
..

NVIDIA TESLA: A UNIFIED
GRAPHICS AND

COMPUTING ARCHITECTURE
..

TO ENABLE FLEXIBLE, PROGRAMMABLE GRAPHICS AND HIGH-PERFORMANCE COMPUTING,

NVIDIA HAS DEVELOPED THE TESLA SCALABLE UNIFIED GRAPHICS AND PARALLEL

COMPUTING ARCHITECTURE. ITS SCALABLE PARALLEL ARRAY OF PROCESSORS IS

MASSIVELY MULTITHREADED AND PROGRAMMABLE IN C OR VIA GRAPHICS APIS.

......The modern 3D graphics process-
ing unit (GPU) has evolved from a fixed-
function graphics pipeline to a programma-
ble parallel processor with computing power
exceeding that of multicore CPUs. Tradi-
tional graphics pipelines consist of separate
programmable stages of vertex processors
executing vertex shader programs and pixel
fragment processors executing pixel shader
programs. (Montrym and Moreton provide
additional background on the traditional
graphics processor architecture.1)

NVIDIA’s Tesla architecture, introduced
in November 2006 in the GeForce 8800
GPU, unifies the vertex and pixel processors
and extends them, enabling high-perfor-
mance parallel computing applications writ-
ten in the C language using the Compute
Unified Device Architecture (CUDA2–4)
parallel programming model and develop-
ment tools. The Tesla unified graphics and
computing architecture is available in a
scalable family of GeForce 8-series GPUs
and Quadro GPUs for laptops, desktops,
workstations, and servers. It also provides
the processing architecture for the Tesla
GPU computing platforms introduced in
2007 for high-performance computing.

In this article, we discuss the require-
ments that drove the unified graphics and
parallel computing processor architecture,
describe the Tesla architecture, and how it is
enabling widespread deployment of parallel
computing and graphics applications.

The road to unification
The first GPU was the GeForce 256,

introduced in 1999. It contained a fixed-
function 32-bit floating-point vertex trans-
form and lighting processor and a fixed-
function integer pixel-fragment pipeline,
which were programmed with OpenGL
and the Microsoft DX7 API.5 In 2001,
the GeForce 3 introduced the first pro-
grammable vertex processor executing vertex
shaders, along with a configurable 32-bit
floating-point fragment pipeline, pro-
grammed with DX85 and OpenGL.6 The
Radeon 9700, introduced in 2002, featured
a programmable 24-bit floating-point pixel-
fragment processor programmed with DX9
and OpenGL.7,8 The GeForce FX added 32-
bit floating-point pixel-fragment processors.
The XBox 360 introduced an early unified
GPU in 2005, allowing vertices and pixels
to execute on the same processor.9

Erik Lindholm

John Nickolls

Stuart Oberman

John Montrym

NVIDIA

0272-1732/08/$20.00 G 2008 IEEE Published by the IEEE Computer Society.

..

39
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

Vertex processors operate on the vertices
of primitives such as points, lines, and
triangles. Typical operations include trans-
forming coordinates into screen space,
which are then fed to the setup unit and
the rasterizer, and setting up lighting and
texture parameters to be used by the pixel-
fragment processors. Pixel-fragment proces-
sors operate on rasterizer output, which fills
the interior of primitives, along with the
interpolated parameters.

Vertex and pixel-fragment processors
have evolved at different rates: Vertex
processors were designed for low-latency,
high-precision math operations, whereas
pixel-fragment processors were optimized
for high-latency, lower-precision texture
filtering. Vertex processors have tradition-
ally supported more-complex processing, so
they became programmable first. For the
last six years, the two processor types
have been functionally converging as the
result of a need for greater programming
generality. However, the increased general-
ity also increased the design complexity,
area, and cost of developing two separate
processors.

Because GPUs typically must process
more pixels than vertices, pixel-fragment
processors traditionally outnumber vertex
processors by about three to one. However,
typical workloads are not well balanced,
leading to inefficiency. For example,
with large triangles, the vertex processors
are mostly idle, while the pixel processors
are fully busy. With small triangles,
the opposite is true. The addition of
more-complex primitive processing in
DX10 makes it much harder to select a
fixed processor ratio.10 All these factors
influenced the decision to design a unified
architecture.

A primary design objective for Tesla was
to execute vertex and pixel-fragment shader
programs on the same unified processor
architecture. Unification would enable dy-
namic load balancing of varying vertex- and
pixel-processing workloads and permit the
introduction of new graphics shader stages,
such as geometry shaders in DX10. It also
let a single team focus on designing a fast
and efficient processor and allowed the
sharing of expensive hardware such as the

texture units. The generality required of a
unified processor opened the door to a
completely new GPU parallel-computing
capability. The downside of this generality
was the difficulty of efficient load balancing
between different shader types.

Other critical hardware design require-
ments were architectural scalability, perfor-
mance, power, and area efficiency.

The Tesla architects developed the
graphics feature set in coordination with
the development of the Microsoft Direct3D
DirectX 10 graphics API.10 They developed
the GPU’s computing feature set in coor-
dination with the development of the
CUDA C parallel programming language,
compiler, and development tools.

Tesla architecture
The Tesla architecture is based on a

scalable processor array. Figure 1 shows a
block diagram of a GeForce 8800 GPU
with 128 streaming-processor (SP) cores
organized as 16 streaming multiprocessors
(SMs) in eight independent processing units
called texture/processor clusters (TPCs).
Work flows from top to bottom, starting
at the host interface with the system PCI-
Express bus. Because of its unified-processor
design, the physical Tesla architecture
doesn’t resemble the logical order of
graphics pipeline stages. However, we will
use the logical graphics pipeline flow to
explain the architecture.

