
0018-9162/07/$25.00 © 2007 IEEE June 2007 49P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

chip level. In turn, this enables cost benefits from
reduced component count. Additionally, enhanced
resource sharing leads to better performance. On-chip
components can now be easily shared to improve
resource utilization, such as core sharing via hyper-
threading, shared caches, and I/O interfaces. However,
the same features of multicore processors that offer ben-
efits can also present drawbacks. In particular, the
increased levels of consolidation and integration lead to
important isolation concerns—for performance, secu-
rity, and fault tolerance.

Fault tolerance is an area of major concern. This is a
particularly important issue given that recent studies have
shown dramatic increases in the number of hardware
errors when scaling technology to smaller feature sizes.4

Developers have encountered two main kinds of errors.
First, defects in the silicon cause permanent or intermit-
tent hardware faults, resulting in wear out over time and
leading to hard errors. Second, electrical noise or exter-
nal radiation can cause transient faults when, for exam-
ple, alpha radiation from impurities or gamma radiation
from outside changes random bits, leading to soft errors.

With CMPs, the fault-tolerance problem is com-
pounded because a fault in any single component can
lead to the failure of the entire chip. The failure in time
(FIT) of cores, caches, memory, or I/O components com-
bines to provide a high FIT for the CMP. Future CMP

Resource sharing in modern chip multiprocessors (multicores) provides many cost and

performance benefits. However, component sharing also creates drawbacks for fault,

performance, and security isolation.Thus, integration of components on a multicore chip

should also be accompanied by features that help isolate effects of faults, destructive

performance interference, and security breaches.

Nidhi Aggarwal, University of Wisconsin-Madison

Parthasarathy Ranganathan and Norman P. Jouppi, Hewlett-Packard Laboratories

James E. Smith, University of Wisconsin-Madison

T echnology scaling and power trends have led to
the widespread emergence of chip multiproces-
sors (CMPs) as the predominant hardware par-
adigm.1 Multiple cores are being integrated on
a single chip and made available for general-

purpose computing. Intel and AMD manufacture dual-
core processors and, more recently, quad-core proces-
sors. From a system viewpoint, CMPs provide higher
levels of integration, typically including multiple pro-
cessing cores, caches, memory controllers, and even
some I/O processing—all in a single socket. The Sun
Niagara processor, for example, includes eight cores, a
shared second-level cache, and integrated memory con-
trollers and I/O interfaces. The IBM Power5 dual-core
processor has an on-chip memory controller.

Trends toward multiple cores will likely continue.
Indeed, at a recent Intel Developer Forum, the company
announced an aggressive roadmap of multicore proces-
sors with on-chip integration, including an 80-core pro-
totype chip. AMD and other processor vendors have
similar roadmaps. Further research in the academic com-
munity focuses on processors with a much larger num-
ber of cores,2 as well as interesting variations in the
design of multicore chips to include asymmetric and con-
joined multicore processors.3

This scaling to include more cores allows for greater
computational capability and system integration at the

Isolation in
Commodity
Multicore Processors

50 Computer

designs must offer the capability to isolate the faulty
components and map them out so that the chip can be
used with the remaining fault-free components.4

Figure 1 shows a conventional CMP architecture with
eight cores, P0 … P7, each with private L1 caches, an
eight-way banked, shared L2 cache, four memory con-
trollers, and coherent links—such as Hypertransport—
to other CMP sockets or I/O hubs. In this architecture, a
bidirectional ring connects the processors and cache
banks, but other configurations with more complex 2D
arrangements, such as meshes and interleaved layouts,
are possible.

As the number of cores in a CMP increases geometri-
cally with lithographic scaling, a failure in one part of

the conventional organization affects
increasingly larger amounts of computa-
tional capability. For example, if the system
shares all L2 cache banks and employs low-
order address interleaving among the
banks, a transient fault in the cache con-
troller state machine can lead to an erro-
neous coherence state. Using error detecting
codes on a coherence bit does not help in
this case because the fault lies in the cache
controller logic, before the coherence bits
are set. Such a fault affects an entire chip’s
availability. Similarly, a fault in a memory
controller, or anywhere in the ring inter-
connect, affects all the cores.

As the “Examining Current Commodity
CMPs for Fault Isolation” sidebar describes,
in the past when individual processors, mem-
ory controllers, and cache memory SRAMs
provided the basic system building blocks, sys-
tem designers could achieve good fault isola-
tion by combining these chip-level compo-
nents into redundant configurations at the
board level. When necessary, designers can
incorporate small amounts of application-spe-
cific integrated circuit (ASIC) glue logic. For
example, the HP NonStop Advanced Archi-
tecture implements process pairs and fault-
containment boundaries at the socket level.

With multicore approaches, however,
socket-level isolation is no longer an attrac-
tive solution, and neither is using off-chip
glue logic, especially for small systems. With
growing numbers of cores at the socket
level, implementing redundant configura-
tions using different parts of a single multi-
core processor has become increasingly
desirable. However, the lack of fault isola-
tion in current multicore processors makes
this impossible.

