PENTIUM 4 PERFORMANCE-
MONITORING FEATURES

THE INTEL PENTIUM 4°S UNIQUE PERFORMANCE-MONITORING FEATURES

Brinkley Sprunt
Bucknell University

OVERCOME MANY LIMITATIONS AND PROBLEMS FOUND IN PREVIOUS

PROCESSORS. PENTIUM 4 XEON PERFORMANCE MONITORING SUPPORTS

SIMULTANEOUS MULTITHREADED EXECUTION FEATURES.

eeeeee Most modern, high-performance
processors have special, on-chip hardware
that can monitor performance. The features
of this monitoring hardware typically include
event detectors and counters, qualification of
event detection and counting by privilege
mode and event characteristics, and support
for event-based sampling. However, these fea-
tures often suffer from a common set of prob-
lems including a small number of counters,
inability to distinguish between speculative
and nonspeculative events, and imprecise
event-based sampling. With the introduction
of the Pentium 4 processor, Intel has over-
come many of the performance monitoring
limitations of previous processors. The Pen-
tium 4 supports 48 event detectors and 18
event counters, enabling the concurrent col-
lection of a significantly larger set of perfor-
mance event counts than any other processor.
The Pentium 4 also provides several instruc-
tion-tagging mechanisms that enable count-
ing of nonspeculative performance events
(that is, events generated by instructions that
retire). In addition to the support for impre-
cise event-based sampling (IEBS), the Pen-
tium 4 also provides precise event-based
sampling (PEBS) that unambiguously iden-
tifies instructions that cause key performance
events. PEBS support also lets users create
data address profiles for various memory

events. Because the Pentium 4 Xeon proces-
sor is the first implementation of the x86
architecture to support simultaneous multi-
threading (SMT), its performance-monitor-
ing support includes qualification of event
detection by thread ID and qualification of
event counting by thread mode. !

Event detectors and counters

At more than 42 million transistors, the
Pentium 4 is significantly larger than its
immediate predecessor, the Pentium III,
which has 28 million transistors. With such a
large design, the previous approaches used by
Intel for organizing the performance event
detectors and counters became impractical.
These processor designs dispersed the event
detectors across the chip, close to the units
where the performance events occur; event
counters were in a central location. This
approach required routing all event count sig-
nals to the centrally located event counters.

To follow a similar approach in the larger
Pentium 4 design would have required sig-
nificantly more silicon area to route the event
count buses to the event counters. Intel’s com-
puter architects considered two alternatives:
incorporating a counter into the implemen-
tation of each event detector or dispersing sev-
eral blocks of counters across the chip and
letting geographically close event detectors

0272-1732/02/$17.00 © 2002 IEEE

E Unit 1 Detector 0 ' /4

' Detector 1 P

: 4

b | Unit2 Detector 0 //4

! Detector 1 g > e PMLTO
; ; o| [«— 40bits —»| | pMI_T1
' | unitg | Detector 0 —z >

' Detector 1 7 |—> Counter 0

! { Counter 1

Counter 2

| Detector 0 I /4 > Counter 3

! . Detector 1 ’4 = Counter 4

[Unit N eee i ces fo T

: Detector 4 e >l ! Counter 5 :

] 1 ’4]

i Detector 5 ! # >

Figure 1. The general structure of the Pentium 4 event counters and detectors. The event
detectors control the selection of events and qualification of event detection by privilege
mode (OS and/or USR) and thread ID. Each Pentium 4 unit contains two or six event detec-
tors. Each event counter block contains four or six counters, and each counter can select an
event detector, perform threshold comparisons and edge detection, and qualify event count-
ing by thread mode. The counters in the counter block can also signal performance monitor

interrupts on counter overflow.

share these blocks. The first approach would
eliminate signal routing among event detec-
tors and counters while providing one event
counter for each event detector. The second
approach would reduce signal routing among
event detectors because of the event detectors’
close proximity to a counter block. The first
approach would have eliminated routing costs
and provided the user with more counters that
they could use concurrently. Because the sili-
con area required to implement one counter
per event detector was greater than that for
implementing several shared groups of coun-
ters, Intel’s computer architects chose the sec-
ond approach.

Structure and function

Figure 1 shows the structure and function
of these event detector and counter groups.
The units in Figure 1 are logic sets that per-
form a significant function in the Pentium 4’s
design, such as the branch prediction or the
trace cache units. Implementing the event
detectors in pairs supports concurrent detec-
tion of the same event for different threads in
a simultaneous multithreaded system. Most
units have one pair of equally capable event

detectors, although the checker/retire unit has
three event detector pairs.

