
20

High-performance processors exe-
cute instructions out of program order to tol-
erate long latencies and extract
instruction-level parallelism. However, these
processors retire instructions in program order
to support precise exceptions.1 If the execu-
tion of a long-latency instruction is not com-
plete, the processor cannot retire that
instruction and the instructions following it
in the sequential instruction stream. If the
window is not large enough, this delay in
retirement causes incoming instructions to fill
the instruction window. Once the window
becomes full, the processor cannot place new
instructions into the window, and it stalls.
This resulting stall is called a full-window stall,
and prevents the processor from finding inde-
pendent instructions to execute to tolerate the
long latency. The straightforward solution to
this problem is to increase the size of the
instruction window. However, doing so is
challenging because of design complexity, ver-

ification difficulty, and the increased power
consumption of a large instruction window.

Unfortunately, main memory latencies are
so long that out-of-order processors require
large instruction windows to tolerate them. A
cache miss to main memory costs about 128
cycles on an Alpha 212642 and 330 cycles on
a Pentium-4-like processor.3 Figure 1 shows
that a Pentium-4-like processor with a 128-
entry instruction window and a 512-Kbyte
level-two (L2) cache (processor 1) spends 68
percent of its execution cycles in full-window
stalls. If the L2 cache is perfect—that is,
processor memory accesses never miss in this
cache—the processor (processor 2) wastes
only 30 percent of its cycles in full-window
stalls, indicating that long-latency L2 misses
cause the most full-window stalls in proces-
sor 1. However, processor 3, which has a
2,048-entry instruction window and a 512-
Kbyte L2 cache, spends only 33 percent of its
cycles in full-window stalls. So a processor

Onur Mutlu
The University of Texas

at Austin

Jared Stark
Chris Wilkerson

Intel Microarchitecture

Research Lab

Yale N. Patt
The University of Texas

at Austin

AN INSTRUCTION WINDOW THAT CAN TOLERATE LATENCIES TO DRAM

MEMORY IS PROHIBITIVELY COMPLEX AND POWER HUNGRY. TO AVOID HAVING

TO BUILD SUCH LARGE WINDOWS, RUNAHEAD EXECUTION USES OTHERWISE-

IDLE CLOCK CYCLES TO ACHIEVE AN AVERAGE 22 PERCENT PERFORMANCE

IMPROVEMENT FOR PROCESSORS WITH INSTRUCTION WINDOWS OF

CONTEMPORARY SIZES. THIS TECHNIQUE INCURS ONLY A SMALL HARDWARE

COST AND DOES NOT SIGNIFICANTLY INCREASE THE PROCESSOR’S COMPLEXITY.

RUNAHEAD EXECUTION:
AN EFFECTIVE ALTERNATIVE TO
LARGE INSTRUCTION WINDOWS

Published by the IEEE Computer Society 0272-1732/03/$17.00 2003 IEEE

with a large instruction window tolerates the
main-memory latency much better than a
processor with a small instruction window.

We propose a simple alternative to large,
complex instruction windows. This alterna-
tive, runahead execution,4,5 uses a simple algo-
rithm that increases the tolerance of a
processor to long-latency memory operations
and provides instruction and data prefetching
benefits. This algorithm is easily imple-
mentable in current out-of-order processors
and increases the instructions per cycle (IPC)
performance of an aggressive processor model
by 22 percent. Compared to large instruction
windows, a processor with runahead execu-
tion performs 3 percent better than a proces-
sor with twice the instruction window size and
almost as well as a processor with three times
the instruction window size.

Runahead execution operation
The mechanism we propose avoids stalling

the processor when a long-latency L2 cache
miss blocks the placement of new instructions
into the instruction window. When the
processor detects that the oldest instruction
being serviced is a long-latency cache miss, it
checkpoints the architectural register state, the
branch history register, and the return address
stack; records the program counter of the
long-latency instruction; and enters a specu-
lative processing mode called runahead mode.
The processor then removes this long-laten-
cy instruction from the instruction window.

While in runahead mode, the processor con-
tinues to execute instructions without updat-
ing the architectural state and without
blocking retirement due to long-latency cache
misses and the instructions dependent on
them. The processor identifies the results of
long-latency cache misses and their dependents
as bogus, removing instructions that generate
or source bogus results from the instruction
window so that they do not prevent the place-
ment of independent instructions into the
window. Runahead mode allows the processor
to execute more instructions than the instruc-
tion window normally permits.

Some of the instructions in runahead
mode—those that are independent of long-
latency cache misses—miss in the instruction,
data, or unified caches. Their miss latencies
overlap with the latency of the runahead-caus-

ing cache miss. When the runahead-causing
cache miss completes, the processor exits
runahead mode, restores the checkpointed
state, and resumes normal instruction fetch
and execution starting with the runahead-
causing instruction. Once the processor
returns to normal mode, it can make faster
progress without stalling because, during
runahead mode, the processor has already
prefetched some of the data and instructions
for normal mode into the caches.