CHALLENGES
Static isolation, in which independent computers are

fabricated on the same die, is a very straightforward
approach to providing isolation in multicore processors.
As Figure 2 shows, each computer has its own memory
controller and I/O connections. This architecture has
several disadvantages, however. The static partitioning
of cache resources—which inhibit any interprocessor
sharing—significantly reduces overall system perfor-
mance and has not been used in proposed CMP designs.
Similarly, static partitioning of chip interfaces and pins
uses off-chip bandwidth inefficiently, making such a
design unattractive for high-volume applications in
which performance rather than high availability is the
objective. Therefore, this offers a poor design choice for

P0 P1 P2 P3 P4 P5 P6 P7

L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7

L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Figure 1. Conventional chip multiprocessor architecture.This CMP architec-

ture has eight cores, P0 ... P7, each with private L1 caches; an eight-way

banked, shared L2 cache, B0 … B7; four memory controllers; and coherent

links to other sockets or I/O hubs; FBD, IMM = fully buffered dual in-line mem-

ory module, Link adpt = link adapter, and Mem ctrl = memory controller.

Mem

Ctrl
Link

Adpt

FBDIMM

FBDIMM

L1 D1

Mem

Ctrl
Link

Adpt

FBDIMM

FBDIMM

L1 D1

Mem

Ctrl
Link

Adpt

FBDIMM

FBDIMM

L1 D1

B0

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0

L1 D1

B1

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P1

L1 D1

B7

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P7

L1 D1

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Figure 2. Static isolation. Independent computers are fabricated on the same

die, and each computer has its own memory controller and I/O connections.

balancing the tradeoffs between isolation and the ben-
efits from shared resources.

The challenge therefore is to design techniques for
configuring “off-the-shelf” CMPs with relatively little
added on-chip hardware and complexity into high-avail-
ability, redundant systems. This can enable configuring

the levels of sharing dynamically, allowing isolation to
be selectively turned on when needed.

CONFIGURABLE ISOLATION
We propose CMP implementations with configurable

isolation—a set of techniques for dynamically config-

June 2007 51

Examining Current Commodity CMPs for Fault Isolation

We analyzed the reliability and availability features of
five commodity multicore architectures from key ven-
dors: IBM’s Power5,1,2 AMD’s Opteron,3 Sun’s Niagara,4

and Intel’s Xeon5 and Montecito.6 Figures A shows the
five commodity CMP architectures.

AMD’s Opteron 64-bit microprocessor has an on-
chip memory controller and three HyperTransport
links. The links connect an Opteron to other Opteron
processors without additional chips. The Opteron has
error-correcting codes (ECC) and protects large storage
arrays like caches and memory. Hardware scrubbers
are implemented for the L1 data cache, L2 cache tags,
and DRAM, which supports chip kill ECC.

Sun Niagara is a CMP of multithreaded cores that
supports 32 threads, with four threads per core. All the
cores share a single floating-point unit. The memory
system consists of an on-chip crossbar, L2 cache, and
memory controllers. Each L2 bank connects to one
memory controller. Niagara also supports ECC, chip
kill, and memory scrubbing to protect against errors in
the storage arrays. In addition, the chip has extensive
support for per-thread trap detection and notification.

In the Northbridge, Intel Xeon-based 64-bit multi-
processors have multiple cores sharing a single external
memory controller. The Xeon also supports ECC, par-
ity, and scrubbing to protect the storage arrays.

The IBM Power5 is a dual-core, two-way SMT
processor with an on-chip memory controller. Power5-
based multiprocessors have extensive error checking
and also include reliability features such as support for
CPU sparing, chip kill, ECC, and parity for the memory
hierarchy.

Intel Montecito is an Itanium-based dual-core and
dual-threaded processor. Montecito provides parity
protection for register files in addition to the ECC,
scrubbing, and parity protection in the memory
hierarchy. It also supports steering logic to isolate hard
errors in the L3 cache lines.

Key Components

We divided each CMP into different components
and then characterized whether they satisfied key
requirements for fault tolerance: fault isolation, fault
detection, and online repair. These three requirements
are typically satisfied by employing redundancy. Continued on the next page

P0 P1 P2 P3 P4 P5 P6 P7

L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

P0 P1 P2 P3 P4 P5 P6 P7

L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

DIMM DIMM DIMM DIMM

L1 D1 L1 D1

Mem
ctrl

DIMM

P0

L1 D1

P1

L1 D1

L2

L1 D1 L1 D1

Mem
ctrl

DIMM

P0

L1 D1

P1

L1 D1

L3 L3

L2 I L2 D L2 I L2 D

L1 D1 L1 D1

Mem
ctrl

DIMM

P0

L1 D1

P1

L1 D1

L2

L1 D1 L1 D1

Mem
ctrl

DIMM

P0

L1 D1

P1

L1 D1

L2 L2

L2

Mem
ctrl

Mem
ctrl

Mem
ctrl

Mem
ctrl

(1) (2)

(3)

(4) (5)

Figure A. High-level architectural block diagrams of the vari-

ous commodity processors studied. Diagrams 1-5 correspond-

ingly approximate the IBM Power5, AMD Opteron, Sun

Niagara, Intel Xeon, and Intel Montecito.

