation misses in its own

L2, the other L2 directory is checked, and if the line is

found, it is read from the other L2 cache and forwarded

on a high-speed interface back to the requesting core

and L2. This significantly reduces the latency as compared

with a normal intervention case.

For some cost-sensitive configurations, single-core

POWER6 chips will be used. Such configurations will

often have no L3 cache attached. For such cases, a mode

of operation is supported in which the unused 4-MB

L2 cache associated with a deconfigured core can be

configured to accept castouts from the other L2 cache and

operate as a victim cache. While this results in a much

smaller (4 MB instead of 32 MB) victim cache, it offers

significantly better latency, as the victim data is kept on

the POWER6 chip.

L3 cache

The 32-MB POWER6 processor L3 cache, which is

shared by both cores on a given chip, is 16-way

associative and is composed of 128-byte lines, unlike the

POWER5 processor L3, which uses 256-byte sectored

lines. Also, since both of the private L2 caches are

supported by a single L3 victim cache, the rule of

exclusivity governing the relationship between the

POWER5 processor L2 and L3 caches does not carry

over to the design of the POWER6 processor.

The L3 cache data is retained off-chip within one or

two specialized embedded DRAM cache chips. Either one

or both sets of 8-byte read, 8-byte write, and command

buses can be attached to the off-chip storage. These buses

can send or receive at a rate of once every other core

cycle. When only one L3 data chip is used, the data

bandwidth to and from the L3 cache is halved.

For nonsnoop operations, the POWER6 processor L3

is divided into two address-hashed slices. For snoop

requests, each directory slice is further divided into two

subslices, for a total of four subslices. Each of the two

directory slices can accept an L2 fetch-data-read request,

an L2 castout data-write request, an update request, or

one to two snoop requests every four core cycles (to

accept two snoop requests, they must map to different

subslices). Like the L2, the POWER6 processor L3

incorporates a sliding window to schedule snoop requests,

thereby eliminating any dependence on precise scheduling

by the SMP coherence interconnect fabric.

The data arrays on the external cache data chip, the

interfaces to and from that chip, and the directory arrays

on the POWER6 chip are protected by SECDED ECCs.

Like the L2, the L3 supports autocorrection, auto-

invalidation, and autopurge capabilities, as well as special

invalid states for marking compartments as unusable.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

655

Like the L2, the L3 uses a pseudo-LRU replacement

algorithm with biasing toward various invalid cache

locations.

To handle all fetch and store operations initiated by the

core that miss the L2 and must check the L3 cache, the L3

can employ one of eight read machines per directory slice,

private to each L2 cache. The 16 total machines per L2

cache are needed to enable enough outstanding L3 fetch

hit operations to drive the L3 cache read interface to

saturation. If the data resides in the L3 cache, the read

machine retrieves it and routes it back to the requesting

L2 cache and core. Otherwise, a response is sent to the

requesting L2 cache indicating that it should route the

request to the SMP coherent interconnect fabric.

To handle L2 castout write operations, the L3 can

employ one of eight write machines per slice, shared by

both L2 caches. The number of write machines is tied to

the number of castout machines in order to reduce

complexity and functional overhead. For cases in which

an L2 castout write to the L3 results in the deallocation of

a cache line from the L3 and a copy of the line must be

moved to memory, the L3 must additionally employ an

L3 castout machine associated with the write machine to

move data and state to memory. The 16 total machines

are needed to enable enough outstanding L3 castout

operations to drive the memory write interface to

saturation. Since the rule of exclusivity governing the

relationship between the POWER5 processor L2 and L3

caches does not carry over to the POWER6 processor

design, there are cases in which an L2 castout write must

merge state information with a copy of the same cache

line in the L3 cache.

To handle incoming snoop requests from the SMP

coherence interconnect fabric, the L3 first consults the

directory to determine whether it is required to take any

action with respect to the snoop operation. If so, it can

employ one of four snoop machines per directory subslice

to perform the required task. The reason for the number

of machines and the possible tasks were described above

in the previous section.