Each event detector has a maximum 4-bit-
wide output bus, providing a maximum incre-
ment per cycle of 15. The Pentium 4
implementation routes output buses from each
event detector to an event counter block. Most
event counter blocks contain four counters
with the exception of the counter block in the
instruction queue unit, which has six coun-
ters. Each counter block has two output sig-
nals for requesting interrupts on counter
overflow for EBS. With this organization,
many event detectors share a set of four (or six)
counters. Therefore, one of these groups can
only count four (or six) events concurrently.

The event detectors allow the selection and
masking of an event and can qualify event
detection by privilege mode and thread ID.
Event counters support threshold compari-
son, edge detection, and thread mode quali-
fication. They can also generate performance
monitor interrupts on counter overflow to
support EBS. Users can configure these fea-
tures using event select control registers
(ESCRs) and counter configuration control

registers (CCCRY).

JULY—AUGUST 2002

!

PENTIUM 4

BPU ISTEER||IXLAT [[ITLB ||[PMH |[MOB ||[FSB BSU Counter block groups
ESCRO ||ESCRO ||ESCRO ||ESCRO ||ESCRO ||ESCRO ||ESCRO ||ESCRO BPU
CCCR/Counter 0
ESCR1 ||ESCR1 ||[ESCR1 ||ESCR1 ||ESCR1 ||ESCR1 ||ESCR1 ||ESCR1 I CCCR/Counter 1
| | | | | | CCCR/Counter 2
0 1 2 3 4 5 6 7 I CCCR/Counter 3
MS TC TBPU MS
ESCRO ||ESCRO ||ESCRO CCCR/Counter 0
l CCCR/Counter 1
ESCR1 ||ESCR1 ||ESCR1 CCCR/Counter 2
l CCCR/Counter 3
0 1 2
FLAME |[FIRM |[SAAT |[uaL DAC FLAME
ESCRO ||ESCRO ||ESCRO ||ESCRO ||ESCRO CCCR/Counter 0
| | | | l CCCR/Counter 1
ESCR1 ||ESCR1 ||ESCR1 ||[ESCR1 ||ESCR1 CCCR/Counter 2
l CCCR/Counter 3
()} 1 2 3 5
IQ ALF RAT |[cRU | i 1Q
ESCRO ||ESCRO ||ESCRO ||[ESCRO | ESCR2 | ESCR4 CCCR/Counter 0
i i 1 CCCR/Counter 1
ESCR1 ||ESCR1 ||ESCR1 ||[ESCR1 | ESCR3 | ESCR5 CCCR/Counter 2
| | i i CCCR/Counter 3
0 1 2 4 ' 5 | 6 CCCR/Counter 4
T— ESCR select values for CCCRs CCCR/Counter 5

Figure 2. Interconnections among event detectors and event select control registers (ESCRs), and their associated counters
and counter configuration control registers (CCCRs).

[EEE MICRO

Groups

Figure 2 shows the four groups of event
detectors and counters implemented in the
Pentium 4. Each group consists of event
detectors (containing ESCRs), shown for sev-
eral units in the figure, and a block of coun-
ters (containing CCCRs). Designers named
each group according to the Pentium 4 unit
that contains the counter block for that group.
For example, the branch prediction unit gives
its name to the group that contains event
counters in the BPU, ISTEER, IXLAT, ITLB,
PMH, MOB, FSB, and BSU units, and these
detectors connect to a counter block in the
BPU that contains four CCCR-counter pairs.
Counters in the counter blocks are grouped

into pairs, such as counters 0 and 1 in the
BPU group. The paired counters share the
same set of event detectors and ESCRs. As
Figure 2 shows, although the Pentium 4 con-
tains 44 event detectors, it can only count 18
events concurrently because only 18 counters
are available. Even so, the ability to count 18
events concurrently is a substantial increase
over the capabilities of other processors.

Event selection

An ESCR, shown in Figure 3, configures an
event detector. The 7-bit event select field
selects the desired event, and the 16-bit event
mask field selects a subset of the desired event.
For example, the Pentium 4 branch_retired

event defines 4 bits in the event mask field to
select from the following branch types: taken,
not taken, predicted, and mispredicted. To
count mispredicted branches, the user would
select the branch_retired event and then set
the branch-taken-mispredicted and branch-
not-taken-mispredicted bits in the event mask.

The ESCR’s low-order 4 bits allow qualifi-
cation of event detection by privilege mode
and thread ID. The thread ID identifies one
of the possible two threads concurrently exe-
cuting via the Pentium 4’s SMT capability.
See the “Simultaneous multithreading:
Improving instruction throughput for high-
performance processors” sidebar (next page)
for a brief introduction to the concepts, goals,
and performance implications of the Pentium
4’s SMT features. For example, to count all
operating system events for both threads, the
user would set both the TO_OS and T1_OS
events. Defining each of these bits as a com-
bination of both thread and privilege mode
provides a greater degree of control than is
possible if the event detector used 2 bits (T0
and T1) to select thread qualification and the
other 2 bits (operating system, OS, and user,
USR) to select privilege mode. For example,
the user could count all user events for thread
0 and all operating system events for thread 1
(by setting the TO_USR and T1_OS bits),
which is not possible with individual T0, T1,
operating system, and USR bits in the ESCR.