52 Computer

Cores

Inside the core, currently transient fault detection
is mainly restricted to the register file via parity or ECC.
Montecito provides an exception with its built-in lockstep
support and internal soft-error-checking capabilities.
Opteron, Xeon, and Niagara have no fault isolation, so an
error originating in any core can propagate to all other
cores through the shared system components. Power5
and Montecito provide some degree of isolation for cores
in different logical or electrical partitions, respectively.

In summary, all the commodity CMP architectures are
vulnerable to soft errors, except Montecito in its lockstep
configuration.

Caches

Most architectures are resilient to errors in the cache
array and provide ECC or parity checking at all cache
levels. However, Opteron and Xeon cannot tolerate
errors that are not correctable by ECC alone, such as
multibit errors. Niagara, Power5, and Montecito have
more redundancy and fault isolation and can tolerate
important classes of multibit errors. These CMPs usually
share at least one level of the cache hierarchy, either
across cores or contexts. However, none of the com-
modity CMPs can tolerate errors in the associated cache
control circuitry.

Memory

Memory is perhaps the most fault-tolerant resource
in commodity CMP systems. All the conditions for fault
tolerance are satisfied in the memory arrays. This also
reflects that historically memory is a system’s most
error-prone component.

All the architectures have sophisticated techniques
like chip kill, background scrubbing, and DIMM-
sparing to tolerate failures. However, there is no tol-
erance to failures in memory access control circuitry.
A failure in any memory controller or anywhere in the
interconnect would affect all the cores. For example,
in a design like the Xeon, an error in one memory
controller in the shared Northbridge memory con-
troller hub can affect multiple cores. On the other
hand, in Opteron the failure of an on-chip memory
controller can potentially be isolated to the cores in
that chip.

Summary

Overall, we find that existing transient fault detection
is limited to storage arrays such as register files, cache,
and memory arrays. The lack of system-level fault isola-
tion poses the biggest problem. Shared components do
not have adequate fault isolation because a fault in one
shared component can affect all cores on the chip. This

Table A. IBM zSeries.

Component Redundancy Fault isolation Fault detection Online repair

Core 8 spare processors Processors checkstops Mirrored pipeline, ECC, and Dynamic core sparing, checkpoint
(in 4 books) on failure parity with retry in register at each instruction boundary,

files concurrent book add, checkpoint
transplant to spare processor,
separate register file for checkpoint

Cache Active redundant Special uncorrectable L1 - parity protected, Capability to add new cache at L2
L2 cache, redundant error codes L2 - ECC protected, ring interface, retry
L2 rings XOR checking of control

signals from L2 chips
Memory Spare DRAM chips, Isolation of erroneous TMR for store keys, ECC, memory Concurrent book add, chip kill, ECC

redundant main storage DRAM chip and store scrubbing, extra ECC code space,
controller, redundant key special uncorrectable error (UE)
store protect keys codes to indicate error source

I/O Redundant memory bus Single memory bus Parity protection, command Operation retries, concurrent book
adapters (per book), adapter clockstep reject request, forced hang, add
I/O resources shared design special UE tag for known
across all partitions uncorrectable data

System data Redundant buses Independent buses, Parity protected tag bit for Call for repair
and control immediate checkstop uncorrectable data
buses on control bus UE,

regeneration of ECC
across interfaces

June 2007 53

Table B. HP NonStop.

Component Redundancy Fault isolation Fault detection Online repair

Core Dual or triple modular Isolated to a CPU Compare results of I/O Reintegration of new processing
redundancy element, dedicated reintegration

link
Cache Dual or triple modular Isolated to cache Compare results of I/O Replace processor slice

redundancy
Memory Dual or triple modular Isolated to memory, Compare results of I/O, symmetric Replace processor slice

redundancy no shared memory handling of interrupts for memory
coherence across replicas

I/O Dual redundant SAN Independent fabrics Self-checked circuits Online replacement of logical
synchronization units

System data Redundant buses Independent buses CRC checksums Replace processor slice
and control
buses

is true even if the system is running programs in a dual-
modular redundant (DMR) or triple-modular redun-
dant (TMR) configuration.

Comparing High-End, High-Availability Systems

We also examined two state-of-the-art systems, the
IBM zSeries, shown in Table A, and the HP NonStop,
shown in Table B. Enterprise-class applications that
demand continuous availability use both of these
systems.