At the highest level, the GPU’s scalable
streaming processor array (SPA) performs
all the GPU’s programmable calculations.
The scalable memory system consists of
external DRAM control and fixed-function
raster operation processors (ROPs) that
perform color and depth frame buffer
operations directly on memory. An inter-
connection network carries computed
pixel-fragment colors and depth values from
the SPA to the ROPs. The network also
routes texture memory read requests from
the SPA to DRAM and read data from
DRAM through a level-2 cache back to the
SPA.

The remaining blocks in Figure 1 deliver
input work to the SPA. The input assembler
collects vertex work as directed by the input
command stream. The vertex work distri-

...

HOT CHIPS 19

...

40 IEEE MICRO

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

bution block distributes vertex work packets
to the various TPCs in the SPA. The TPCs
execute vertex shader programs, and (if
enabled) geometry shader programs. The
resulting output data is written to on-chip
buffers. These buffers then pass their results
to the viewport/clip/setup/raster/zcull block
to be rasterized into pixel fragments. The
pixel work distribution unit distributes pixel
fragments to the appropriate TPCs for
pixel-fragment processing. Shaded pixel-
fragments are sent across the interconnec-
tion network for processing by depth and
color ROP units. The compute work
distribution block dispatches compute
thread arrays to the TPCs. The SPA accepts
and processes work for multiple logical
streams simultaneously. Multiple clock
domains for GPU units, processors,
DRAM, and other units allow independent
power and performance optimizations.

Command processing
The GPU host interface unit communi-

cates with the host CPU, responds to
commands from the CPU, fetches data from
system memory, checks command consisten-
cy, and performs context switching.

The input assembler collects geometric
primitives (points, lines, triangles, line
strips, and triangle strips) and fetches
associated vertex input attribute data. It
has peak rates of one primitive per clock
and eight scalar attributes per clock at the
GPU core clock, which is typically
600 MHz.

The work distribution units forward the
input assembler’s output stream to the array
of processors, which execute vertex, geom-
etry, and pixel shader programs, as well as
computing programs. The vertex and com-
pute work distribution units deliver work to
processors in a round-robin scheme. Pixel

Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming

multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.

..

MARCH–APRIL 2008 41
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

work distribution is based on the pixel
location.

Streaming processor array
The SPA executes graphics shader thread

programs and GPU computing programs
and provides thread control and manage-
ment. Each TPC in the SPA roughly
corresponds to a quad-pixel unit in previous
architectures.1 The number of TPCs deter-
mines a GPU’s programmable processing
performance and scales from one TPC in a
small GPU to eight or more TPCs in high-
performance GPUs.

Texture/processor cluster
As Figure 2 shows, each TPC contains a

geometry controller, an SM controller
(SMC), two streaming multiprocessors
(SMs), and a texture unit. Figure 3 expands
each SM to show its eight SP cores. To
balance the expected ratio of math opera-

tions to texture operations, one texture unit
serves two SMs. This architectural ratio can
vary as needed.

Geometry controller
The geometry controller maps the logical

graphics vertex pipeline into recirculation
on the physical SMs by directing all
primitive and vertex attribute and topology
flow in the TPC. It manages dedicated on-
chip input and output vertex attribute
storage and forwards contents as required.

DX10 has two stages dealing with vertex
and primitive processing: the vertex shader
and the geometry shader. The vertex shader
processes one vertex’s attributes indepen-
dently of other vertices. Typical operations
are position space transforms and color and
texture coordinate generation. The geome-
try shader follows the vertex shader and
deals with a whole primitive and its vertices.
Typical operations are edge extrusion for

Figure 2. Texture/processor cluster (TPC).

...

HOT CHIPS 19

...

42 IEEE MICRO

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

stencil shadow generation and cube map
texture generation. Geometry shader output
primitives go to later stages for clipping,
viewport transformation, and rasterization
into pixel fragments.

Streaming multiprocessor
The SM is a unified graphics and

computing multiprocessor that executes
vertex, geometry, and pixel-fragment shader
programs and parallel computing programs.
As Figure 3 shows, the SM consists of eight
streaming processor (SP) cores, two special-
function units (SFUs), a multithreaded
instruction fetch and issue unit (MT Issue),
an instruction cache, a read-only constant
cache, and a 16-Kbyte read/write shared
memory.

The shared memory holds graphics input
buffers or shared data for parallel comput-
ing. To pipeline graphics workloads
through the SM, vertex, geometry, and
pixel threads have independent input and
output buffers. Workloads can arrive and
depart independently of thread execution.
Geometry threads, which generate variable
amounts of output per thread, use separate
output buffers.

Each SP core contains a scalar multiply-
add (MAD) unit, giving the SM eight
MAD units. The SM uses its two SFU units

for transcendental functions and attribute
interpolation—the interpolation of pixel
attributes from vertex attributes defining a
primitive. Each SFU also contains four
floating-point multipliers. The SM uses the
TPC texture unit as a third execution unit
and uses the SMC and ROP units to
implement external memory load, store,
and atomic accesses. A low-latency inter-
connect network between the SPs and the
shared-memory banks provides shared-
memory access.

The GeForce 8800 Ultra clocks the SPs
and SFU units at 1.5 GHz, for a peak of 36
Gflops per SM. To optimize power and area
efficiency, some SM non-data-path units
operate at half the SP clock rate.

SM multithreading. A graphics vertex or
pixel shader is a program for a single thread
that describes how to process a vertex or a
pixel. Similarly, a CUDA kernel is a C
program for a single thread that describes
how one thread computes a result. Graphics
and computing applications instantiate
many parallel threads to render complex
images and compute large result arrays. To
dynamically balance shifting vertex and
pixel shader thread workloads, the unified
SM concurrently executes different thread
programs and different types of shader
programs.

To efficiently execute hundreds of
threads in parallel while running several
different programs, the SM is hardware
multithreaded. It manages and executes up
to 768 concurrent threads in hardware with
zero scheduling overhead.

