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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Heterogeneous Chip
Multiprocessors

W ith the announcement of multicore
microprocessors from Intel, AMD,
IBM, and Sun Microsystems, chip
multiprocessors have recently ex-
panded from an active area of

research to a hot product area. If Moore’s law con-
tinues to apply in the chip multiprocessor (CMP)
era, we can expect to see a geometrically increasing
number of cores with each advance in feature size. 

A critical question in CMPs is the size and strength
of the replicated core. Many server applications
focus primarily on throughput per cost and power.
Ideally, a CMP targeted for these applications would
use a large number of small low-power cores. Much
of the initial research in CMPs focused on these
types of applications.1,2 However, desktop users are
more interested in the performance of a single appli-
cation or a few applications at a given time. A CMP
designed for desktop users would more likely be
focused on a smaller number of larger, higher-power
cores with better single-thread performance.  How
should designers choose between these conflicting
requirements in core complexity? 

In reality, application needs are not always so
simply characterized, and many types of applica-
tions can benefit from either the speed of a large
core or the efficiency of a small core at various
points in their execution. Further, the best fit of
application to processor can also be dependent on
the system context—for example, whether a laptop
is running off a battery or off wall power. 

Thus, we believe the best choice in core com-
plexity is “all of the above”— a heterogeneous chip
microprocessor with both high- and low-complex-
ity cores. Recent research in heterogeneous, or asym-
metric, CMPs has identified significant advantages
over homogeneous CMPs in terms of power and
throughput and in addressing the effects of Amdahl’s
law on the performance of parallel applications.

HETEROGENEITY’S POTENTIAL
Table 1 shows the power dissipation and perfor-

mance of four generations of Alpha microproces-
sor cores scaled to the same 0.10 µm feature size
and assumed to run at the same clock frequency.
Figure 1 shows the relative sizes of these cores. All
cores put together comprise less than 15 percent
more area than EV8—the largest core—by itself.
This data is representative of the past 20 years of
microprocessor evolution, and similar data exists
for x86 processors.3

Although the number of transistors per micro-
processor core has increased greatly—with attendant
increases in area, power, and design complexity—
this complexity has caused only a modest increase in
application performance, as opposed to performance
due to faster clock rates from technology scaling.
Thus, while the more complex cores provide higher

Heterogeneous (or asymmetric) chip multiprocessors present unique
opportunities for improving system throughput, reducing processor power,
and mitigating Amdahl’s law. On-chip heterogeneity allows the processor 
to better match execution resources to each application’s needs and to
address a much wider spectrum of system loads—from low to high thread
parallelism—with high efficiency.
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Table 1. Power and relative performance of Alpha cores scaled to  
0.10 µm. Performance is expressed normalized to EV4 performance.

Peak power Average power Performance 
Core (Watts) (Watts) (norm. IPC)  

EV4 4.97 3.73 1.00  
EV5 9.83 6.88 1.30  
EV6 17.8 10.68 1.87  
EV8 92.88 46.44 2.14  



single-thread performance, this comes with a loss of
area and power efficiency.

Further, in addition to varying in their resource
requirements, applications can have significantly
different resource requirements during different
phases of their execution. This is illustrated for the
applu benchmark in Figure 2.

Some application phases might have a large
amount of instruction-level parallelism (ILP),
which can be exploited by a core that can issue
many instructions per cycle, that is, a wide-issue
superscalar CPU. The same core, however, might
be very inefficient for an application phase with lit-
tle ILP, consuming significantly more power (even
after the application of gating- or voltage/frequency-
scaling-based techniques) than a simpler core that is
better matched to the application’s characteristics.
Therefore, in addition to changes in performance
over time, significant changes occur in the relative
performance of the candidate cores.

In Figure 2, sometimes the difference in perfor-
mance between the biggest and smallest core is less
than a factor of two, sometimes more than a factor
of 10. Thus, the best core for executing an appli-
cation phase can vary considerably during a pro-
gram’s execution. Fortunately, much of the benefit
of heterogeneous execution can be obtained with
relatively infrequent switching between cores, on
the order of context-switch intervals. This greatly
reduces the overhead of switching between cores
to support heterogeneous execution.