Memory subsystem

Each POWER6 chip includes two integrated memory

controllers. A memory controller supports up to four

parallel channels, each of which can be connected

through an off-chip interface to a buffer chip. A channel

supports a 2-byte read datapath, a 1-byte write datapath,

and a command path that operates four times faster than

the DRAM frequency, the fastest of which is 800-MHz

DDR2 (double data rate 2) DRAM. Depending on the

system configuration, one or both memory controllers

may utilize two or four channels each. Each channel may

have from one to four buffer chips daisy-chained

together. For some system configurations, buffer chips

are mounted on the system board, and industry-standard

DIMMs (dual inline memory modules) are used. For

other configurations, specialized DIMMs directly

integrate the buffer chip.

Each buffer chip has a 72-bit bidirectional interface

to its attached DIMMs. This 72-bit interface operates at

the DRAM frequency. With a by-4-bit DRAM

configuration, the 72-bit interface is divided into 18

groups of 4 bits. Each group of 4 bits is multidropped to

one, two, or four DRAM chips. With a by-8-bit DRAM

configuration, the 72-bit interface is divided into nine

groups of 8 bits. Each group of 8 bits is multidropped to

one, two, or four DRAM chips. The maximum frequency

degrades because of loading as the number of DRAMs

per bus increases.

While the interface between the POWER6 chip and the

buffer chips supports 51.2 GB/s of peak read bandwidth

and 25.6 GB/s of peak write bandwidth when using

800-MHz DDR2 DRAM with both memory controllers

driving four channels each, the sustainable bandwidth is

dependent upon the number of daisy-chained buffer chips

per channel and the number of DRAM chips

multidropped to each buffer chip, as well as the read and

write traffic pattern.

Each memory controller is divided into two regions

that operate at different frequencies. The first, called the

asynchronous region, operates at four times the frequency

of the attached DRAM, up to a maximum of 3.2 GHz. It

manages all interaction with the buffer chips and the

DRAM chips attached to them. It tracks and controls the

low-level operation flow to maximize utilization while

avoiding collisions and it initiates refreshes, controls

scrubbing logic, and dynamically powers memory on and

memory off.

The second region, called the synchronous region,

operates at half of the core frequency. It manages all

interaction with the SMP coherence and data

interconnect fabric, responding as a point of coherence

for the memory ranges it maps by servicing reads and

writes, arbitrating conflicting requests, and managing

directory information for the coherence protocol. The

high-level coherent operations that are tracked and

managed by the synchronous region of the memory

controller are mapped to low-level read and write

operations handled by the asynchronous region of the

memory controller.

Memory is protected by SECDED ECCs. Scrubbing is

employed to find and correct soft, correctable errors.

Additionally, IBM Chipkill* technology and redundant

bit steering are employed in both by-4-bit and by-8-bit

configurations to transparently work around DRAM

chip failures. In the POWER6 chip, each channel

contains one spare wire for each direction that can be

used dynamically to replace a failing bit on a DIMM

connector.

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

656

I/O subsystem

The POWER6 processor I/O controller is built on the

same architectural foundation as that of the POWER4

and POWER5 chips. A 4-byte off-chip read interface and

a 4-byte off-chip write interface connect the POWER6

chip to an I/O hub chip. These interfaces operate at one-

half of the core frequency but can also run at lower

frequency integer divisions of the core frequency to

support previous-generation I/O hub chips.

To facilitate concurrent maintenance, the POWER6

processor interrupt presentation function was redesigned

to make it decentralized and it was mapped onto the SMP

coherence interconnect fabric. A pipelined I/O high-

throughput mode was added whereby DMA write

operations initiated by the I/O controller are speculatively

pipelined. This ensures that in the largest systems,

inbound I/O throughput is not limited by the tenure of

the coherence phase of the DMA write operations. Partial

cache-line DMA write transactions have been redesigned

to allow any arbitrary transfer size, from 1 byte to 128

bytes, to complete in a single coherence transaction.

SMP interconnect

While the SMP coherence interconnect fabric for the

POWER6 processor design builds upon the nonblocking

broadcast transport approach used for the POWER4 and

POWER5 processor designs, system considerations

resulted in significant topology innovations in addition to

support for key coherence protocol innovations.

Topology

As shown in Figure 6(a), the topology of a POWER5

processor-based system consists of a first-level nodal

structure composed of up to four POWER5 chips.

Coherence links are fully connected such that each chip is

directly connected to all of the other chips in the node.

Data links form clockwise and counterclockwise rings

that connect all of the chips in the node. All of the chips

within a node are designed to be packaged within the

same multichip module.