To support the independent vertex,
primitive, pixel, and thread programming
model of graphics shading languages and
the CUDA C/C++ language, each SM
thread has its own thread execution state
and can execute an independent code path.
Concurrent threads of computing programs
can synchronize at a barrier with a single
SM instruction. Lightweight thread crea-
tion, zero-overhead thread scheduling, and
fast barrier synchronization support very
fine-grained parallelism efficiently.

Single-instruction, multiple-thread. To man-
age and execute hundreds of threads running

Figure 3. Streaming multiprocessor (SM).

..

MARCH–APRIL 2008 43
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

several different programs efficiently, the
Tesla SM uses a new processor architecture
we call single-instruction, multiple-thread
(SIMT). The SM’s SIMT multithreaded
instruction unit creates, manages, schedules,
and executes threads in groups of 32
parallel threads called warps. The term warp
originates from weaving, the first parallel-
thread technology. Figure 4 illustrates SIMT
scheduling. The SIMT warp size of 32
parallel threads provides efficiency on plen-
tiful fine-grained pixel threads and comput-
ing threads.

Each SM manages a pool of 24 warps,
with a total of 768 threads. Individual
threads composing a SIMT warp are of the
same type and start together at the same
program address, but they are otherwise free
to branch and execute independently. At
each instruction issue time, the SIMT
multithreaded instruction unit selects a
warp that is ready to execute and issues
the next instruction to that warp’s active
threads. A SIMT instruction is broadcast
synchronously to a warp’s active parallel
threads; individual threads can be inactive
due to independent branching or predica-
tion.

The SM maps the warp threads to the SP
cores, and each thread executes indepen-
dently with its own instruction address and
register state. A SIMT processor realizes full
efficiency and performance when all 32
threads of a warp take the same execution
path. If threads of a warp diverge via a data-
dependent conditional branch, the warp
serially executes each branch path taken,
disabling threads that are not on that path,
and when all paths complete, the threads
reconverge to the original execution path.
The SM uses a branch synchronization stack
to manage independent threads that diverge
and converge. Branch divergence only
occurs within a warp; different warps
execute independently regardless of whether
they are executing common or disjoint code
paths. As a result, Tesla architecture GPUs
are dramatically more efficient and flexible
on branching code than previous generation
GPUs, as their 32-thread warps are much
narrower than the SIMD width of prior
GPUs.1

SIMT architecture is similar to single-
instruction, multiple-data (SIMD) design,
which applies one instruction to multiple
data lanes. The difference is that SIMT
applies one instruction to multiple inde-
pendent threads in parallel, not just multi-
ple data lanes. A SIMD instruction controls
a vector of multiple data lanes together and
exposes the vector width to the software,
whereas a SIMT instruction controls the
execution and branching behavior of one
thread.

In contrast to SIMD vector architectures,
SIMT enables programmers to write thread-
level parallel code for independent threads
as well as data-parallel code for coordinated
threads. For program correctness, program-
mers can essentially ignore SIMT execution
attributes such as warps; however, they can
achieve substantial performance improve-
ments by writing code that seldom requires
threads in a warp to diverge. In practice, this
is analogous to the role of cache lines in

Figure 4. Single-instruction, multiple-

thread (SIMT) warp scheduling.

...

HOT CHIPS 19

...

44 IEEE MICRO

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

traditional codes: Programmers can safely
ignore cache line size when designing for
correctness but must consider it in the code
structure when designing for peak perfor-
mance. SIMD vector architectures, on the
other hand, require the software to manu-
ally coalesce loads into vectors and to
manually manage divergence.

SIMT warp scheduling. The SIMT ap-
proach of scheduling independent warps is
simpler than previous GPU architectures’
complex scheduling. A warp consists of up
to 32 threads of the same type—vertex,
geometry, pixel, or compute. The basic unit
of pixel-fragment shader processing is the 2
3 2 pixel quad. The SM controller groups
eight pixel quads into a warp of 32 threads.
It similarly groups vertices and primitives
into warps and packs 32 computing threads
into a warp. The SIMT design shares the
SM instruction fetch and issue unit effi-
ciently across 32 threads but requires a full
warp of active threads for full performance
efficiency.

As a unified graphics processor, the SM
schedules and executes multiple warp types
concurrently—for example, concurrently
executing vertex and pixel warps. The SM
warp scheduler operates at half the 1.5-GHz
processor clock rate. At each cycle, it selects
one of the 24 warps to execute a SIMT warp
instruction, as Figure 4 shows. An issued
warp instruction executes as two sets of 16
threads over four processor cycles. The SP
cores and SFU units execute instructions
independently, and by issuing instructions
between them on alternate cycles, the
scheduler can keep both fully occupied.

Implementing zero-overhead warp sched-
uling for a dynamic mix of different warp
programs and program types was a chal-
lenging design problem. A scoreboard
qualifies each warp for issue each cycle.
The instruction scheduler prioritizes all
ready warps and selects the one with highest
priority for issue. Prioritization considers
warp type, instruction type, and ‘‘fairness’’
to all warps executing in the SM.

SM instructions. The Tesla SM executes
scalar instructions, unlike previous GPU
vector instruction architectures. Shader

programs are becoming longer and more
scalar, and it is increasingly difficult to fully
occupy even two components of the prior
four-component vector architecture. Previ-
ous architectures employed vector pack-
ing—combining sub-vectors of work to
gain efficiency—but that complicated the
scheduling hardware as well as the compiler.
Scalar instructions are simpler and compiler
friendly. Texture instructions remain vector
based, taking a source coordinate vector and
returning a filtered color vector.