Heterogeneous multicore architectures have been
around for a while, in the form of system-on-chip
designs, for example. However, in such systems,
each core performs a distinct task. More recently,
researchers have proposed multi-ISA multicore
architectures.4 Such processors have cores that exe-
cute instructions belonging to different ISAs, and
they typically address vector/data-level parallelism
and instruction-level parallelism simultaneously.
Not all cores can execute any given instruction. In
contrast, in single-ISA heterogeneous CMPs, each
core executes the same ISA, hence each application
or application phase can be mapped to any of the
cores. Single-ISA heterogeneous CMPs are an exam-
ple of a multicore-aware processor architecture. The
“Multicore-Aware Processor Architecture” sidebar
provides additional information about this type of
architecture.

POWER ADVANTAGES
Using single-ISA heterogeneous CMPs can sig-

nificantly reduce processor power dissipation. As
processors continue to increase in performance and

speed, processor power consumption and heat dis-
sipation have become key challenges in the design of
future high-performance systems. Increased power
consumption and heat dissipation typically lead to
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Figure 1. Relative sizes of the Alpha cores scaled to 0.10 µm. EV8 is 80 times 
bigger but provides only two to three times more single-threaded performance.
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Figure 2. Applu benchmark resource requirements. (a) Performance of applu on
the four cores; (b) Oracle switching for energy; and (c) Oracle switching for
energy-delay product. Switchings are infrequent, hence total switching overhead
is minimal.
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higher costs for thermal packaging, fans, electricity,
and even air conditioning. Higher-power systems
can also have a greater incidence of failures.

Industry currently uses two broad classes of tech-
niques for power reduction: gating-based and volt-
age/frequency-scaling-based. Both of these tech-
niques exploit program behavior for power reduc-
tion and are applied at a single-core level. However,
any technique applied at this level suffers from lim-
itations. For example, consider clock gating. Gating
circuitry itself has power and area overhead, hence
it typically cannot be applied at the lowest granu-
larity. Thus, some dynamic power is still dissipated
even for inactive blocks. In addition, data must still
be transmitted long distances over unused portions
of the chip that have been gated off, which con-

sumes a substantial amount of power. Also, gating
helps reduce only the dynamic power. Large unused
portions of the chip still dissipate leakage power.
Voltage/frequency scaling-based techniques suffer
from similar limitations.

Given the ability to dynamically switch between
cores and power down unused cores to eliminate
leakage, recent work has shown reductions in
processor energy delay product as high as 84 per-
cent (a sixfold improvement) for individual appli-
cations and 63 percent overall.5 Energy-delay2—the
product of energy and the square of the delay—
reductions are as high as 75 percent (a fourfold
improvement), 50 percent overall.

Ed Grochowski and colleagues3 found that using
asymmetric cores could easily improve energy per

As we move from a world dominated by uniprocessors to one
likely to be dominated by multiprocessors on a chip, we have
the opportunity to approach the architecture of these systems
in new ways. Developers need to architect each piece of the sys-
tem not to stand alone, but to be a part of the whole. In many
cases, this requires very different thinking than what prevailed
for uniprocessor architectures.

Heterogeneous CMP design is just one example of multicore-
aware architecture. In the uniprocessor era, we designed one
architecture for the universe of applications. Thus, for applica-
tions that demand high instruction throughput, applications
with variable control flow and latencies, applications that access
large data sets, or applications with heavy floating-point
throughput, the best processor is superscalar and dynamically
scheduled, with large caches and multiple floating-point units,
and so on. However, few, if any, applications actually need all
those resources. Thus, such an architecture is highly overprovi-
sioned for any single application. 

In a chip multiprocessor, however, no single core need be ideal
for the universe of applications. Employing heterogeneity
exploits this principle. Conversely, a homogeneous design actu-
ally exacerbates the overprovisioning problem by creating a sin-
gle universal design, then replicating that overprovisioned design
across the chip. 

Heterogeneous CMP design, however, is not the only exam-
ple of multicore-aware architecture: Two other examples are a
conjoined core architecture and CMP/interconnect codesign.

Blurring the lines between cores
Some level of processor overprovisioning is necessary for mar-

ket and other considerations, whether on homogeneous or het-
erogeneous CMPs, because it increases each core’s flexibility.
What we really want, though, is to have the same level of over-
provisioning available to any single thread without multiplying
the cost with the number of cores. In conjoined-core chip mul-
tiprocessing,1 for example, adjacent cores share overprovisioned
structures by requiring only minor modifications to the floor
plan.