The NonStop systems are DMR or TMR fault-
tolerant servers built from standard HP four-way SMP
Itanium server processor modules, memory boards,
and power infrastructure. The processors communi-
cate with each other and with shared I/O adapters
through the ServerNet system area network (SAN).
Each row of processors in a dual-mode or triple-mode
redundant configuration forms one logical processor,
which is made up of processor elements, one from
each of the slices. The logical processor is the self-
checked member of the cluster. Each processor ele-
ment is a microprocessor running its own instruction
stream and has a portion of the slice memory dedi-
cated to its use. There are no synchronized clocks
among the slices. The system compares all outputs
from the servers at the I/O operation level (both IPC
and device I/O) for 100 percent detection of faults.
The voters themselves are self-checked.

The IBM zSeries servers incorporate extensive
reliability, availability, and serviceability features to
prevent both hard and soft errors. The zSeries
pipeline is duplicated and each instruction checked
before committing its results to an architected
state. The servers have extensive redundancy in all
components, including processors, L2 rings, L2

cache, and memory bus adapters. Most of the
redundant components can be deployed dynami-
cally, with no downtime, using techniques like
Concurrent Book Add and Dynamic CPU Sparing.
Wendy Bartlett and Lisa Spainhower provide an
excellent discussion of the evolution of the
NonStop and zSeries systems.7

References

1. D.C. Bossen et al., “Fault-Tolerant Design of the IBM
Pseries 690 System Using Power4 Processor Technology,”
IBM J. Research and Development, vol. 46, no. 1, 2002,
pp. 77-86.

2. “IBM Power5 Processor-Based Servers: A Highly Available
Design for Business-Critical Applications,” IBM white paper;
www.ibm.com/systems/p/hardware/whitepapers/power5_
ras.html.

3. C.N. Keltcher et al., “The AMD Opteron Processor for Mul-
tiprocessor Servers,” IEEE Micro, vol. 23, no. 2, 2003, pp.
66-76.

4. P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-
Way Multithreaded Sparc Processor,” IEEE Micro, vol. 25,
no. 2, 2005, pp. 21-29.

5. “Reliability, Availability, and Serviceability for the Always-on
Enterprise,” Intel white paper; www.intel.com/business/
bss/products/server/ras.pdf.

6. C. McNairy and R. Bhatia, “Montecito: A Dual-Core, Dual-
Thread Itanium Processor,” IEEE Micro, vol. 25, no. 2, 2005,
pp. 10-20.

7. W. Bartlett and L. Spainhower, “Commercial Fault Toler-
ance: A Tale of Two Systems,” IEEE Trans. Dependable and
Secure Computing, vol. 1, no. 1, 2004, pp. 87-96.

54 Computer

uring the system with different isolation levels by con-
trolling resource sharing. Figure 3 shows one such
system.

The key difference between the system in Figure 3
and the one in Figure 1—the baseline architecture—is
the introduction of low-cost configurable isolation at
the interconnect, caches, and memory controller lev-
els. For example, the ring interconnect in Figure 1 has
been cut apart and reconfigured to create multiple log-
ically independent rings using configuration cross-
links similar to the ring configuration units (RCU)
shown in Figure 4. Physically, the ring is expected to
form the chip’s central spine, so the crosslinks should

be less than a millimeter long, and their
activation requires inserting a multiplexer
at the input of a ring interface incoming
data port. The crosslinks and input multi-
plexers introduce a small additional fixed
cost in terms of area and power, which
does not significantly increase the design’s
cost for system configurations in which
higher availability is not an objective.

As shown, an RCU can be implemented
using multiplexers. Under software config-
uration control, the multiplexers can pass
signals through to create a larger ring, or
they can divide the larger ring into separate
segments. The crosslinks are also expected
to be shorter than the ring segments
between cores, so the crossconnects should
operate at least as fast as core-to-core or
bank-to-bank ring segments.

Because the cross-links and input multi-
plexers are shared and can form a single

point of failure, they must be implemented using self-
checked logic if the design requires stringent fault tol-
erance. At the cache level, providing configurable
isolation requires small changes to the ring and bank
addressing. When the system software partitions the
intercore interconnect, fewer address bits are required
for interleaving among L2 cache banks within a single
domain. Therefore, the L2 cache size available in a
domain is inversely proportional to the number of
domains.

Providing reconfiguration capabilities for cache banks
and memory controllers requires the addition of two
mode bits and extra tag bits. The first mode bit and one
extra tag bit enable caching lines from the bank con-
nected to the same memory controller. Another mode
and two tag bits can enable caching lines from banks
connected to a different memory controller. Overall, the
number of extra bits required in a bank to enable
caching of lines from any other bank in the system is
log2 (number of banks).

This architecture offers the advantage that the system
can be partitioned into separate domains on the fly, start-
ing, for example, with Figure 1, and using configurable
isolation to separate faulty domains from working
domains. If there is a core fault, system software can iso-
late it within its domain and continue functioning with
cores in the remaining, working domains. Further, the pro-
posed architecture can continue functioning in the event
of faults in cache banks, memory controllers, and the inter-
connection network. For example, if a fault occurs in a
cache bank—say, B0 in Figure 1—then all the lines in that
bank can be cached in the bank that shares the memory
controller with the faulty bank—in this case B1. Should a
memory controller fault occur, lines cached by both the
B4 and B5 banks, connected with the memory controller,

Mux

Mux

Mux

Mux

Figure 4. Ring configuration units. Physically, the ring forms the

chip’s central spine, so the cross-links should be less than a mil-

limeter long.Their activation requires inserting a multiplexer at

the input of a ring interface incoming data port.