High-level graphics and computing-lan-
guage compilers generate intermediate in-
structions, such as DX10 vector or PTX
scalar instructions,10,2 which are then opti-
mized and translated to binary GPU
instructions. The optimizer readily expands
DX10 vector instructions to multiple Tesla
SM scalar instructions. PTX scalar instruc-
tions optimize to Tesla SM scalar instruc-
tions about one to one. PTX provides a
stable target ISA for compilers and provides
compatibility over several generations of
GPUs with evolving binary instruction set
architectures. Because the intermediate lan-
guages use virtual registers, the optimizer
analyzes data dependencies and allocates
real registers. It eliminates dead code, folds
instructions together when feasible, and
optimizes SIMT branch divergence and
convergence points.

Instruction set architecture. The Tesla SM
has a register-based instruction set including
floating-point, integer, bit, conversion, tran-
scendental, flow control, memory load/store,
and texture operations.

Floating-point and integer operations
include add, multiply, multiply-add, mini-
mum, maximum, compare, set predicate,
and conversions between integer and float-
ing-point numbers. Floating-point instruc-
tions provide source operand modifiers for
negation and absolute value. Transcenden-
tal function instructions include cosine,
sine, binary exponential, binary logarithm,
reciprocal, and reciprocal square root.
Attribute interpolation instructions provide
efficient generation of pixel attributes.
Bitwise operators include shift left, shift
right, logic operators, and move. Control

..

MARCH–APRIL 2008 45
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

flow includes branch, call, return, trap, and
barrier synchronization.

The floating-point and integer instruc-
tions can also set per-thread status flags for
zero, negative, carry, and overflow, which
the thread program can use for conditional
branching.

Memory access instructions. The texture
instruction fetches and filters texture sam-
ples from memory via the texture unit. The
ROP unit writes pixel-fragment output to
memory.

To support computing and C/C++
language needs, the Tesla SM implements
memory load/store instructions in addition
to graphics texture fetch and pixel output.
Memory load/store instructions use integer
byte addressing with register-plus-offset
address arithmetic to facilitate conventional
compiler code optimizations.

For computing, the load/store instruc-
tions access three read/write memory spaces:

N local memory for per-thread, private,
temporary data (implemented in ex-
ternal DRAM);

N shared memory for low-latency access
to data shared by cooperating threads
in the same SM; and

N global memory for data shared by all
threads of a computing application
(implemented in external DRAM).

The memory instructions load-global,
store-global, load-shared, store-shared,
load-local, and store-local access global,
shared, and local memory. Computing
programs use the fast barrier synchroniza-
tion instruction to synchronize threads
within the SM that communicate with each
other via shared and global memory.

To improve memory bandwidth and
reduce overhead, the local and global load/
store instructions coalesce individual paral-
lel thread accesses from the same warp into
fewer memory block accesses. The addresses
must fall in the same block and meet
alignment criteria. Coalescing memory
requests boosts performance significantly
over separate requests. The large thread
count, together with support for many
outstanding load requests, helps cover

load-to-use latency for local and global
memory implemented in external DRAM.

The latest Tesla architecture GPUs
provide efficient atomic memory opera-
tions, including integer add, minimum,
maximum, logic operators, swap, and
compare-and-swap operations. Atomic op-
erations facilitate parallel reductions and
parallel data structure management.

Streaming processor. The SP core is the
primary thread processor in the SM. It
performs the fundamental floating-point
operations, including add, multiply, and
multiply-add. It also implements a wide
variety of integer, comparison, and conver-
sion operations. The floating-point add and
multiply operations are compatible with the
IEEE 754 standard for single-precision FP
numbers, including not-a-number (NaN)
and infinity values. The unit is fully
pipelined, and latency is optimized to
balance delay and area.

The add and multiply operations use
IEEE round-to-nearest-even as the default
rounding mode. The multiply-add opera-
tion performs a multiplication with trunca-
tion, followed by an add with round-to-
nearest-even. The SP flushes denormal
source operands to sign-preserved zero and
flushes results that underflow the target
output exponent range to sign-preserved
zero after rounding.

Special-function unit. The SFU supports
computation of both transcendental func-
tions and planar attribute interpolation.11 A
traditional vertex or pixel shader design
contains a functional unit to compute
transcendental functions. Pixels also need
an attribute-interpolating unit to compute
the per-pixel attribute values at the pixel’s x,
y location, given the attribute values at the
primitive’s vertices.

For functional evaluation, we use qua-
dratic interpolation based on enhanced
minimax approximations to approximate
the reciprocal, reciprocal square root, log2x,
2x, and sin/cos functions. Table 1 shows the
accuracy of the function estimates. The SFU
unit generates one 32-bit floating point
result per cycle.

...

HOT CHIPS 19

...

46 IEEE MICRO

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

The SFU also supports attribute interpo-
lation, to enable accurate interpolation of
attributes such as color, depth, and texture
coordinates. The SFU must interpolate
these attributes in the (x, y) screen space
to determine the values of the attributes at
each pixel location. We express the value of
a given attribute U in an (x, y) plane in
plane equations of the following form:

U x, yð Þ~

AU | x z BU | y z CUð Þ=
AW | x z BW | y z CWð Þ

where A, B, and C are interpolation
parameters associated with each attribute
U, and W is related to the distance of the
pixel from the viewer for perspective
projection. The attribute interpolation
hardware in the SFU is fully pipelined,
and it can interpolate four samples per
cycle.

In a shader program, the SFU can
generate perspective-corrected attributes as
follows:

N Interpolate 1/W, and invert to form
W.

N Interpolate U/W.
N Multiply U/W by W to form perspec-

tive-correct U.

SM controller. The SMC controls multiple
SMs, arbitrating the shared texture unit,
load/store path, and I/O path. The SMC
serves three graphics workloads simulta-

neously: vertex, geometry, and pixel. It
packs each of these input types into the
warp width, initiating shader processing,
and unpacks the results.

Each input type has independent I/O
paths, but the SMC is responsible for load
balancing among them. The SMC supports
static and dynamic load balancing based on
driver-recommended allocations, current
allocations, and relative difficulty of addi-
tional resource allocation. Load balancing of
the workloads was one of the more
challenging design problems due to its
impact on overall SPA efficiency.