In the uniprocessor era, the lines between cores were always
distinct, and the cores could share only very remote resources.
With conjoined cores, those lines aren’t necessary on a CMP. 

Figure A shows the floorplan of two adjacent cores of a CMP
sharing a floating-point unit and level-1 caches. Each core can
access the shared structures either in turn during fixed allocated
cycles—for example, one core gets access to the shared struc-
ture every odd cycle while the other core gets access every even
cycle—or sharing can be based on certain dynamic conditions
visible to both the cores. Sharing should occur without com-
munication between cores, which is expensive.

Conjoining reduces the number of overprovisioned structures
by half. In the Figure A example, conjoining results in having
only four floating-point units on an eight-core CMP—one per
conjoined-core pair. Each core gets full access to the floating-
point unit unless the other core needs access to it at the same
time. Applying intelligent, complexity-effective sharing mecha-
nisms can minimize the performance impact of reduced band-
width between the shared structure and a core. 

The chief advantage of having conjoined cores is a significant
reduction in per-core real estate with minimal impact on per-
core performance, providing a higher computational capability
per unit area. Conjoining can result in reducing the area devoted
to cores by half, with no more than a 10 to 12 percent degra-
dation in single-thread performance.1 This can be used either to
decrease the area of the entire die, increase the yield, or support
more cores for a given fixed die size. Ancillary benefits include
a reduction in leakage power from fewer transistors for a given
computational capability.

CMP/interconnect codesign
In the uniprocessor era, high-performance processors con-

nected by high-performance interconnects yielded high-perfor-
mance systems. On a CMP, the design issues are more complex
because the cores, caches, and interconnect all reside on the same
chip and compete for the same area and power budget. Thus,
the design choices for the cores, caches, and interconnects can
interact to a much greater degree. For example, an aggressive

Multicore-Aware Processor Architecture



instruction by four to six times. In comparison,
given today’s already low core voltages of around
1 volt, voltage scaling could provide at most a two
to four times improvement in energy per instruc-
tion. Various types of gating could provide up to
two times improvement in energy per instruction,
while controlling speculation could reduce energy
per instruction by up to 40 percent. These tech-
niques are not mutually exclusive, and voltage scal-
ing is largely orthogonal to heterogeneity. However,
heterogeneity provided the single largest potential
improvement in energy efficiency per instruction.

THROUGHPUT ADVANTAGES
For two reasons, given a fixed circuit area, using

heterogeneous multicore architectures instead of

homogeneous CMPs can provide significant per-
formance advantages for a multiprogrammed
workload.6 First, a heterogeneous multicore archi-
tecture can match each application to the core best
suited to meet its performance demands. Second,
it can provide improved area-efficient coverage of
the entire spectrum of workload demands seen in
a real machine, from low thread-level parallelism
that provides low latency for few applications on
powerful cores to high thread-level parallelism in
which simple cores can host a large number of
applications simultaneously.

So, for example, in a homogeneous architecture
with four large cores, it would be possible to
replace one large core with five smaller cores, for a
total of eight cores. In the best case, intelligently
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interconnect design consumes power and area resources that
can then constrain the number, size, and design of cores and
caches. Similarly, the number and type of cores, as well as on-
chip memory, can also dictate requirements on the interconnect.
Increasing the number of cores places conflicting demands on
the interconnect, requiring higher bandwidth while decreasing
available real estate.

A recent study shows how critical the interconnect can be for
multicore design.2 On an eight-core processor, for example, even
under conservative assumptions, the interconnect can consume
the power equivalent of one core, take the area equivalent of
three cores, and add delay that accounts for over half the L2
access latency.

Such high overheads imply that it isn’t possible to design a
good interconnect in isolation from the design of the CPU cores
and memory. Cores, caches, and interconnect should all be co-
designed for the best performance or energy efficiency. A good
example of the need for codesign is that decreasing intercon-
nection bandwidth can sometimes improve performance due to
the constrained window on total resources—for example, if it
enables larger caches that decrease interconnect pressure. In the
same way, excessively large caches can also decrease perfor-
mance when they constrain the interconnect to too small an area. 