Also shown in Figure 6(a), the POWER6 processor

first-level nodal structure is composed of up to four

POWER6 chips. Relying on the traffic reduction afforded

by the innovations in the coherence protocol to reduce

packaging overhead, coherence and data traffic share the

same physical links by using a time-division-multiplexing

(TDM) approach. With this approach, the system can be

configured either with 67% of the link bandwidth

allocated for data and 33% for coherence or with 50% for

data and 50% for coherence. Within a node, the shared

links are fully connected such that each chip is directly

connected to all of the other chips in the node. There are

five 8-byte off-chip SMP interfaces on the POWER6 chip

(which operate at half the processor frequency). Three are

dedicated for interconnecting the first-level nodal

structure, which is composed of up to four POWER6

chips.

With both the POWER5 and the POWER6 processor

approaches, large systems are constructed by aggregating

multiple nodes. As shown in Figure 6(b), a POWER5

processor-based system can interconnect up to eight

nodes with a parallel ring topology. With this approach,

both coherence and data links are organized such that

each chip within a node is connected to a corresponding

chip in every node by a unidirectional ring. For a system

with four chips per node, four parallel rings pass through

every node. The POWER5 chip also provides additional

data links between nodes in order to reduce the latency

and increase the bandwidth for moving data within a

system.

While the ring-based topology is ideal for facilitating a

nonblocking-broadcast coherence-transport mechanism,

it involves every node in the operation of all the other

Figure 6

POWER5 and POWER6 processor (a) first-level nodal topology

and (b) second-level system topology.

POWER5 node POWER6 node

POWER5

chip

POWER5

chip

POWER5

chip

POWER5

chip

POWER6

chip

POWER6

chip

POWER6

chip

POWER6

chip

POWER5 system POWER6 system

Node Node

Node Node

Node Node

Node Node

(a)

(b)

Node Node

Node Node

Node Node

Node Node

Coherence bus

Data bus

Combined bus

Coherence bus

Data bus
Combined bus

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

657

nodes. This makes it more complicated to provide

isolation capabilities, which are ideal for dynamic

maintenance activities and virtualization.

For POWER6 processor-based systems, as shown in

Figure 6(b), the topology was changed to address this

issue. Instead of using parallel rings, POWER6 processor-

based systems can connect up to eight nodes with a fully

connected topology, in which each node is directly

connected to every other node. This provides perfect

isolation, since any two nodes can interact without

involving any other nodes. Also, system latencies do not

increase as a system grows from two to eight nodes, yet

aggregate system bandwidth increases faster than system

size.

Of the five 8-byte off-chip SMP interfaces on the

POWER6 chip (which operate at half the processor

frequency), the remaining two are dedicated to

interconnecting the second-level system structure.

Therefore, with a four-chip node, eight such links are

available for direct node-to-node connections. Seven of

the eight are used to connect a given node to the seven

other nodes in an eight-node 64-way system.

The five off-chip SMP interfaces on the POWER6 chip

protect both coherence and data with SECDED ECCs.

Coherence transport

The ring-based POWER5 processor-based system

topology is ideal for facilitating the nonblocking-

broadcast coherence-transport mechanism. Coherence

requests travel around the ring attached to the initiating

(or master) chip. Each chip attached to the ring

broadcasts the request to the other chips in its node. The

responses from each snooper in the node are aggregated

back at the chip and combined with upstream responses

prior to traveling around the same ring, trailing the

request. Once all of the responses are gathered and they

arrive back at the master chip after completing the circuit,

the notification is generated. Like the request, this

notification travels around the ring attached to the master

chip and is distributed by each chip attached to the ring

within its nodes.

With the ring-based POWER5 processor topology, an

end-to-end, nonblocking path for request, response, and

notification can be established when an initiating chip

determines that the attached ring is available. With the

fully connected POWER6 processor topology, to achieve

similar coherence bandwidth, all of the chips in a node

must be coordinated to determine when an end-to-end,

nonblocking path can be established for a given request.

Furthermore, with the fully connected POWER6

processor-based system topology, there is no circuit to

complete, so responses must flow in the direction opposite

that of requests and notifications. Therefore, the simple

combination of aggregated nodal responses with

upstream responses found in the POWER5 processor

design is not possible with the POWER6 processor

topology.