Texture unit
The texture unit processes one group of

four threads (vertex, geometry, pixel, or
compute) per cycle. Texture instruction
sources are texture coordinates, and the
outputs are filtered samples, typically a
four-component (RGBA) color. Texture is
a separate unit external to the SM connect-
ed via the SMC. The issuing SM thread can
continue execution until a data dependency
stall.

Each texture unit has four texture address
generators and eight filter units, for a peak
GeForce 8800 Ultra rate of 38.4 gigabi-
lerps/s (a bilerp is a bilinear interpolation of
four samples). Each unit supports full-speed
2:1 anisotropic filtering, as well as high-
dynamic-range (HDR) 16-bit and 32-bit
floating-point data format filtering.

The texture unit is deeply pipelined.
Although it contains a cache to capture
filtering locality, it streams hits mixed with
misses without stalling.

Table 1. Function approximation statistics.

Function

Input

interval

Accuracy (good

bits) ULP* error

% exactly

rounded Monotonic

1/x [1, 2) 24.02 0.98 87 Yes

1/sqrt(x) [1, 4) 23.40 1.52 78 Yes

2x [0, 1) 22.51 1.41 74 Yes

log2x [1, 2) 22.57 N/A** N/A Yes

sin/cos [0, p/2) 22.47 N/A N/A No..
* ULP: unit-in-the-last-place.
** N/A: not applicable.

..

MARCH–APRIL 2008 47
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

Rasterization
Geometry primitives output from the

SMs go in their original round-robin input
order to the viewport/clip/setup/raster/zcull
block. The viewport and clip units clip the
primitives to the standard view frustum and
to any enabled user clip planes. They
transform postclipping vertices into screen
(pixel) space and reject whole primitives
outside the view volume as well as back-
facing primitives.

Surviving primitives then go to the setup
unit, which generates edge equations for the
rasterizer. Attribute plane equations are also
generated for linear interpolation of pixel
attributes in the pixel shader. A coarse-
rasterization stage generates all pixel tiles
that are at least partially inside the primi-
tive.

The zcull unit maintains a hierarchical z
surface, rejecting pixel tiles if they are
conservatively known to be occluded by
previously drawn pixels. The rejection rate
is up to 256 pixels per clock. The screen is
subdivided into tiles; each TPC processes a
predetermined subset. The pixel tile address
therefore selects the destination TPC. Pixel
tiles that survive zcull then go to a fine-
rasterization stage that generates detailed
coverage information and depth values for
the pixels.

OpenGL and Direct3D require that a
depth test be performed after the pixel
shader has generated final color and depth
values. When possible, for certain combi-
nations of API state, the Tesla GPU
performs the depth test and update ahead
of the fragment shader, possibly saving
thousands of cycles of processing time,
without violating the API-mandated seman-
tics.

The SMC assembles surviving pixels into
warps to be processed by a SM running the
current pixel shader. When the pixel shader
has finished, the pixels are optionally depth
tested if this was not done ahead of the
shader. The SMC then sends surviving
pixels and associated data to the ROP.

Raster operations processor
Each ROP is paired with a specific

memory partition. The TPCs feed data to
the ROPs via an interconnection network.

ROPs handle depth and stencil testing and
updates and color blending and updates.
The memory controller uses lossless color
(up to 8:1) and depth compression (up to
8:1) to reduce bandwidth. Each ROP has a
peak rate of four pixels per clock and
supports 16-bit floating-point and 32-bit
floating-point HDR formats. ROPs support
double-rate-depth processing when color
writes are disabled.

Each memory partition is 64 bits wide
and supports double-data-rate DDR2 and
graphics-oriented GDDR3 protocols at up
to 1 GHz, yielding a bandwidth of about
16 Gbytes/s.

Antialiasing support includes up to 163

multisampling and supersampling. HDR
formats are fully supported. Both algo-
rithms support 1, 2, 4, 8, or 16 samples per
pixel and generate a weighted average of the
samples to produce the final pixel color.
Multisampling executes the pixel shader
once to generate a color shared by all pixel
samples, whereas supersampling runs the
pixel shader once per sample. In both cases,
depth values are correctly evaluated for each
sample, as required for correct interpene-
tration of primitives.

Because multisampling runs the pixel
shader once per pixel (rather than once
per sample), multisampling has become the
most popular antialiasing method. Beyond
four samples, however, storage cost increases
faster than image quality improves, espe-
cially with HDR formats. For example, a
single 1,600 3 1,200 pixel surface, storing
16 four-component, 16-bit floating-point
samples, requires 1,600 3 1,200 3 16 3

(64 bits color + 32 bits depth) 5 368
Mbytes.

For the vast majority of edge pixels, two
colors are enough; what matters is more-
detailed coverage information. The cover-
age-sampling antialiasing (CSAA) algorithm
provides low-cost-per-coverage samples, al-
lowing upward scaling. By computing and
storing Boolean coverage at up to 16
samples and compressing redundant color
and depth and stencil information into the
memory footprint and bandwidth of four or
eight samples, 163 antialiasing quality can
be achieved at 43 antialiasing performance.
CSAA is compatible with existing rendering

...

HOT CHIPS 19

...

48 IEEE MICRO

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

techniques including HDR and stencil
algorithms. Edges defined by the intersec-
tion of interpenetrating polygons are ren-
dered at the stored sample count quality
(43 or 83). Table 2 summarizes the
storage requirements of the three algo-
rithms.

Memory and interconnect
The DRAM memory data bus width is

384 pins, arranged in six independent
partitions of 64 pins each. Each partition
owns 1/6 of the physical address space. The
memory partition units directly enqueue
requests. They arbitrate among hundreds of
in-flight requests from the parallel stages of
the graphics and computation pipelines.
The arbitration seeks to maximize total
DRAM transfer efficiency, which favors
grouping related requests by DRAM bank
and read/write direction, while minimizing
latency as far as possible. The memory
controllers support a wide range of DRAM
clock rates, protocols, device densities, and
data bus widths.