Counter configuration
Figure 4 shows the bits and fields in a
CCCR that

o cnable the counter,

o select the event detector to use as the
source for counter increments,

e qualify event counting by the processor’s
current thread mode,

e configure the counter’s threshold and
edge detection capabilities,

e configure the interrupt generation on
counter overflow, and

o cnable the cascading of paired counters.

The CCCR also has one status bit, OVE, to
indicate whether an overflow has occurred.
Using an event counter requires enabling
the counter and selecting the event detector
to supply increment values to the counter. The

Figure 3. Event select control register.

8 2 1 0
10987654321098765432109876543210
g Event T

ag

% select Event mask value
o

Tag enable

T1_USR

T1_0S

TO_USR

TO_OS

1

0

10987654321098765432109876543210

Reserved

3 2
©
(0]
2
()
()
Q
o
58 rpes 3 F
58 -J3% 2 2%
s ==Y @ &€
@ ang e 35
o 112 £ 20
wuwo [= 1S
> > 3
(oNe]

Event select control register

Thread mode (single, dual, no, any)

Enable

Figure 4. Counter configuration control register.

CCCR’s enable bit turns on the counter, and
the ESCR select field chooses the event detec-
tor output that the counter should use. In Fig-
ure 2, the bold numbers in the boxes for each
pair of event detectors represent the value that
the CCCR’s ESCR select field uses to pick the
indicated event detector.

The CCCR’s compare, complement, and
threshold fields control the counter’s thresh-
old detection capabilities. When the compare
bit is set, the counter compares the incoming
value from an event detector to the value in
the threshold field. The complement bit
determines the type of comparison. A zero
complement bit selects a greater-than com-
parison. Setting the complement bit to one

JULY—AUGUST 2002

PENTIUM 4

Simultaneous multithreading: Improving instruction throughput for high-performance processors

Although modern, high-performance processors employ a wide vari-
ety of techniques to improve performance,' these processors often stall
waiting for various conditions to resolve. These stalls leave the proces-
sor's pipeline and its multiple execution units idle for many cycles. Prob-
ably the most egregious of these stall conditions is a cache miss that can
take tens or even hundreds of cycles to resolve. Although compiler writ-
ers and processor designers do their best to schedule useful work during
a cache miss, these efforts are often not successful. Consequently, the
processor seldom realizes its potential throughput (measured in the max-
imum number of possible instructions completed per cycle). In cases where
only one task is ready to execute on the processor, nathing more can be
done except to wait for the stall to clear. However, when more than one
task is ready to execute (as is often the case for servers), the processor
can improve its overall instruction throughput by concurrently sharing
resources between two or more ready-to-run tasks.

Simultaneous multithreading

Consider a processor design that lets two tasks concurrently share
resources. Such a processor would concurrently have instructions from
both tasks flowing through its pipeline and using its resources. If neither
task incurs a stall, each task would consume roughly half the processor's
resources and execute at roughly half the rate it could if it were the only
task on the system. Although this concurrent processing halves each task’s
execution rate, the processor’s instruction throughput is basically the
same as the throughput attained with only one task that does not stall.

Now consider the case where one of the tasks stalls. At this point, the
other task can consume most of the processor's resources and approach

the execution rate it would attain if it were the only task. With this sharing
technique, the processor's instruction throughput remains high, even though
one task stalls. This dynamic sharing by two tasks lets the processor main-
tain a high instruction throughput in the face of various stall conditions.

This concurrent sharing of a processor’s resources by two or more
threads is called simultaneous multithreading (SMT),? and the Pentium 4
Xeon is the first implementation of the x86 architecture that supports
SMT.? A single Pentium 4 Xeon with SMT enabled can concurrently sup-
port two execution threads. As such, an SMT Pentium 4 Xeon appears to
the operating system as a dual processor, even though it's physically only
one processor. Because the operating system believes the system has
two processors, it will assign ready-to-run tasks to both pracessors, allow-
ing the sharing technique described previously to improve the overall
instruction throughput.

Although SMT can improve overall throughput, it can also degrade
throughput if concurrent sharing of processor’s resources by multiple tasks
causes excessive resource conflicts. Simple benchmarks can demonstrate
both SMT-induced improvements and degradations in throughput.

Benchmark results

Forexample, let’s examine the performance of two benchmarks running
in single- and dual-thread modes on the Pentium 4 Xeon. These bench-
marks are fp_add_latency and |1_miss. The fp_add_latency benchmark
consists of a long series of serially dependent floating-point (FP) adds.
The I1_miss benchmark generates a steady stream of independent mem-
ory loads, all of which miss the L1 cache. | obtained the throughput data
discussed here using Pentium 4 Xeon's performance-monitoring support.