P0 P1 P2 P3 P4 P5 P6 P7

L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7

L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Figure 3. Configurable isolation.The introduction of low-cost configurable

isolation at the interconnect, caches, and memory-controller levels provides

a set of techniques for configuring the system with different isolation levels

by controlling resource sharing.

can be cached by two other banks connected
to a fault-free memory controller: B6 and B7.
Similarly, link adapter and interconnect fail-
ures can be tolerated by isolating the faulty
components and reconfiguring the system to
use the remaining fault-free components.

The architecture in Figure 3 offers another
advantage. Because system software can now
divide the multicore processor into separate
isolated domains, the separate domains can
execute redundant copies of the same soft-
ware to check for soft or transient errors. For
example, Figure 5 shows how the system can
be configured into two domains. The system
employs resources from two domains to run
dual-modular redundant (DMR) process
pairs, with computations in the one domain
(red in the figure) replicated in the second
(green) domain when higher availability is
required. In this design, self-checked voters
compare the output of the redundant execu-
tion to detect errors.

For highest availability, voters can be
implemented in I/O hubs connected to
adapters from the redundant domains, sim-
ilar to the hardware voters in the Nonstop
Advanced Architecture.5 For lower-cost, lower-avail-
ability solutions, hypervisors that communicate between
the redundant domains through I/O can implement the
voter.6 Similarly, we could start with Figure 3 and use
three isolated domains to enable a triple modular redun-
dant (TMR) configuration. Further, the number of
domains need not be static if the RCUs are self-checked,
and they can be changed as system needs evolve.

BENEFITS
Configurable isolation in a CMP lets reconfiguration

map out the faulty component and provides graceful
performance degradation. We evaluated the impact of
hard faults and subsequent reconfiguration on the sys-
tem’s computing capacity over its lifetime by compar-
ing three architectures:

• Shared. A completely shared system similar to pro-
posed CMPs, as shown in Figure 1.

• Static isolation. A completely private system with full
isolation, as shown in Figure 2.

• Configurable isolation. Our proposed architecture,
with reconfiguration and configurable isolation, as
shown in Figure 3.

Because the configurable-isolation architecture does
not contain any modification to the cores, the size of the
working set and its effect on cache behavior is the most
important workload characteristic. Using SPEC bench-
marks, we constructed three workloads with large,

mixed, and small memory footprints. Over the course
of a simulation run, as cores become unusable due to
hard faults, benchmarks drop from the workloads,
reflecting the loss of computing capability.

The fault model is based on state-of-the-art technol-
ogy and derived from detailed and confidential micro-
processor vendor models. We used HP-internal fault-
analysis experiments to calibrate the fault model. The
fault data includes FIT rates and distributions for hard
and soft errors per component. We modeled five differ-
ent regions that represent the granularity of reconfigu-
rations: core and L1 cache, L2 circuitry, L2 banks,
memory controller circuitry, and link controller.

On the shared system, any hard fault leads to system
failure. This means that after a failure, such a system’s
throughput drops to zero for all workloads. On the sta-
tically isolated system, any single fault leads only to the
loss of throughput from the benchmark mapped to that
private system. For example, even a fault in the bank asso-
ciated with a core leads to that core being unusable. On
a configurable isolated system, a fault—in a memory con-
troller, for example—leads to loss of performance from
the banks connected to the memory controller, but not
the loss of a workload. Only when a core fails does a
benchmark drop from the workload. Thus, the entire sys-
tem becomes unusable in the configurable isolated archi-
tecture only when the last component of any type fails.

To make evaluation feasible, we used a two-phase
methodology to simulate the performance of different
processor configurations for various fault-arrival

June 2007 55

P0 P1 P2 P3 P4 P5 P6 P7

L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7

L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

Link
adpt

Mem
ctrl

V

V

Figure 5. Dual fault domains.The system can be configured into two domains

to run a dual-modular redundant process pair, with computations in the one

domain (red) replicated in a second (green) domain when the system requires

higher availability.

56 Computer

scenarios. First, using more than one machine-year, we
ran a full-system simulator to exhaustively simulate the
possible system configurations and compute the
throughput of all configurations, subject to specific poli-
cies. Second, we performed a Monte Carlo simulation
using a detailed component-level fault model. By run-
ning the Monte Carlo simulation for 10,000 runs, we
simulated fault injection in a total of 10,000 systems,
with each run comprising 100,000 simulated hours—
approximately 11 years, as Figure 6 shows.