Hence, designing a CMP architecture is a system-level opti-
mization problem. Some common architectural beliefs do not hold
when interconnection overheads are properly accounted for. For
example, shared caches are not as desirable compared to private
caches if the cost of the associated crossbar is carefully factored in.2

Any new CMP architecture proposal should consider inter-
connect as a first-class citizen, and all CMP research proposals
should include careful interconnect modeling for correct and
meaningful results and analysis.
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scheduling jobs on the smaller cores that would
have seen no significant benefit from the larger core
would yield the performance of eight large cores in
the space of four.

Overall, a representative heterogeneous processor
using two core types achieves as much as a 63 percent
performance improvement over an equivalent-area
homogeneous processor. Over a range of moderate
load levels—five to eight threads, for example—the
heterogeneous CMP has an average gain of 29 per-
cent. For an open system with random job arrivals,
the heterogeneous architecture has a much lower
average response time and remains stable for arrival
rates 43 percent higher than for a homogeneous
architecture. Dynamic thread-to-core assignment
policies have also been demonstrated that realize
most of the potential performance gain. One simple
assignment policy outperformed naive core assign-
ment by 31 percent.6

Heterogeneity also can be beneficial in systems
with multithreaded cores. Despite the additional
scheduling complexity that simultaneous multi-
threading cores pose due to an explosion in the pos-
sible assignment permutations, effective assignment
policies can be formulated that do derive signifi-
cant benefit from heterogeneity.6

Figure 3 shows the performance of several heuris-
tics for heterogeneous systems with multithreaded
cores. These heuristics prune the assignment space
by making assumptions regarding the relative ben-
efits of running on a simpler core versus running
on a simultaneous multithreaded core. Various

sampling policies are used to choose good assign-
ments from the reduced assignment space.

We observed that learning policies that assume
the current configuration has merit and that the
next configuration will perform particularly well.6

The graph in Figure 3 also demonstrates the pri-
mary benefit of heterogeneity. Using four big cores
yields good few-threads performance, and using
many small cores (more than 20) yields high peak
throughput. Only the heterogeneous architecture
provides high performance across all levels of
thread parallelism.

With these policies, this architecture provides
even better coverage of a spectrum of load levels. It
provides the low latency of powerful processors at
low threading levels, but is also comparable to a
larger array of small processors at high-thread
occupancy. 

These thread assignment heuristics can be quite
useful even for homogeneous CMPs in which each
core is multithreaded. Such CMPs face many of the
same problems regarding explosion of assignment
space. In some sense, such CMPs can be thought
of as heterogeneous CMPs for scheduling purposes
where the heterogeneity stems from different mar-
ginal performance and power characteristics for
each SMT context.

As computing objectives keep switching back
and forth between single-thread performance and
throughput, we believe that single-ISA heteroge-
neous multicore architectures provide a convenient
and seamless way to address both concerns simul-
taneously.

MITIGATING AMDAHL’S LAW
Amdahl’s law7 states that the speedup of a par-

allel application is limited by the fraction of the
application that is serial. In modern CMPs, the
overall power dissipation is an important limit.
Murali Annavaram and coauthors8 point out a use-
ful application for heterogeneous CMPs in power-
constrained environments. 

During serial portions of execution, the chip’s
power budget is applied toward using a single large
core to allow the serial portion to execute as quickly
as possible. During the parallel portions, the chip’s
power budget is used more efficiently by running
the parallel portion on a large number of small
area- and power-efficient cores. Thus, executing
serial portions of an application on a fast but rela-
tively inefficient core and executing parallel por-
tions of an algorithm on many small cores can
maximize the ratio of performance to power dissi-
pation.
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Using a simple prototype built from a discrete
four-way multiprocessor, Annavaram and col-
leagues show a 38 percent wall clock speedup for
a parallel application given a fixed power budget.
Single-chip heterogeneous multiprocessors with
larger numbers of processors should be able to
obtain even larger improvements in speed/power
product on parallel applications.

WHAT HETEROGENEITY MEANS 
FOR SOFTWARE

To take full advantage of heterogeneous CMPs,
the system software must use the execution char-
acteristics of each application to predict its future
processing needs and then schedule it to a core that
matches those needs if one is available. The pre-
dictions can minimize the performance loss to 
the system as a whole rather than that of a single
application.