[EEE MICRO

selects a less-than-or-equal-to comparison.
When the comparison of the input and
threshold values is true, the counter incre-
ments by one. When the threshold feature is
enabled, the counter’s edge detection capa-
bility can also be activated via the edge bit.
With the threshold comparisons enabled and
the edge bit set, the edge detection hardware
compares the last and current threshold com-
parison results. The counter will increment
by one only when the previous threshold com-
parison was false, and the current threshold
comparison is true, thus detecting a rising
edge on the threshold filter.

Since the Pentium 4 processor is the first
implementation of the x86 architecture to
support SMT, it also has performance-moni-
toring support that allows qualification of
event counting by the processor’s current
thread mode. The CCCR’s 2-bit thread mode
field qualifies event counting by the proces-
sor’s current thread mode. The four encod-

ings for this field represent each of the proces-
sor’s possible thread modes.

o In single-thread mode, only one thread is
active, and the processor dedicates all of
its resources to that thread.

o In dual-thread mode, two threads are
active, and they share the processor’s
resources.

o In no-threadmode, no threads are active.
However, some resources must respond
to other events in the system, and this
activity can cause performance events.
For example, consider the case of a dual-
processor system where one processor is
in no-thread mode, and the other proces-
sor is in dual-thread mode. The proces-
sor in dual-thread mode could initiate
memory transactions that the cache of
the processor in no-thread mode might
need to service. An example would be a
read-for-ownership transaction necessary

Consider the fp_add_latency benchmark. On the Pentium 4 Xeon, the
FP adder can start a new FP add every cycle—each FP add has a latency
of five cycles. Because the serial dependency between the FP adds is the
bottleneck for the fp_add_latency benchmark, the benchmark attains a
throughput of 0.21 microoperations (Lops) per cycle (roughly one FP add
every five cycles) when running in single-thread mode. When two copies
of this benchmark run in dual-thread mode, the combined throughput is
0.41 wops per cycle, almost twice the throughput attained in single-thread
mode. This example shows how SMT can significantly improve overall
throughput by essentially doubling processor performance compared to
running tasks sequentially in single-thread mode. The fp_add_latency
benchmark improves performance because of the FP adder’s long laten-
cy and the serial dependency between the adds keeps the FP adder uti-
lization low. These features let two tasks share the FP adder and other
pracessor resources with essentially no interference.

However, the performance of the I1_miss benchmark running in single-
thread mode compared with two copies of the I1_miss benchmark running
in dual-thread mode shows a very different throughput result. Because the
memory loads in the I1_miss benchmark are all independent and each
one misses the L1 cache, the memary system is quickly flooded with
demand fetch requests from the L1 cache to the L2 cache.

In single-thread mode, the I1_miss benchmark attains a throughput of
1.23 uops per cycle. However, when the processor executes two copies
of the I1_miss benchmark in dual-thread mode, the combined through-
putis only 0.65 pops per cycle. This is roughly half the throughput attain-
able if the processor ran two copies of the benchmark sequentially in
single-thread mode. This happens because the memory system is already
significantly loaded with only one copy of the I1_miss benchmark run-
ning. Doubling the demand on the memory system by running another

copy of the benchmark in dual-thread mode results in excessive conflicts
in the memary system, significantly degrading performance.

Thus, the Pentium 4 Xeon's SMT features can be both an advantage and
a detriment to overall performance. To obtain the full potential of SMT
while avoiding its pitfalls, operating systems must carefully select the
tasks that will concurrently share an SMT processor. Researchers have
proposed a new task-scheduling approach—symbiotic task scheduling—
and investigated the use of hardware performance-monitoring data to
guide the job scheduling on SMT processors.* This study showed symbi-
otic task scheduling to improve response time performance by as much
as 17 percent.

References

1. K. Diefendorff, “PC Processor Microarchitecture, A Concise
Review of the Techniques Used in Modern PC Processors,”
Microprocessor Report, 12 July 1999.

2. D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” Proc. 22nd
Ann. Int'l Symp. Computer Architecture, ACM Press, New
York, 1995, pp. 392-403.

3. D.Marretal., “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology J., vol. 6, no. 1, 14 Feb.
2002, pp. 1-12.

4. A. Snavely and D.M. Tullsen, “Symbiotic Jobscheduling for a
Simultaneous Multithreading Processor,” 9th Int'l Conf.
Architectural Support for Programming Languages and
Operating Systems, ACM Press, New York, 2000, pp. 234-
244; http://www-cse.ucsd.edu/users/tullsen/asplos00.pdf.

for modifying the cache line of the
processor in no-thread mode.

e The any mode enables event counting
independent of the current thread mode.