Beyond the topology-related issues, the enhancements

to the coherence protocol required the coherence-

transport mechanism to concurrently manage system-

wide and scope-limited request, response, and notification

broadcasts. The POWER6 processor capability has two

supported scopes for scope-limited broadcasts: all chips

in the node containing the initiating chip or the initiating

chip by itself.

While the topology-related issues, combined with the

concurrent multiscope requirements, created conceptual

challenges, the team developed innovative approaches

to solve them. This enabled the beneficial system

characteristics provided by a fully connected nodal

topology while maintaining the performance and

scalability of the nonblocking-broadcast coherence-

transport foundation upon which POWER4 and

POWER5 processors were built and extending them, by

incorporating the multiscope coherence protocol

enhancements.

Datastream prefetching

The POWER6 processor design reduces the effective

latency of storage references with a substantial set of

design features, including, as described above, three levels

of cache, SMT, and LLA. Additionally, it significantly

enhances datastream prefetching over its predecessors.

Datastream prefetching in the POWER6 core builds on

the stream prefetching capabilities of the previous

POWER processors [1, 2, 16] and consists of an enhanced

hardware prefetching engine combined with ISA

extensions.

The POWER6 core contains 16 stream prefetch request

queues (PRQs) compared with eight entries in the

POWER5 core, which gives it the capability of tracking

and prefetching 16 independent streams. The POWER6

processor also has the capability of detecting and

prefetching store streams and load streams. Store streams

are analogous to load streams but are defined by a

sequence of store instructions rather than load

instructions. For load streams, prefetching is split into L1

prefetches and L2 prefetches. All of the prefetches that

pass address translation prefetch a line from anywhere in

system memory to the appropriate destination: the L1

D-cache for L1 prefetches and the L2 cache for L2

prefetches. The L1 prefetches start prefetching one line

ahead of the currently demanded cache line and work up

to a steady-state distance of two lines ahead of the line

currently being loaded. This two-line prefetching distance

is enough to cover the miss latency of the L1 cache. The

L2 prefetches are sent ahead of the L1 prefetches with the

intention of prefetching from the higher latency levels of

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

658

the memory hierarchy. To cover the higher latency, L2

prefetches may be sent up to 24 lines ahead of the location

of a demand load for a given stream. The requests are

sent to read and claim machines in the L2 cache, which

process the requests for data and reload the L2 cache for

L2 prefetches or return the data back to the core L1

prefetches. In the POWER6 core, each core is supported

by 32 read and claim machines, a number sufficient to

provide ample bandwidth and to cover the latency to

DRAM. The depth of the stream, i.e., the number of

cache lines ahead of the currently loaded line, may be

adjusted in the POWER6 core by changing the default

setting of a field in a newly designed special-purpose

register called the datastream control register, or

individually by using the depth field (DEP) of a new

version of the dcbt or dcbtst instruction.

Prefetches terminate on a page boundary (prefetching

uses RAs and cannot cross a page boundary because of

the RA discontinuities) and, therefore, are most effective

with 64-KB and 16-MB pages; these page sizes are also

supported in the D-ERAT.

Store-stream prefetching

Store streams are detected and prefetched when the store-

stream-enable (SSE) bit in the datastream control register

is set. Store prefetching enhances performance for data-

intensive applications in which store misses are a factor in

the execution of the application. A store miss occurs when

a cache line into which an operand is being stored is not

in the L2 cache (and is thus also precluded from being in

the L1 D-cache). A store miss initiates a read-modify-

write sequence on the cache line, which involves fetching

the line into the L2 cache and eventually merging the

modified data sent from the core into the cache line.

Although there are two eight-entry store queues and two

four-entry castout queues for each core in the L2, stores

that are missing to DRAM may be held up by the

latency of the read operation. Store prefetching, like load

prefetching, detects the stream and prefetches the lines to

mitigate the fetch latency for, in the case of stores, the

read-with-intent-to-modify access.