All simulations were done using a full system x86/x86-
64 simulator based on AMD SimNow, which can boot
an unmodified Windows or Linux OS and execute com-
plex application programs. We used a timing model with
a memory hierarchy similar to that supported by an
AMD Opteron 280 processor, except with smaller L2
cache sizes to match the workloads’ working set.1

As Figure 6a shows, performance degrades more
gracefully with respect to hard faults in a system with
configurable isolation. The average performance of the
configurable isolation architecture degrades by less than
10 percent over 10 years. In contrast, the fully shared
configuration degrades by almost 60 percent over the
same period.

Figure 6b provides an alternate view of configurable
isolation’s benefits, showing the number of component
replacements for each of the three approaches. We assume
that the system continues to stay operational until the
performance dips below a certain threshold, after which
the entire multicore component must be replaced and the
performance reinitialized to that of the no-fault configu-
ration. The simulation then continues for the remainder
of the 100,000 hours with the new system.

We consider three cases in which the performance
threshold is set to 90, 75, and 50 percent of initial per-
formance. The total number of replacements across

Small memory workload

0

0.20

0.40

0.60

0.80

1.00

2.0 4.0 6.0 8.0 10.0 12.0
 (a)

Mixed memory workload

0

0.20

0.40

0.60

0.80

1.00

2.0 4.0 6.0 8.0 10.0 12.0
(b)

(c)

Large memory workload

0

0.20

0.40

0.60

0.80

1.00

2.0 4.0 6.0 8.0 10.0 12.0
Time in years

Time in years

Time in years

No
rm

al
ize

d
pe

rfo
rm

an
ce

No
rm

al
ize

d
pe

rfo
rm

an
ce

No
rm

al
ize

d
pe

rfo
rm

an
ce

Configurable
Static isolation
Shared

Figure 7.Three dual-modular redundant (DMR) configuration

architectures: shared, statically isolated, and configurable iso-

lation.The benefits of configurable isolation for providing

graceful performance degradation in the event of hard faults

(for DMR systems with transient fault protection) are shown

across three memory workloads: (a) small, (b), mixed, and (c)

large.

0

0.20

0.40

0.60

0.80

1.00

2.0 4.0 6.0 8.0 10.0 12.0
Time in years(a)

0

0.2

0.4

0.6

0.8

1.0

10% degradation 25% degradation 50% degradation
(b)

No
rm

al
ize

d
co

m
po

ne
nt

 re
pl

ac
em

en
ts

No
rm

al
ize

d
pe

rfo
rm

an
ce

Configurable
Static isolation
Shared

Configurable
Static isolation
Shared

Figure 6. Evaluating the benefits of reconfiguration. Normal-

ized performance from Monte Carlo hard-fault simulation over

an 11-year period generated the results shown for three archi-

tectures—a baseline conventional system with full sharing; the

proposed system, with configurable isolation; and a system

with static isolation: (a) Performance over time and (b) normal-

ized component replacements.

10,000 Monte Carlo runs for a statically isolated and
configurable isolated system is normalized with respect
to the total number of replacements for a fully shared
system. In such a system, every fault leads to system
replacement because the performance drops to zero.
These results show that the architecture with config-
urable isolation dramatically reduces the need to replace
components irrespective of performance thresholds.

Figure 7 presents results for the three architectures
when used in a DMR configuration. In this configura-

tion, a core failure would lead to loss of throughput
from both copies of the benchmark. Since memory foot-
print affects performance significantly in this configu-
ration, we present results for the large, mixed, and small
memory workloads in Figures 7a, b, and c, respectively.

As expected, the shared system performs worst, with a
dramatic degradation in average performance of 30 to
35 percent during the first two years, and degradation
close to 50 percent by the end of five years. The statically
isolated configuration is more resilient to failures and pro-

June 2007 57

Other Benefits from Isolation

In addition to fault isolation that enables more
graceful degradation of performance in the pres-
ence of faults, isolation offers other benefits.

Power Reprovisioning

Isolation can lead to optimizations that are
otherwise impossible. For example, with suitable
fault-isolation support, the power budget could
be dynamically reprovisioned by reassigning the
power allotments of faulty components to the
remaining fault-free components. Figure B shows
the results assuming a future fault-model when
a failed core’s power budget can be reallocated
dynamically to increase the clock frequency of
the remaining cores, leading to improved system
performance.

Trust and Performance

Other kinds of isolation include trust and perfor-
mance. Consider, for example, scenarios in which
workloads of different priorities compete for shared
resources or have destructive interference—such as
a background virus scanner running in parallel with
an interactive user application. Support for isolation can
ensure that the system partitions resources for the two
workloads dynamically to avoid conflict. Similarly, in
environments where the same computing platform
hosts multiple workloads with different service-level
agreements, configurable isolation can be used to
partition resources to end users based on priority.