Other features

To support EBS, Pentium 4 counters can
generate interrupts on counter overflow using
the OVF_PMI_TO0 and OVF_PMI_T1 fields
in the CCCR (see Figure 4). Setting the
OVF_PMI_TO bit will generate a thread 0
interrupt on counter overflow. Setting the
OVF_PMI_TT1 bit will generate a thread 1
interrupt on counter overflow. Additionally,
setting the FORCE_OVF bit configures the
counter to overflow on every counter incre-
ment. This feature is useful when the user
wants to collect profile information about all
occurrences of an infrequently occurring
event. Because several counters can generate
interrupts on overflow, each CCCR contains
an OVF bit that indicates that the corre-

sponding counter has overflowed. Upon an
interrupt, the performance monitor inter-
rupt’s interrupt service routine (ISR) checks
the OVF bits in the active CCCRs to deter-
mine which counter(s) overflowed. Note that
EBS implemented in this manner suffers from
the same inaccuracies observed for previous
processors.

The Pentium 4 supports cascading coun-
ters, which the CCCR’s cascade bit controls
(see Figure 4). When two counters are cascad-
ed, the first counter counts normally, but the
second counter does not begin counting until
the first counter overflows. By initializing the
first counter to overflow after M events, the
second counter to overflow after Vevents, and
the second counter to generate an interrupt on
overflow, the user can collect information on
correlated events with a fairly fine degree of
control. It’s also possible to cascade corre-
sponding counters in different counter pairs
within a counter block. For example, BPU

JULY—AUGUST 2002

[EEE MICRO

PENTIUM 4

counter 2 can start counting when BPU
counter 0 overflows by setting the cascade bit
and clearing the enable bit in counter 2’s

CCCR. When BPU counter 0 overflows, BPU

counter 2 will be enabled to count.

Obtaining nonspeculative event counts
When counting events, it’s often helpful to
distinguish between events caused by specula-
tively executed instructions that never retire ver-
sus events caused by instructions that do retire.
For example, instructions that are executed in
the shadow of a frequently mispredicted branch
often do not retire. These nonretiring instruc-
tions can significantly increase the counts for
certain events when compared to event counts
obtained only from instructions that retire.
These counts can even exceed the number of
events caused by instructions that retire. Using
the total event count rather than the separated
speculative and nonspeculative event counts can
lead a performance analyst to draw flawed con-
clusions. For example, consider a program that
has a frequently accessed data structure that is
small enough to fit in the data cache. However,
this program also has a frequently executed
branch instruction that is often mispredicted.
The instructions in the shadow of this mispre-
dicted branch (which never retire) access data
that is not needed by the program and that is
not in the data cache. If performance analysts
couldn’t distinguish between the nonspecula-
tive and speculative data cache miss counts, they
could draw the erroneous conclusion that data
needed by the program don’t fit in the cache.
This erroneous conclusion could then lead to
futile efforts to tune the data structure’s size and
access patterns in an effort to improve cache per-
formance. However, with the nonspeculative
and speculative data counts properly separated,
analysts could focus efforts on improving the
prediction rate for the problematic branch
and/or adjust the code such that speculatively
executed instructions in the mispredicted
branch’s shadow do not miss the data cache.
The Pentium 4 uses tagging mechanisms to
provide nonspeculative event counts. As the
processor decodes each x86 instruction, it
breaks it into a sequence of one or more sim-
ple operations called microoperations, or [ops.
The Pentium 4’s tagging mechanisms enable
tagging these Lops when they cause certain
performance events. Once tagged, a [lop

retains the tag until the [op retires successful-
ly or is cancelled. As the pops pass through the
retirement logic, tagged [Lops can be counted,
providing a nonspeculative event count.

The Pentium 4 implements three tagging
mechanisms: front end, execution, and replay.
The front-end tagging mechanism tags the
Wops responsible for events occurring early in
the pipeline related to instruction fetch,
instruction types, and Hop delivery from the
trace cache. The execution tagging mecha-
nism tags certain classes of [lops as they write
their results back to the register file. The replay
tagging mechanism tags Lops that are reissued
(replayed) because of conditions such as cache
misses, branch mispredictions, dependence
violations, and resource conflicts. Both the
front-end and replay tagging mechanisms
have essentially one tag bit per pop and thus
can only handle one event at a time. Howev-
er, the execution tagging mechanism has four
tag bits available per fop and, as such, can
concurrently track up to four events. Several
machine-specific registers and, in some cases,
the tag and tag value bits of the ESCRs (see
Figure 3) enable these tagging mechanisms.

Precise event-hased sampling

The Pentium 4’s PEBS support is a signifi-
cant performance-monitoring advantage. Pre-
vious processors only supported IEBS, and
the inaccuracy of these profiles often made
them useless.