Store prefetching differs from load prefetching in

several important aspects. First, store streams are

prefetched only into the L2 cache (hence, there are no L1

prefetches for store streams). This is consistent with

the nonallocating store-through design of the POWER6

core. Second, store streams are detected by a different

procedure than load streams, as an L2-store-miss signal is

not available to the data prefetcher. Store streams are

allocated only when a multiline window containing the

cache-line address of the store does not match any of the

16 PRQs, and the store address is not in the beginning or

ending lines of the same multiline window. For each store

address, a compare is done against all PRQs, and a

matched address advances the state of the stream, just as

for load streams. If there is no match, a second compare

is done that treats all addresses as if the cache-line size

were 2,048 bytes (i.e., an eight-line window compare). If,

again, there is no match and the address of the store is not

within the first two or last two lines of the eight-line

window, a stream entry is created. This method minimizes

the creation of duplicate streams, which are prevented for

load streams by comparing load addresses with entries in

the load-miss queue. Finally, store streams can be

subsumed by load streams if a load stream and store

stream run into each other. This policy of the higher

priority of load streams ensures that L1 prefetches are

issued if there are loads in a stream that is also being

stored.

The dcbtst instruction in the ISA has been enhanced

to duplicate the stream-oriented capabilities of the dcbt

instruction introduced in the POWER5 processor [1]. The

dcbtst instruction is implemented in the POWER6

processor as a hint to prefetch a cache line or a stream

into the L2 cache rather than the L1 cache.

Stream advancement and prefetch profiles

Datastream prefetching is paced by consumption; the

loads for a load stream and stores for a store stream are

the events that advance a stream to the next state. There

are four possible phases for a stream: initial startup,

ramp up, steady state, and termination. The initial

startup phase includes the detection phase, described in

the above section, and the optional initial prefetches,

which occur before a stream is confirmed (e.g., one

speculative L2 prefetch in the guessed direction). The

steady-state phase occurs when prefetching has reached

its full depth, as defined by the DEP value governing the

stream. In the steady-state phase, every line consumed

will trigger an L1 prefetch, and every fourth line

consumed will trigger two 256-byte (dual-cache-line) L2

prefetches. The L2 prefetches are sent with an indicator

that is passed to the memory controller, which optimizes

the DIMM access for the 256-byte fetch. The ramp-up

phase occurs after the startup phase and is the

transitional phase in which prefetches are sent according

to a ramp-up profile until the steady-state depth is

reached. The highest density of prefetches generated and

scheduled occurs in this stage because the prefetch

engine seeks to prefetch data the desired number of lines

ahead of their use. The duration of this stage depends

upon the DEP value, the consumption rate of the

program, and the length of the stream, which may be

determined through the UNITCNT field of a dcbt/dcbtst

instruction or the end of a page. The termination phase

also depends upon the stream length. If a stream is

either a finite-length stream (as designated by UNITCNT)

or reaches the end of the page, the L2 prefetches are

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

659

terminated at that point while the L1 prefetches

continue to be sent until they also reach the termination

point. A stream may be replaced before it reaches the

termination state.

POWER6 balanced system organization

The POWER6 chip offers a wide variety of operational

modes to support system configurations ranging from

blade servers and entry-level systems to high-end, large-

scale servers and consolidation platforms.

Depending upon the compute density and cooling

technology of these systems, the clock frequency of

POWER6 cores may vary widely. One or both cores on a

given chip may be enabled. The L3 cache can be disabled,

leaving both sets of off-chip L3 interfaces unused. With

the L3 cache enabled, a given POWER6 chip can connect

to one or two L3 data chips, depending on bandwidth

requirements. These interfaces operate at full width and

one-half of the processor frequency.

Of the two memory controllers on the POWER6 chip,

none, one, or both may be attached to memory by a set of

buffer chips. For each memory controller, two or four

channels may be configured. DDR2 memory of varying

speeds is supported. Some systems integrate the buffer

chip onto the system board and exploit industry-standard

DIMMs. Others use specialized DIMMs that integrate

the buffer chip.

The SMP fabric interconnect buses may operate at one-

half, one-third, or one-fourth of the processor frequency.

Of the three buses per POWER6 chip that provide nodal

connectivity, zero to three may be connected to provide

logical nodes containing one to four fully connected

chips. They may operate at a full 8-byte width or at a

reduced-pin-count, 2-byte width. System designers may

opt for the 2-byte width if the systems are small in SMP

size or if they rely heavily upon the multiscope coherence

protocol to reduce coherence and data traffic.

Of the two SMP fabric interconnect buses per

POWER6 chip that provide system-wide connectivity,

zero to two per chip may be connected directly to other

nodes. They may operate at full 8-byte width or at a

reduced-pin-count, 4-byte width. System designers may

opt for the 4-byte width if the systems are moderate in

SMP size or if they rely to some degree upon the

multiscope coherence protocol.