Recent studies describe the need for and benefits of
performance isolation in a CMP.1,2 Kyle Nesbit and
colleagues2 propose a virtual private machine system
that allocates a set of CMP resources—processors,
bandwidth, and memory resources—to individual
tasks. Virtual private machines isolate performance
for coscheduled tasks in a CMP and ensure that the
performance does not vary significantly regardless of
the load placed on the system by other tasks.

Even if performance is not an issue, from a security
and trust viewpoint, isolation could still prove useful to

avoid malicious attacks from one user or application
affecting other users or applications hosted on the
same multicore. Dong Woo and Hsien-Hsin Lee3 sug-
gest active monitoring to identify denial-of-service
attacks and point out the challenges in differentiating
attack scenarios from normal heavy-usage cases.

References

1. R. Iyer, “CQoS: A Framework for Enabling QoS in Shared
Caches of CMP Platforms,” Proc. Int’l Conf. Supercomputing
(ICS 04), ACM Press, 2004, pp. 257-266.

2. K.J. Nesbit, J. Laudon, and J.E. Smith, “Virtual Private
Caches,” Proc. Int’l Symp. Computer Architecture (ISCA 07),
IEEE CS Press, 2007, in press.

3. D.H. Woo and H.H. Lee, “Analyzing Performance Vulnera-
bility Due to Resource Denial-of-Service Attack on Chip Mul-
tiprocessors,” Proc. Workshop Chip Multiprocessor Memory
Systems and Interconnects, 2007.

0 2.0 4.0 6.0 8.0 10.0 12.0
Time in years

0.20

0.40

0.60

0.80

1.00

No
rm

al
ize

d
pe

rfo
rm

an
ce

10X-power reprovisioning-Mixed

Configurable power
Configurable
Static isolation power
Static isolation
Shared

Figure B. Dynamic power reallocation with a future fault-model.

System performance can be improved when a failed core’s power

budget is reallocated dynamically to increase the clock frequency

of the remaining cores.

58 Computer

vides more gradual performance degradation. Over five
years, the net performance loss is only 10 to 15 percent.

The results for the large memory workload in Figure
7c are particularly interesting. Here, the isolated con-
figurations (statically isolated and configurable isolated),
by virtue of having private caches, initially underper-
form the shared configuration. However, compared to
the fully shared system, the statically isolated system
becomes performance competitive at around two years,
the crossover point in the curves in Figure 7c.

Figure 8 presents the results for the number of com-
ponent replacements required for the three architectures
across all three workloads. The configurable isolation
system consistently achieves the best performance across
all workloads. With configurable isolation, resources
can still be shared within a given fault domain.
Additionally, dynamically repartitioning the resources
leads to the most graceful degradation across all three
workloads.

Several enhancements to the configurable isolation
architecture provide additional benefits. For example,
we assumed a single process per core. Overloading
processes on remaining cores in a given working domain
can potentially mitigate some of the performance degra-
dation from losing a core in that domain. Similarly,
when remapping fault domains, we assume arbitrary
remapping of the fault domains and assignment of
processes to cores. More advanced policies, aware of
workload requirements and latency effects, could
improve performance further. For example, prior work
on heterogeneous multicore architectures demonstrates
significant benefits from intelligently mapping work-
loads to available hardware resources.2

Configurable isolation also offers the ability to dynam-
ically reconfigure the system’s availability guarantees.
The approach we propose lets the system be configured
to a spectrum of choices, from no-fault isolation to mul-

tiple smaller domains. For example, in utility-comput-
ing environments, a server can be provisioned as a pay-
roll server with high levels of availability turned on, then
it can be redeployed later as a Web server with lower
availability levels. Isolation in CMP environments also
has benefits beyond availability; the sidebar on “Other
Benefits from Isolation” discusses some of these.

M ultiple cores will provide unprecedented compute
power on a single chip. However, integration of
several components on a chip must be accompa-

nied by features that enable isolation from fault effects,
destructive performance interference, and security
breaches. These features must ideally be low cost in terms
of power and area and not impact the performance of
the system adversely.

Here, we focus on isolation from faults. Future proces-
sors will be increasingly susceptible to hardware errors.
The impact of errors on a conventional CMP with exten-
sive sharing will likely be severe because the shared
resources lack system-level fault isolation. Much of the
recent architecture research in fault-tolerant systems has
focused on tolerating errors originating in the core, such
as DIVA,7 AR-SMT,8 chip-level redundantly threaded
processor with recovery (CRTR),9 dynamic reliability
management,10 total reliability using scalable servers,11

and several others that use the extra cores or contexts
available in a CMP. Other system-level recovery solu-
tions for SMPs, such as NonStop5 and zSeries,12 handle
errors in the interconnection network and the cache
coherence protocol, but they do not deal with the lack
of fault isolation in CMPs.