To provide PEBS support, the Pentium 4
takes a different approach to collecting sam-
ple data. Previous processors would merely
issue a macroinstruction interrupt after a per-
formance event counter overflowed, and the
ISR collected the sample data. However, deep
pipelines, superscalar execution, and latency
between the counter overflow and the actual
interrupt cause wide variations in the accura-
cy of samples collected in this manner. The
Pentium 4 uses a microassist and a microc-
ode-assist service routine to capture sample
data for PEBS. A microassist changes the
source of the next Lops to be executed in a
fashion analogous to the way an interrupt
changes the source of the next instructions to
be executed. Microassists typically handle
infrequent or problematic conditions that
occur during instruction execution (such as
raising an exception when a divide-by-zero

error occurs). When a microassist is signaled,
a microcode-assist service routine handles the
condition that caused the microassist. The use
of a microassist and a microcode service to col-
lect samples for PEBS avoids the inaccuracies

of IEBS.

Implementation

PEBS support on the Pentium 4 works in
the following manner. The user allocates a
PEBS buffer in memory to hold the samples
to collect and sets a bit in the PEBS_ENABLE
machine-specific register (MSR) to enable
PEBS. The user then configures a [lop tagging
mechanism to tag certain [lops as they flow
through the pipeline. The user also configures
a counter to count tagged LLops as they retire.
Once the counter overflows, the Pentium 4’s
retirement logic examines all retiring Lops.
When it finds a tagged retiring [op, it forces
a microassist to occur just before the tagged
Hop retires. A microassist is similar to a
macroinstruction interrupt in that it halts the
normal execution of instructions. However,
unlike a software interrupt, the processor han-
dles the microassist entirely in microcode, and
no instructions after the microassist-causing
instruction will retire before completion of
the microassist service routine. The microas-
sist service routine collects the actual sample
data by storing the current program counter
and the values in the general-purpose regis-
ters in the PEBS buffer allocated for the sam-
ples. After completing the microassist, the
processor resumes normal execution and the
event-causing instruction retires.

Using a microassist and a microcode-assist
service routine to collect the sample data
instead of a macroinstruction interrupt and
an ISR avoids all of the inaccuracies of IEBS.
Since the microassist is invoked immediately
prior to the retirement of the event-causing
instruction, the association of the sample data
with the event-causing instruction is insured
to be precise. Also, because the microassist is
taken just before the event-causing instruc-
tion retires, the inaccuracies observed with
IEBS caused by the latency between the retire-
ment of the event-causing instruction and the
invocation of an ISR to collect the sample data
are no longer a factor that can affect the accu-
racy of the sample data.

The microassist checks a high watermark

for the PEBS buffer after storage of each sam-
ple. Once the buffer reaches this high water-
mark, an interrupt is signaled and the
corresponding ISR copies the samples from
the PEBS buffer to a more permanent loca-
tion. With PEBS, the ISR copies samples
already collected in the PEBS buffer to anoth-
er location for analysis. It then empties the
PEBS buffer to enable collection of more sam-
ples. Because the ISR does not collect the
actual sample data when using PEBS, the
latency of the interrupt no longer affects the
accuracy of the event-based samples.

Buffering

Pentium 4 PEBS support has another
advantage over IEBS: The overall overhead of
event-based sample buffering is lowered
because the PEBS ISR processes many sam-
ples in one invocation of the ISR. In contrast,
IEBS requires a new invocation of the ISR for
each sample. This improvement in sample-
processing efficiency can either reduce the
interference experienced by the monitored
system or allow collection of more samples for
the same level of interference.

Benchmark program

To demonstrate the advantages of PEBS
over IEBS, I created a simple benchmark pro-
gram. This benchmark uses a load instruction
in a nested loop to cause many L1 data cache
misses on the Pentium 4. Although only one
load (the target load) in the nested loop actu-
ally causes a cache miss, the cache-missing
load is preceded and followed by large sequen-
tial blocks of loads that always hit the cache.
I then created event-based profiles for L1 data
cache misses using PEBS and IEBS support
on the Pentium 4.

Figure 5 (next page) summarizes the sam-
pling results from this benchmark. For PEBS,
100 percent of the samples correctly identify
the load instruction that misses the L1 data
cache (identified as “+0” in Figure 5). In con-
trast, none of the IEBS samples identify the
correct load instruction. Moreover, the
instructions identified by IEBS were 65 or
more sequential instructions after the target
instruction (for example, 46.5 percent of all
the IEBS samples identified a load instruction
69 instructions after the load instruction that
misses the cache). This inaccuracy of IEBS on

JULY—AUGUST 2002

i

Samples (%)

100

80

60

40

20

PENTIUM 4

[] PEBS
O ieBs
46.5
"""""""" 39.5
11.3
26 ﬂ
+0 +65 +66 +68 +69

Distance of event-based samples from
the target instruction that miss the L1 cache

Figure 5. Comparison of the sample accuracy for precise and imprecise
event-based sampling.