We have described the flexibility of the POWER6

processor balanced system organization. We next present

some examples of how that flexibility might be used.

Figure 7(a) illustrates the potential for a large, robust,

64-way system that uses 8-byte SMP interconnect links,

both L3 data ports to maximize L3 bandwidth, and all

eight memory channels per chip. Figure 7(b) highlights a

midrange, robust, 16-way system that uses 8-byte and

4-byte SMP interconnect links, a single L3 data port, and

four memory channels. Figure 7(c) illustrates a four-way,

low-cost, entry-level system that connects two chips using

a 2-byte SMP interconnect link, has no L3 cache, and

supports two memory channels. Table 7 compares the

signal I/O counts used for each POWER6 chip in each of

these systems.

Summary
With its high-frequency core architecture, enhanced SMT

capabilities, balanced system throughput, and scalability

Figure 7

Examples of how the POWER6 processor balanced system

organization and flexibility might be put to use: (a) large, robust

system; (b) midrange, robust system; (c) entry-level system.

P6

P6
L3L3

P6

P6

M M M
M

M M M
M

M M M
M

(a)

(b)

(c)

Node

Node Node

P6

L3

P6

Memory

control

Memory

control

P6

64-way SMP: eight nodes � four chips

· 8-B node-to-node SMP links

· 8-B chip-to-chip SMP links

Dual L3 data chips per POWER6 chip (P6)

Dual memory controllers: four channels each (M)

Local coherence scope is four-chip node

16-way SMP: four nodes � two chips

· 4-B node-to-node SMP links

· 8-B chip-to-chip SMP links

Single L3 data chip per POWER6 chip

Single memory controller: four channels

Local coherence scope is two-chip node

4-way SMP: one node � two chips

· No node-to-node SMP links

· 2-B chip-to-chip SMP link

No L3 data chip per POWER6 chip

Single memory controller: two channels

Local coherence scope is single chip

Node Node

Node

Node Node

Node Node

Memory

control

M M
P6Memory

control

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

660

extensions, the POWER6 microprocessor provides higher

levels of performance than the predecessor POWER5

microprocessor-based systems while offering greater

flexibility in system packaging trade-offs. Additionally,

improvements in functionality, RAS, and power

management have resulted in valuable new characteristics

of POWER6 processor-based systems.

Acknowledgments
The authors acknowledge the teams from several IBM

research and development laboratories around the world

that designed, developed, verified, and tested the

POWER6 chipset and systems. It is the innovation and

dedication of these people that has transformed the

POWER6 microprocessor from vision to reality.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., in the United States, other countries, or both.

References
1. B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and

J. B. Joyner, ‘‘POWER5 System Microarchitecture,’’ IBM J.
Res. & Dev. 49, No. 4/5, 505–521 (2005).

2. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B.
Sinharoy, ‘‘POWER4 System Microarchitecture,’’ IBM J.
Res. & Dev. 46, No. 1, 5–25 (2002).

3. W. J. Armstrong, R. L. Arndt, T. R. Marchini, N. Nayar, and
W. M. Sauer, ‘‘IBM POWER6 Partition Mobility: Moving
Virtual Servers Seamlessly Between Physical Systems,’’ IBM J.
Res. & Dev. 51, No. 6, 757–762 (2007, this issue).

4. T. N. Buti, R. G. McDonald, Z. Khwaja, A. Ambekar, H. Q.
Le, W. E. Burky, and B. Williams, ‘‘Organization and
Implementation of the Register-renaming Mapper for Out-of-
order IBM POWER4 Processors,’’ IBM J. Res. & Dev. 49,
No. 1, 167–188 (2005).

5. D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A.
Gupta, J. Hennessy, M. Horowitz, and M. S. Lam, ‘‘The
Stanford Dash Multiprocessor,’’ Computer 25, No. 3, 63–79
(1992).

6. B. Curran, B. McCredie, L. Sigal, E. Schwarz, B. Fleischer,
Y.-H. Chan, D. Webber, M. Vaden, and A. Goyal, ‘‘4GHzþ
Low-Latency Fixed-Point and Binary Floating-Point
Execution Units for the POWER6 Processor,’’ Proceedings of

the IEEE International Solid-State Circuits Conference
(ISSCC), San Francisco, CA, February 2006, pp. 1712–1734.