For reliability at the system level, all components of
the chip must be protected and faults must be isolated
to smaller fault domains than the entire socket. Our
design requires minimal hardware changes and retains
the commodity economics and performance advantages
of current CMPs. Further, we believe that there are excit-
ing research opportunities in the area of enabling low-
cost isolation features in CMPs that can enable them to
be used as building blocks for high-performance,
dependable, and secure systems.■

References

1. This article is based on an earlier work: N. Aggarwal et al.,
“Configurable Isolation: Building High Availability Systems
with Commodity Multicore Processors,” Proc. Int’l Symp.
Computer Architecture (ISCA 07), ACM Press, 2007; http://
doi.acm.org/10.1145/1250662.1250720.

2. D. Patterson, “Recovery-Oriented Computing: A New
Research Agenda for a New Century,” keynote address,
Proc. Int’l Symp. High-Performance Computer Architec-
ture (HPCA 02), 2002; http://roc.cs.berkeley.edu/talks/pdf/
HPCAkeynote.pdf.

No
rm

al
ize

d
co

m
po

ne
nt

 re
pl

ac
em

en
ts

0

0.2

0.4

0.6

0.8

1.0

(a) Large memory (b) Mixed memory (c) Small memory

Percent of degradation

10 25 50 10 25 50 10 25 50

Configurable
Static isolation
Shared

Figure 8. Number of normalized component replacements as a

function of performance. When comparing the three architec-

tures, assume components are replaced (a) when performance

dips below 90 percent, (b) when performance dips below 75

percent, and (c) when performance dips below 50 percent.

3. R. Kumar et al., “Heterogeneous Chip Multiprocessors,”
Computer, Nov. 2005, pp. 32-38.

4. S. Borkar, “Designing Reliable Systems from Unreliable Com-
ponents: The Challenges of Transistor Variability and Degra-
dation,” IEEE Micro, Nov. 2005, pp. 10-16.

5. D. Bernick et al., “NonStop Advanced Architecture,” Proc.
Int’l Conf. Dependable Systems and Networks (DSN), IEEE
CS Press, 2005, pp. 12-21.

6. T.C. Bressoud and F.B. Schneider, “Hypervisor-Based Fault Tol-
erance,” ACM Trans. Computer Systems, Feb. 1996, pp. 80-107.

7. T.M. Austin, “DIVA: A Reliable Substrate for Deep Submi-
cron Microarchitecture Design,” Proc. Int’l Symp. Microar-
chitecture (MICRO), IEEE CS Press, 1999, pp. 196-207.

8. E. Rotenberg, “AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors,” Proc. Int’l Symp. Fault-
Tolerant Computing, IEEE CS Press, 1999, pp. 84-91.

9. M. Gomaa et al., “Transient-Fault Recovery for Chip Multi-
processors,” Proc. Int’l Symp. Computer Architecture (ISCA),
IEEE CS Press, 2003, pp. 98-109.

10. J. Srinivasan et al., “The Case for Lifetime Reliability-Aware
Microprocessors,” Proc. Int’l Symp. Computer Architecture
(ISCA 04), IEEE CS Press, 2004, pp. 276-287.

11. J.C. Smolens et al., “Fingerprinting: Bounding Soft-Error
Detection Latency and Bandwidth,” Proc. Int’l Conf. Archi-
tecture Support for Programming Languages and Operating
Systems (ASPLOS), ACM Press, 2004, pp. 224-234.

12. M.L. Fair et al., “Reliability, Availability, and Serviceability
(RAS) of the IBM eServer z990,” IBM J. Research and Devel-
opment, Nov. 2004, pp. 519-534.

Nidhi Aggarwal is a doctoral student in the Computer Sci-
ences Department at the University of Wisconsin-Madison.
Her research interests include high-performance and high-
availability systems, virtual machines, and memory system
design. Aggarwal received an MS from the Department of
Electrical and Computer Engineering at the University of
Wisconsin-Madison. Contact her at naggarwal@wisc.edu.

Parthasarathy Ranganathan is a principal research scien-
tist at Hewlett-Packard Laboratories. His research interests
include low-power design, system architecture, and paral-
lel computing. Ranganathan received a PhD in electrical
and computer engineering from Rice University. Contact
him at partha.ranganathan@hp.com.

Norman P. Jouppi is a Fellow and Director of the Advanced
Architecture Lab at Hewlett-Packard Laboratories. His
research interests include highly parallel systems, high-per-
formance networking, and the impact of photonics on com-
puter systems architecture. Jouppi received a PhD in
electrical engineering from Stanford University. Contact
him at norm.jouppi@hp.com.

James E. Smith is a professor in the Department of Electri-
cal and Computer Engineering at the University of Wis-
consin-Madison. His research interests include high-
performance processors and systems. Smith received a PhD
in computer science from the University of Illinois. Contact
him at jes@ece.wisc.edu.

June 2007 59

IT Professional magazine gives builders and
managers of enterprise systems the “how to” and
“what for” articles at your fingertips, so you can
delve into and fully understand issues surrounding:
• Enterprise architecture and standards
• Information systems
• Network management
• Programming languages
• Project management
• Training and education
• Web systems
• Wireless applications
• And much, much more …

Giving You
the Edge

www.computer.org/itpro

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