[EEE MICRO

the Pentium 4 is much worse than that for the
Pentium Pro processor as assessed by the Pro-
fileMe team.? This greater inaccuracy arises
from the Pentium 4’s more aggressive design
and the increasing difference between proces-
sor cycle time and main-memory access time.
This greater inaccuracy also emphasizes the
importance of the Pentium 4 PEBS support.

Pentium 4 PEBS support also enables the
creation of data address profiles, a capability
not possible with IEBS. A data address pro-
file identifies locations in data memory that
are associated with various memory system
performance events, such as cache and trans-
lation look-aside buffer misses. The user can
recreate the data memory address used by the
load or store [op instruction that caused the
performance event. Doing so requires decod-
ing the instruction identified by the PEBS
sample and using the sampled register values
to compute the effective address of the
instruction’s operands. By building a profile
of these data memory addresses, programmers
can identify the regions in data memory that
cause common memory system performance
problems. Once programmers identify these
regions, it’s often possible to rearrange an
application’s memory data structures to reduce
the frequency of memory system performance

problems. In previous processors, it was not
possible to create these profiles with IEBS
because the IEBS samples often incorrectly
identified the instructions causing memory
system performance events.

Let’s return to the 11_miss benchmark used
previously in the IEBS and PEBS discussion
to demonstrate the creation and use of data
address profiles. To create an address profile
for the 11_miss benchmark, I configured the
replay tagging mechanism to tag load pops
that miss the L1 cache. I also configured a
counter to count tagged Lops as they retire.
This benchmark generated 80 million L1
cache misses. A second benchmark, with
PEBS enabled, collected a sample every
100,000 L1 cache misses, generating 800 sam-
ples. As mentioned previously, all 800 sam-
ples identify the same instruction as missing
the L1 cache. The address, opcode, and
operands for the this instruction are

80484c3: mov (WEAX), %EAX

This load instruction uses contents of the
EAX register as the address for a load access
to memory whose result is written into the
EAX register. Therefore, simply identifying
the EAX values for each sample provides the
memory addresses responsible for the major-
ity of the L1 misses in this benchmark. Table
1 includes a count of unique EAX values for
each sample. In this table, the sample count
column indicates the number of samples that
contain the same EAX value. The extended-
instruction-pointer values (0x080484c3) for
these samples are all the same as that for the
instruction shown previously. The last column
indicates the EAX value that corresponds to
the memory address used by the loads caus-
ing the L1 cache misses. The table rows are
sorted from lowest to highest EAX value.

By examining the memory address data in
Table 1, I can deduce the behavior of the
11_miss benchmark. First, note that the lower
12 bits of each EAX value are the same. Sec-
ond, the difference between successive EAX
values is equal to 8 Kbytes. The Pentium 4 L1
cache is an 8-Kbyte, four-way set associative
cache. By repeatedly accessing a set of eight
locations in memory that are each 8 Kbytes
apart, the benchmark thrashes the Pentium 4’s
L1 cache, which can only hold the memory

contents of four accesses for this set of address-
es at any one time. This analysis matches the
benchmark’s behavior, which causes L1 cache
misses while performing one million execu-
tions of an eight-iteration loop that moves
through a large array with an 8-Kbyte stride.
If this were a data address profile from a real
application, I could now use this analysis to
reduce the frequency of cache misses by either
changing the order in which the instructions
access the data structure or by rearranging the
data structure layout in memory.

Problems, limitations, and opportunities

Although the Pentium 4’s performance-
monitoring support significantly improves
upon that of its predecessors, its current
implementations do have problems and lim-
itations. The most significant of these is the
lack of documentation for performance-mon-
itoring capabilities, implementation bugs, and
undisclosed features. The sheer complexity of
the Pentium 4 microarchitecture makes the
creation of clear and accurate descriptions of
its performance-monitoring events difficult.
Early releases of this documentation provided
cryptic descriptions of events and also omit-
ted key information. For example, early
descriptions of the front-end tagging mecha-
nism did not list any events detectable by the
front-end tagging mechanism.

However, Intel routinely updates this doc-
umentation online, making significant
improvements with each release.> The most
recent releases of this documentation (which
also include descriptions of the Xeon proces-
sor’s hyperthreading capabilities) fill several
omissions in the originals and also make
numerous attempts to clarify the meaning and
proper use of performance-monitoring events
and features.

Implementation bugs in the performance-
monitoring features have also made some fea-
tures difficult to use. For example, the logic
equations used to detect the IOQ_allocation
event differ for different model versions and
the qualification of event counting by user and
supervisor privilege levels is ignored for this
event. Again, as Intel designers find these bugs,
the documentation is updated accordingly.

Lastly, several performance-monitoring fea-
tures remain undocumented. For example,
Intel has only documented one front-end tag-

Table 1. Counts for each unique EAX
sampled value.