Recent work has shown that effective schedulers
for heterogeneous architectures can be implemented
and integrated with current commercial operating
systems.9 An experimental platform running Gentoo
Linux with a 2.6.7 kernel modified to support het-
erogeneity-aware scheduling resulted in a 40 percent
power savings, for a performance loss of less than 1
percent for memory-bound applications. Less than
a 3.5 percent performance degradation was observed
even for CPU-intensive applications.

To achieve the best performance, it might be nec-
essary to compile programs for heterogeneous CMPs
slightly differently. Compiling single-threaded appli-
cations might involve either compiling for the low-
est common denominator or compiling for the
simplest core. For example, for heterogeneous CMPs
in which one core is statically scheduled and one is
dynamically scheduled, the compiler should sched-
ule the code for the statically scheduled core because
it is more sensitive to the exact instruction order than
is a dynamically scheduled core. Having multiple
statically scheduled cores with different levels of
resources would present a more interesting problem.

Programming or compiling parallel applications
might require more awareness of the heterogeneity.
Application developers typically assume that com-
putational cores provide equal performance; het-
erogeneity breaks this assumption. As a result,
shared-memory workloads that are compiled assum-
ing symmetric cores might have less predictable per-
formance on heterogeneous CMPs.10 For such
workloads, either the operating system kernel or the
application must be heterogeneity-aware. 

Mechanisms for communicating the complete
processor information to software and the design

of software to tolerate heterogeneity need
more investigation. As future systems include
support for greater virtualization, similar
issues must be addressed at the virtual
machine layer as well.

These software changes will likely enhance
the already demonstrated advantages of het-
erogeneous CMPs.

FURTHER RESEARCH QUESTIONS
Many areas of future research remain for

heterogeneous CMPs. For example, research
to date has been performed using off-the-
shelf cores or models of existing off-the-shelf cores.
If designers are given the flexibility to design asym-
metric CMP cores from scratch instead of select-
ing from predetermined cores, how should they
design them to complement each other best in a
heterogeneous CMP? How do the benefits of het-
erogeneity vary with the number of core types as a
function of the available die area and the total
power budget? 

In previous studies, simple cores were a strict sub-
set of the more complex cores.5,6 What benefits are
possible if all the resources in the cores are not
monotonically increasing? Further, as workloads in
enterprise environments evolve toward a model that
consolidates multiple services on the same hardware
infrastructure,11 heterogeneous architectures offer
the potential to match core diversity to the diver-
sity in the varying service-level agreements for the
different services. What implications does this have
on the choice and design of the individual cores?

These are just some of the open research questions.
However, we believe answering these and similar
questions could show that heterogeneity is even more
advantageous than has already been demonstrated.

Future work should also address the impact of
heterogeneity on the cost of design and verification.
Processor design and verification costs are already
high. Designing and integrating more than one type
of core on the die would aggravate this problem.
However, the magnitude of the power savings and
the throughput advantages that heterogeneous
CMPs provide might justify these costs, at least for
limited on-chip heterogeneity. 

What is the sensitivity of heterogeneous CMP per-
formance to the number of distinct core types? Are
two types enough? How do these costs compare
with the cost for other contemporary approaches
such as different voltage levels? The answers to these
questions might ultimately determine both the fea-
sibility and the extent of on-chip diversity for het-
erogeneous CMPs.
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Effective schedulers
for heterogeneous

architectures
can be implemented
and integrated with
current commercial
operating systems.
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I ncreasing transistor counts constrained by power
limits point to the fact that many of the current
processor directions are inadequate. Monolithic

processors consume too much power, but they do
not provide enough marginal performance.
Replicating existing processors results in a linear
increase in power, but only a sublinear increase in
performance. In addition to suffering from the same
limitations, replicating smaller processors cannot
handle high-demand and high-priority applications. 

Single-ISA heterogeneous (or asymmetric) multi-
core architectures address all these concerns, result-
ing in significant power and performance benefits.
The potential benefits from heterogeneity have
already been shown to be greater than the potential
benefits from the individual techniques of further
voltage scaling, clock gating, or speculation control.

Much research remains to be done on the best
types and degrees of heterogeneity. However, the
advantages of heterogeneous CMPs for both
throughput and power have been demonstrated
conclusively. We believe that once homogeneous
CMPs reach a total of four cores, the benefits of
heterogeneity will outweigh the benefits of addi-
tional homogeneous cores in many applications. �
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