Interconnection network. A single hub unit
routes requests to the appropriate partition
from the nonparallel requesters (PCI-Ex-
press, host and command front end, input
assembler, and display). Each memory
partition has its own depth and color
ROP units, so ROP memory traffic origi-
nates locally. Texture and load/store re-
quests, however, can occur between any
TPC and any memory partition, so an
interconnection network routes requests
and responses.

Memory management unit. All processing
engines generate addresses in a virtual
address space. A memory management unit

performs virtual to physical translation.
Hardware reads the page tables from local
memory to respond to misses on behalf of a
hierarchy of translation look-aside buffers
spread out among the rendering engines.

Parallel computing architecture
The Tesla scalable parallel computing

architecture enables the GPU processor
array to excel in throughput computing,
executing high-performance computing ap-
plications as well as graphics applications.
Throughput applications have several prop-
erties that distinguish them from CPU serial
applications:

N extensive data parallelism—thousands
of computations on independent data
elements;

N modest task parallelism—groups of
threads execute the same program,
and different groups can run different
programs;

N intensive floating-point arithmetic;
N latency tolerance—performance is the

amount of work completed in a given
time;

N streaming data flow—requires high
memory bandwidth with relatively
little data reuse;

N modest inter-thread synchronization
and communicat ion—graphics
threads do not communicate, and
parallel computing applications re-
quire limited synchronization and
communication.

GPU parallel performance on through-
put problems has doubled every 12 to
18 months, pulled by the insatiable de-
mands of the 3D game market. Now, Tesla
GPUs in laptops, desktops, workstations,

Table 2. Comparison of antialiasing modes.

Feature

Antialiasing mode

Brute-force supersampling Multisampling Coverage sampling

Quality level 13 43 163 13 43 163 13 43 163

Texture and shader samples 1 4 16 1 1 1 1 1 1

Stored color and z samples 1 4 16 1 4 16 1 4 4

Coverage samples 1 4 16 1 4 16 1 4 16

..

MARCH–APRIL 2008 49
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

and systems are programmable in C with
CUDA tools, using a simple parallel
programming model.

Data-parallel problem decomposition
To map a large computing problem

effectively to a highly parallel processing
architecture, the programmer or compiler
decomposes the problem into many small
problems that can be solved in parallel. For
example, the programmer partitions a large
result data array into blocks and further
partitions each block into elements, so that
the result blocks can be computed indepen-
dently in parallel, and the elements within
each block can be computed cooperatively
in parallel. Figure 5 shows the decomposi-
tion of a result data array into a 3 3 2 grid
of blocks, in which each block is further
decomposed into a 5 3 3 array of elements.

The two-level parallel decomposition maps
naturally to the Tesla architecture: Parallel
SMs compute result blocks, and parallel
threads compute result elements.

The programmer or compiler writes a
program that computes a sequence of result
grids, partitioning each result grid into
coarse-grained result blocks that are com-
puted independently in parallel. The pro-
gram computes each result block with an
array of fine-grained parallel threads, parti-
tioning the work among threads that
compute result elements.

Cooperative thread array or thread block
Unlike the graphics programming model,

which executes parallel shader threads
independently, parallel-computing pro-
gramming models require that parallel
threads synchronize, communicate, share
data, and cooperate to efficiently compute a
result. To manage large numbers of con-
current threads that can cooperate, the Tesla
computing architecture introduces the co-
operative thread array (CTA), called a thread
block in CUDA terminology.

A CTA is an array of concurrent threads
that execute the same thread program and
can cooperate to compute a result. A CTA
consists of 1 to 512 concurrent threads, and
each thread has a unique thread ID (TID),
numbered 0 through m. The programmer
declares the 1D, 2D, or 3D CTA shape and
dimensions in threads. The TID has one,
two, or three dimension indices. Threads of
a CTA can share data in global or shared
memory and can synchronize with the
barrier instruction. CTA thread programs
use their TIDs to select work and index
shared data arrays. Multidimensional TIDs
can eliminate integer divide and remainder
operations when indexing arrays.

Each SM executes up to eight CTAs
concurrently, depending on CTA resource
demands. The programmer or compiler
declares the number of threads, registers,
shared memory, and barriers required by
the CTA program. When an SM has
sufficient available resources, the SMC
creates the CTA and assigns TID numbers
to each thread. The SM executes the CTA
threads concurrently as SIMT warps of 32
parallel threads.

Figure 5. Decomposing result data into a grid of blocks partitioned into

elements to be computed in parallel.

...

HOT CHIPS 19

...

50 IEEE MICRO

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

CTA grids
To implement the coarse-grained block

and grid decomposition of Figure 5, the
GPU creates CTAs with unique CTA ID
and grid ID numbers. The compute work
distributor dynamically balances the GPU
workload by distributing a stream of CTA
work to SMs with sufficient available
resources.

To enable a compiled binary program to
run unchanged on large or small GPUs with
any number of parallel SM processors,
CTAs execute independently and compute
result blocks independently of other CTAs
in the same grid. Sequentially dependent
application steps map to two sequentially
dependent grids. The dependent grid waits
for the first grid to complete; then the CTAs
of the dependent grid read the result blocks
written by the first grid.

Parallel granularity
Figure 6 shows levels of parallel granu-

larity in the GPU computing model. The
three levels are

N thread—computes result elements se-
lected by its TID;

N CTA—computes result blocks selected
by its CTA ID;

N grid—computes many result blocks,
and sequential grids compute sequen-
tially dependent application steps.

Higher levels of parallelism use multiple
GPUs per CPU and clusters of multi-GPU
nodes.