Sample count EAX
102 0x08049760
88 0x0804b760
106 0x0804d760
102 0x0804f760
100 0x08051760
100 0x08053760
101 0x08055760
101 0x08057760

ging event: flop_type. These features remain
undocumented primarily because Intel design-
ers have not yet sufficiently validated them for
external release. Although performance-mon-
itoring support is important and useful, it does
not significantly impact the number of proces-
sors sold. Hence, the company dedicates fewer
resources to implementing, validating, and
maintaining performance-monitoring features
than to admittedly more important processor
features, such as functional correctness and
overall performance.

Three areas for improvement will become
increasingly important as symmetric multi-
processing and hyperthreading become more
common and the use of performance-moni-
toring features grows.

First, the interface and mechanisms that
support qualification of event detection by
thread ID and event counting by thread mode
are not easily extended to support more than
two tasks executing concurrently. If future
implementations increase the level of hyper-
threading, providing these capabilities might
require a different approach.

Second, the current performance-monitor-
ing features don’t provide support for attribut-
ing event counts to specific tasks executed on
a machine with a time-sharing operating sys-
tem. The performance counters count events
for all tasks that execute on the processor
(here, the word tasks refers to multiple appli-
cations ready to run on the processor, not the
number of tasks that can concurrently execute
on the processor via hyperthreading). As a
result, when the operating system shares the
processor among several tasks, it’s not possible
to attribute event counts to the tasks that
caused them without altering the operating

JULY—AUGUST 2002

i

PENTIUM 4

[EEE MICRO

system. This is also a problem for the buffer-
ing of PEBS samples by the processor. With
the current Pentium 4 implementation, if the
operating system switches tasks before the
PEBS ISR empties the PEBS buffer, the buffer
will contain samples from multiple tasks with
no way to identify the source of each sample.

Third, the definition of performance-mon-
itoring events, the capabilities of the perfor-
mance-monitoring support, as well as the
software interface to select events and configure
various performance-monitoring mechanisms
change with each new microarchitecture. For
example, the most recent x86 processor imple-
mentations from Intel are based upon three dis-
tinct microarchitectures, all supporting
different events and capabilities:

e the P5 microarchitecture, which debuted
as the original Pentium and evolved into
the Pentium MMX;

e the P6 microarchitecture, which debuted
as the Pentium Pro and evolved into the
Pentium II and Pentium III processors
along with their Celeron and Xeon ver-
sions; and

o the Willamette microarchitecture, which
debuted as the Pentium 4 and has
evolved into the hyperthreaded Pentium
4 Xeon.

Although many performance events are by
definition microarchitecture specific, the
changes in event definitions and interfaces make
it difficult to develop and maintain software that
uses performance-monitoring capabilities across
different microarchitectures. A few software
tools manage to do this, such as Intel’s Vtune
tool (http://developer.intel.com/software/
products/vtune/vtune60/index.htm) and the
PAPT tools (hetp://icl.cs.utk.edu/projects/papi/).
However, it would be a significant improvement
if a core set of key performance events, mecha-
nisms, and interfaces could be defined and
maintained for each new microarchitecture

developed.

ntel’s Pentium 4 processor provides perfor-
mance-monitoring features that overcome

many of the limitations of the performance-
monitoring hardware of previous processors.
The new features of the Pentium 4 greatly
enhance collection of accurate processor per-
formance data and will enable a new class of
performance-tuning tools and capabilities,
such as the dynamic tuning of applications
and the operating system.

1. D.Marr et al., “Hyper-Threading Technology
Architecture and Microarchitecture,” Intel
Technology J., vol. 6, no. 1, 14 Feb. 2002, pp.
1-12; http://developer.intel.com/technology/
itj/2002/volume06issue01/art01_hyper/
volBiss1_art01.pdf.

2. J.Deanetal., "ProfileMe: Hardware Support
for Instruction-Level Profiling on Out-of-
Order Processors,” Proc. 30th Symp.
Microarchitecture (Micro-30), IEEE CS Press,
Los Alamitos, Calif., 1997, pp. 292-302.

3. IA-32 Intel
Developer's Manual Volume 3: System

Architecture Software
Programming Guide, order no. 245472, Intel,
Santa Clara, Calif., 2002; http://developer.
intel.com/design/pentium4/manuals/.

Brinkley Sprunt is an assistant professor of
electrical engineering at Bucknell University.
His research interests include computer per-
formance modeling, measurement, and opti-
mization. Sprunt has a PhD in electrical and
computer engineering from Carnegie Mellon
University. He previously worked at Intel
where he was a member of the architecture
teams for the 80960, Pentium Pro, and Pen-
tium 4 projects. He is a member of the IEEE
and ACM.

Direct questions and comments about this
article to Brinkley Sprunt, Bucknell Univ., Elec-
trical Engineering Dept., Moore Ave., Lewis-

burg, PA 17837; bsprunt@bucknell.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