7. R. Kalla, B. Sinharoy, and J. M. Tendler, ‘‘IBM POWER5
Chip: A Dual-Core Multithreaded Processor,’’ IEEE Micro
24, 40–47 (2004).

8. E. M. Schwarz, M. Schmookler, and S. D. Trong, ‘‘FPU
Implementations with Denormalized Numbers,’’ IEEE
Transactions on Computers 54, No. 7, 825–836 (2005).

9. X. Y. Yu, Y.-H. Chan, M. Kelly, E. Schwarz, B. Curran, and
B. Fleischer, ‘‘A 5GHzþ 128-bit Binary Floating-Point Adder
for the POWER6 Processor,’’ Proceedings of the 32nd
European Solid-State Circuits Conference, Montreux,
Switzerland, September 2006; see http://www.ece.ucdavis.edu/
;yanzi/esscirc06_submit.pdf.

10. S. D. Trong, M. Schmookler, E. M. Schwarz, and M. Kroener,
‘‘P6 Binary Floating-Point Unit,’’ Proceedings of the 18th
IEEE Symposium on Computer Arithmetic, Montpellier,
France, 2007, pp. 77–86.

11. E. M. Schwarz, ‘‘Binary Floating-Point Unit Design: The
Fused Multiply-add Dataflow,’’ High-Performance Energy-
Efficient Microprocessor Design, V. G. Oklobdzija and R. K.
Krishnamurthy, Eds., Springer, Dordrecht, The Netherlands,
2006, pp. 189–208.

12. L. Eisen, J. W. Ward III, H.-W. Tast, N. Mäding, J. Leenstra,
S. M. Mueller, C. Jacobi, J. Preiss, E. M. Schwarz, and S. R.
Carlough, ‘‘IBM POWER6 Accelerators: VMX and DFU,’’
IBM J. Res. & Dev. 51, No. 6, 663–683 (2007, this issue).

13. M. J. Mack, W. M. Sauer, S. B. Swaney, and B. G. Mealey,
‘‘IBM POWER6 Reliability,’’ IBM J. Res. & Dev. 51, No. 6,
763–774 (2007, this issue).

14. J. W. Kellington, R. McBeth, P. Sanda, and R. N. Kalla,
‘‘IBMt POWER6e Processor Soft Error Tolerance Analysis
Using Proton Irradiation,’’ Proceedings of the IEEE Workshop
on Silicon Errors in Logic—Systems Effects (SELSE)
Conference, Austin, TX, April 2007; see http://www.selse.org/
Papers/28_Kellington_P.pdf.

15. D. W. Plass and Y. H. Chan, ‘‘IBM POWER6 SRAM
Arrays,’’ IBM J. Res. & Dev. 51, No. 6, 747–756 (2007, this
issue).

16. F. P. O’Connell and S. W. White, ‘‘POWER3: The Next
Generation of PowerPC Processors,’’ IBM J. Res. & Dev. 44,
No. 6, 873–884 (2000).

Received January 12, 2007; accepted for publication

Table 7 POWER6 processor functional signal I/O comparison for various systems.

Function I/O group Type of system

Large robust Midrange robust Entry level

Memory interfaces (I/Os) ;400 ;200 ;100

SMP fabric interfaces (I/Os) ;900 ;400 ;70

L3 cache interfaces (I/Os) ;420 ;210 0

I/O subsystem interfaces (I/Os) ;100 ;100 ;100

Total functional I/Os ;1,820 ;910 ;270

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 H. Q. LE ET AL.

661

March 9, 2007; Internet publication October 23, 2007

Hung Q. Le IBM Systems and Technology Group, 11400 Burnet
Road, Austin, Texas 78758 (hung@us.ibm.com). Mr. Le is a
Distinguished Engineer in the POWER* microarchitecture
development team of the Systems and Technology Group. He
joined IBM in 1979 after graduating from Clarkson University
with a B.S. degree in electrical and computer engineering. He has
worked on the development of several IBM mainframe and
POWER and PowerPC processors. His technical interests are in
the field of processor design involving multithreading, superscalar,
and out-of-order design.