Parallel memory sharing
Figure 6 also shows levels of parallel

read/write memory sharing:

Figure 6. Nested granularity levels: thread (a), cooperative thread array (b), and grid (c).

These have corresponding memory-sharing levels: local per-thread, shared per-CTA, and

global per-application.

..

MARCH–APRIL 2008 51
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

N local—each executing thread has a
private per-thread local memory for
register spill, stack frame, and address-
able temporary variables;

N shared—each executing CTA has a
per-CTA shared memory for access to
data shared by threads in the same
CTA;

N global—sequential grids communicate
and share large data sets in global
memory.

Threads communicating in a CTA use
the fast barrier synchronization instruction
to wait for writes to shared or global
memory to complete before reading data
written by other threads in the CTA. The
load/store memory system uses a relaxed
memory order that preserves the order of
reads and writes to the same address from
the same issuing thread and from the
viewpoint of CTA threads coordinating
with the barrier synchronization instruction.
Sequentially dependent grids use a global
intergrid synchronization barrier between
grids to ensure global read/write ordering.

Transparent scaling of GPU computing
Parallelism varies widely over the range of

GPU products developed for various market
segments. A small GPU might have one SM
with eight SP cores, while a large GPU
might have many SMs totaling hundreds of
SP cores.

The GPU computing architecture trans-
parently scales parallel application perfor-
mance with the number of SMs and SP
cores. A GPU computing program executes
on any size of GPU without recompiling,
and is insensitive to the number of SM
multiprocessors and SP cores. The program
does not know or care how many processors
it uses.

The key is decomposing the problem into
independently computed blocks as de-
scribed earlier. The GPU compute work
distribution unit generates a stream of
CTAs and distributes them to available
SMs to compute each independent block.
Scalable programs do not communicate
among CTA blocks of the same grid; the
same grid result is obtained if the CTAs
execute in parallel on many cores, sequen-

tially on one core, or partially in parallel on
a few cores.

CUDA programming model
CUDA is a minimal extension of the C

and C++ programming languages. A pro-
grammer writes a serial program that calls
parallel kernels, which can be simple
functions or full programs. The CUDA
program executes serial code on the CPU
and executes parallel kernels across a set of
parallel threads on the GPU. The program-
mer organizes these threads into a hierarchy
of thread blocks and grids as described
earlier. (A CUDA thread block is a GPU
CTA.)

Figure 7 shows a CUDA program exe-
cuting a series of parallel kernels on a
heterogeneous CPU–GPU system. Ker-

nelA and KernelB execute on the GPU
as grids of nBlkA and nBlkB thread
blocks (CTAs), which instantiate nTidA

and nTidB threads per CTA.
The CUDA compiler nvcc compiles an

integrated application C/C++ program
containing serial CPU code and parallel
GPU kernel code. The CUDA runtime API
manages the GPU as a computing device
that acts as a coprocessor to the host CPU
with its own memory system.

The CUDA programming model is
similar in style to a single-program multi-
ple-data (SPMD) software model—it ex-
presses parallelism explicitly, and each
kernel executes on a fixed number of
threads. However, CUDA is more flexible
than most SPMD implementations because
each kernel call dynamically creates a new
grid with the right number of thread blocks
and threads for that application step.

CUDA extends C/C++ with the declara-
tion specifier keywords __global__ for
kernel entry functions, __device__ for
global variables, and __shared__ for
shared-memory variables. A CUDA kernel’s
text is simply a C function for one
sequential thread. The built-in variables
threadIdx.{x, y, z} and block

Idx.{x, y, z} provide the thread ID
within a thread block (CTA), while block
Idx provides the CTA ID within a grid.
The extended function call syntax ker-

nel,,,nBlocks,nThreads...(args);

...

HOT CHIPS 19

...

52 IEEE MICRO

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

invokes a parallel kernel function on a grid
of nBlocks, where each block instanti-
ates nThreads concurrent threads, and
args are ordinary arguments to function
kernel().

Figure 8 shows an example serial C pro-
gram and a corresponding CUDA C program.
The serial C program uses two nested loops to
iterate over each array index and compute
c[idx] 5 a[idx] + b[idx] each trip.
The parallel CUDA C program has no loops.

It uses parallel threads to compute the same
array indices in parallel, and each thread
computes only one sum.

Scalability and performance
The Tesla unified architecture is designed

for scalability. Varying the number of SMs,
TPCs, ROPs, caches, and memory parti-
tions provides the right mix for different
performance and cost targets in the value,
mainstream, enthusiast, and professional

Figure 8. Serial C (a) and CUDA C (b) examples of programs that add arrays.

Figure 7. CUDA program sequence of kernel A followed by kernel B on a heterogeneous

CPU–GPU system.

..

MARCH–APRIL 2008 53
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

market segments. NVIDIA’s Scalable Link
Interconnect (SLI) enables multiple GPUs
to act together as one, providing further
scalability.

CUDA C/C++ applications executing on
Tesla computing platforms, Quadro work-
stations, and GeForce GPUs deliver com-
pelling computing performance on a range
of large problems, including more than
1003 speedups on molecular modeling,
more than 200 Gflops on n-body problems,
and real-time 3D magnetic-resonance im-
aging.12–14 For graphics, the GeForce 8800
GPU delivers high performance and image
quality for the most demanding games.15

Figure 9 shows the GeForce 8800 Ultra
physical die layout implementing the Tesla
architecture shown in Figure 1. Implemen-
tation specifics include

N 681 million transistors, 470 mm2;
N TSMC 90-nm CMOS;
N 128 SP cores in 16 SMs;
N 12,288 processor threads;
N 1.5-GHz processor clock rate;
N peak 576 Gflops in processors;
N 768-Mbyte GDDR3 DRAM;

N 384-pin DRAM interface;
N 1.08-GHz DRAM clock;
N 104-Gbyte/s peak bandwidth; and
N typical power of 150 W at 1.3 V.

The Tesla architecture is the first
ubiquitous supercomputing platform.

NVIDIA has shipped more than 50 million
Tesla-based systems. This wide availability,
coupled with C programmability and the
CUDA software development environment,
enables broad deployment of demanding
parallel-computing and graphics applications.

With future increases in transistor density,
the architecture will readily scale processor
parallelism, memory partitions, and overall
performance. Increased number of multipro-
cessors and memory partitions will support
larger data sets and richer graphics and
computing, without a change to the pro-
gramming model.

We continue to investigate improved sched-
uling and load-balancing algorithms for the
unified processor. Other areas of improvement
are enhanced scalability for derivative products,
reduced synchronization and communication
overhead for compute programs, new graphics
features, increased realized memory band-
width, and improved power efficiency. MICRO

Acknowledgments
We thank the entire NVIDIA GPU deve-

lopment team for their extraordinary effort
in bringing Tesla-based GPUs to market.

..

References
1. J. Montrym and H. Moreton, ‘‘The GeForce

6800,’’ IEEE Micro, vol. 25, no. 2, Mar./

Apr. 2005, pp. 41-51.

2. CUDA Technology, NVIDIA, 2007, http://

www.nvidia.com/CUDA.

3. CUDA Programming Guide 1.1, NVIDIA,

2007; http://developer.download.nvidia.

com/compute/cuda/1_1/NVIDIA_CUDA_

Programming_Guide_1.1.pdf.

4. J. Nickolls, I. Buck, K. Skadron, and M.

Garland, ‘‘Scalable Parallel Programming

with CUDA,’’ ACM Queue, vol. 6, no. 2,

Mar./Apr. 2008, pp. 40-53.

5. DX Specification, Microsoft; http://msdn.

microsoft.com/directx.

Figure 9. GeForce 8800 Ultra die layout.

...

HOT CHIPS 19

...

54 IEEE MICRO

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

6. E. Lindholm, M.J. Kilgard, and H. Moreton,

‘‘A User-Programmable Vertex Engine,’’

Proc. 28th Ann. Conf. Computer Graphics

and Interactive Techniques (Siggraph 01),

ACM Press, 2001, pp. 149-158.

7. G. Elder, ‘‘Radeon 9700,’’ Eurographics/

Siggraph Workshop Graphics Hardware,

Hot 3D Session, 2002, http://www.

graphicshardware.org/previous/www_2002/

presentations/Hot3D-RADEON9700.ppt.

8. Microsoft DirectX 9 Programmable Graph-

ics Pipeline, Microsoft Press, 2003.

9. J. Andrews and N. Baker, ‘‘Xbox 360

System Architecture,’’ IEEE Micro,

vol. 26, no. 2, Mar./Apr. 2006, pp. 25-37.

10. D. Blythe, ‘‘The Direct3D 10 System,’’

ACM Trans. Graphics, vol. 25, no. 3, July

2006, pp. 724-734.

11. S.F. Oberman and M.Y. Siu, ‘‘A High-

Performance Area-Efficient Multifunction

Interpolator,’’ Proc. 17th IEEE Symp. Com-

puter Arithmetic (Arith-17), IEEE Press,

2005, pp. 272-279.

12. J.E. Stone et al., ‘‘Accelerating Molecular

Modeling Applications with Graphics Pro-

cessors,’’ J. Computational Chemistry,

vol. 28, no. 16, 2007, pp. 2618-2640.

13. L. Nyland, M. Harris, and J. Prins, ‘‘Fast N-

Body Simulation with CUDA,’’ GPU Gems

3, H. Nguyen, ed., Addison-Wesley, 2007,

pp. 677-695.

14. S.S. Stone et al., ‘‘How GPUs Can Improve

the Quality of Magnetic Resonance Imag-

ing,’’ Proc. 1st Workshop on General

Purpose Processing on Graphics Process-

ing Units, 2007; http://www.gigascale.org/

pubs/1175.html.

15. A.L. Shimpi and D. Wilson, ‘‘NVIDIA’s

GeForce 8800 (G80): GPUs Re-architected

for DirectX 10,’’ AnandTech, Nov. 2006;

http://www.anandtech.com/video/showdoc.

aspx?i52870.

Erik Lindholm is a distinguished engineer
at NVIDIA, working in the architecture

group. His research interests include graph-
ics processor design and parallel graphics
architectures. Lindholm has an MS in
electrical engineering from the University
of British Columbia.

John Nickolls is director of GPU comput-
ing architecture at NVIDIA. His interests
include parallel processing systems, languag-
es, and architectures. Nickolls has a BS in
electrical engineering and computer science
from the University of Illinois and MS and
PhD degrees in electrical engineering from
Stanford University.

Stuart Oberman is a design manager in the
GPU hardware group at NVIDIA. His
research interests include computer arith-
metic, processor design, and parallel archi-
tectures. Oberman has a BS in electrical
engineering from the University of Iowa
and MS and PhD degrees in electrical
engineering from Stanford University. He is
a senior member of the IEEE.

John Montrym is a chief architect at
NVIDIA, where he has worked in the
development of several GPU product fam-
ilies. His research interests include graphics
processor design, parallel graphics architec-
tures, and hardware-software interfaces.
Montrym has a BS in electrical engineering
from the Massachusetts Institute of Tech-
nology.

Direct questions and comments about
this article to Erik Lindholm or John
Nickolls, NVIDIA, 2701 San Tomas
Expressway, Santa Clara, CA 95050;
elindholm@nvidia.com or jnickolls@nvidia.
com.

For more information on this or any other

computing topic, please visit our Digital

Library at http://computer.org/csdl.

..

MARCH–APRIL 2008 55
Authorized licensed use limited to: University of Wisconsin. Downloaded on February 2, 2010 at 11:47 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