William J. Starke IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (wstarke@us.ibm.com). Mr.
Starke is a Senior Technical Staff Member in the POWER
development team of the Systems and Technology Group. He
joined IBM in 1990 after graduating from Michigan Technological
University with a B.S. degree in computer science. After several
years of cache hierarchy and symmetric multiprocessor (SMP)
hardware performance analysis for both IBM mainframe and
POWER server development programs, he transitioned to logic
design and microarchitecture development, working initially on the
POWER4 and POWER5 programs. Mr. Starke led the
development of the POWER6 cache hierarchy and SMP
interconnect, and now serves as the Chief Architect for the
POWER7* storage hierarchy.

J. Stephen Fields IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (sfields@us.ibm.com). Mr.
Fields is a Distinguished Engineer in the POWER development
team of the Systems and Technology Group. He joined IBM in
1988 after graduating from the University of Illinois with a B.S.
degree in electrical engineering. He has worked on a variety of
development efforts ranging from the IBM Micro Channel*,
Peripheral Component Interface, and memory controllers, and he
has been working on microprocessor cache hierarchy and SMP
development since the POWER4 program. Mr. Fields currently is
responsible for post-silicon validation for POWER6 and POWER7
processors.

Francis P. O’Connell IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (oconnell@us.ibm.com).
Mr. O’Connell is a Senior Technical Staff Member in the POWER
system development area. For the past 22 years, he has focused on
scientific and technical computing performance within IBM,
including microprocessor and systems design, compiler
performance, algorithm development, and application tuning.
Mr. O’Connell joined IBM in 1981 after receiving a B.S. degree in
mechanical engineering from the University of Connecticut. He
subsequently earned an M.S. degree in engineering-economic
systems from Stanford University.

Dung Q. Nguyen IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758. Mr. Nguyen is a Senior
Engineer in the POWER development team of the Systems and
Technology Group. He joined IBM in 1986 after graduating from
the University of Michigan with an M.S. degree in materials
engineering. He has worked on the development of several
processors including POWER3*, POWER4, POWER5, and
POWER6. He is currently working on the POWER7
microprocessor. Mr. Nguyen’s technical interests are in the field of
processor design involving instruction sequencing and
multithreading.

Bruce J. Ronchetti IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (ronchett@us.ibm.com).
Mr. Ronchetti is a Senior Technical Staff Member in the POWER
system development area. For the past ten years, he has focused on
processor core microarchitecture development, particularly in load
and store units. Mr. Ronchetti joined IBM in 1979 after receiving a
B.S. degree in electrical engineering from Lafayette College.

Wolfram M. Sauer IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (wsauer@us.ibm.com).
Mr. Sauer is a Senior Technical Staff Member in the processor
development area. He received a diploma degree
(Diplom-Informatiker) in computer science from the University of
Dortmund, Germany, in 1984. He subsequently joined IBM at the
development laboratory in Boeblingen, Germany, and worked on
the S/370* (later S/390* and zSeries*) processor design, microcode,
and tools. He joined IBM Austin in 2002 to work on the POWER6
project.

Eric M. Schwarz IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(eschwarz@us.ibm.com). Dr. Schwarz is a Distinguished Engineer
in zSeries, iSeries*, and pSeries* processor development. He
received a B.S. degree in engineering science from The
Pennsylvania State University, an M.S. degree in electrical
engineering from Ohio University, and a Ph.D. degree in electrical
engineering from Stanford University. He joined IBM at the
Endicott Glendale Laboratories working on follow-ons to the
Enterprise System/4381* and Enterprise System/9370* computers.
He later worked on the G4, G5, G6, z900, z990, z9* 109, and
POWER6 processor-based computers. He led the development of
floating-point units for all these computers and was also Chief
Engineer of the z900. Dr. Schwarz is active in the IEEE
Symposium on Computer Arithmetic and has been on the program
committee since 1993.

Michael T. (Mike) Vaden IBM Systems and Technology
Group, 11400 Burnet Road, Austin, Texas 78758
(mtvaden@us.ibm.com). Mr. Vaden is a Senior Engineer. He has
worked on many of the POWER and PowerPC processors
including the logic design for the fixed-point unit in the RIOS
Single Chip, PowerPC 601 microprocessor, POWER5 and
POWER6 processors, and the L2 cache control logic for the
POWER3 and POWER3þ processors. Mr. Vaden holds a B.S.E.E
degree from Texas A&M University and an M.S.E.E degree from
the University of Texas at Austin.

H. Q. LE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

662