Benefits
Runahead execution lets the processor do

useful processing instead of stalling for hun-
dreds of cycles while it services a long-latency
data cache miss. The processing during runa-
head execution targets the discovery and ini-
tiation of long-latency data and instruction
accesses to DRAM and services them in par-
allel with the runahead-causing miss. Besides
prefetching these long-latency accesses, runa-
head execution prefetches data and instruc-
tions between levels of the cache hierarchy;
trains the hardware data and instruction
prefetchers with future access information;
and trains the branch prediction structures.

Cost and complexity
In previous work, we detail the runahead

execution mechanism and its implementation
on a high-performance processor.5 We also

21NOVEMBER–DECEMBER 2003

Processor 1
(0.77 IPC)

Processor 2
(1.69 IPC)

Processor 3
(1.15 IPC)

0

10

20

30

40

50

60

70

80

90

100

C
yc

le
s

w
ith

 fu
ll-

w
in

do
w

 s
ta

lls
(p

er
ce

nt
ag

e)

512-Kbyte L2 cache, 128-entry window
Perfect L2 cache, 128-entry window
512-Kbyte L2 cache, 2,048-entry window

Figure 1. Percentage of execution cycles with full-window
stalls. The figure also lists instructions per cycle (IPC).
Later, we describe the processor models and benchmarks.

described the additional hardware necessary
to implement runahead execution. This hard-
ware consists of the checkpointed architec-
tural registers, branch history register, and
return address stack; a single invalid (INV) bit
associated with every physical register and
store buffer entry; and a small, 512-byte store
buffer (runahead cache) used to forward data
from stores to loads during runahead mode.5

None of these added structures are complex
or on the processor’s critical path.

The mechanism for checkpointing the archi-
tectural registers depends on the microarchi-
tecture. Microarchitectures that store the
architectural state in the physical register file can
avoid checkpointing the entire architectural reg-
ister state by checkpointing only the register
map that points to the architectural state. It is
possible to checkpoint the return address stack
without significant hardware cost.6

The INV bit identifies the entry associated
with it as bogus, that is, dependent on a long-
latency cache miss. The mechanism that com-
municates INV bits between dependent
instructions is already present in an out-of-
order processor, which communicates data
values between dependent instructions.

The runahead store buffer is perhaps the
most significant area cost of runahead execu-
tion. However, it is small compared to the
level-one (L1) data cache. Our simulations
show that this buffer is very latency-tolerant
and that the processor does not need to access
it in parallel with the data cache. So this buffer
is not on the processor’s critical path.

Adding runahead execution to an out-of-
order processor does not significantly increase
processor complexity. However, as we will
show in a later section, a processor with runa-
head execution attains the performance of
those with larger instruction windows, which
are power hungry, complex, and on the criti-
cal path.7 So runahead execution offers a cost-
and complexity-effective alternative to large
windows.

Performance
We evaluated the performance improve-

ment of adding runahead execution to an
aggressive Pentium-4-like processor.8 We use
an execution-driven x86 simulator and 80
memory-intensive benchmarks from a variety
of suites: SPEC (SPEC95, FP00, Int00),

Internet (Web), multimedia (MM), produc-
tivity (Prod), server (Server), and workstation
(WS). In previous work, we describe our sim-
ulation methodology and benchmark sets.5

The processor we model is three micro-ops
wide and has a 128-entry instruction window
(in terms of micro-ops); 29-stage pipeline; 32-
Kbyte, eight-way, three-cycle L1 data cache;
512-Kbyte, eight-way, 16-cycle L2 unified
cache; and a 12K-micro-op, eight-way trace
cache. Main memory latency is 495 cycles.
The processor uses an aggressive streaming
hardware data prefetcher8 and a streaming
instruction prefetcher. We modeled band-
width and contention at all levels of the mem-
ory hierarchy. Our earlier work described
other parameters of the baseline processor.5

All IPC numbers are in terms of micro-ops
per cycle.

Runahead execution versus large windows
Figure 2 shows the IPCs of five different

processors for each benchmark suite. From
left, the first bar shows the IPC of the base-
line processor. The next bar shows the IPC of
the baseline with runahead execution. The
other three bars show the IPCs of processors
without runahead; instead, these processors
had larger instruction windows with 256, 384,
and 512 entries. Where applicable, the per-
centages show the IPC improvement of
adding runahead execution to the baseline.

On average (shown in the rightmost set of
bars), adding runahead execution to the base-
line processor improves IPC by 22 percent.
The baseline processor with runahead execu-
tion outperforms the processor with a 256-
entry window by 3 percent. Also, the baseline
processor with runahead execution has an IPC
within 1 percent of that of the processor with
a 384-entry window. So, runahead execution
on a 128-entry window processor attains
almost the same IPC as a processor with three
times the window size.

Runahead execution on future processors
Based on experiments that we present in

another paper,5 we believe that runahead exe-
cution will become more important and effec-
tive in future-generation microprocessors. As
processor and system designers continue to
push for shorter cycle times and larger mem-
ory modules, and memory designers contin-

22

MICRO TOP PICKS

IEEE MICRO

ue to push for higher bandwidth and density,
main-memory latencies will continue to
increase in terms of processor cycles.2 These
increased latencies should make runahead exe-
cution more effective for future processors.

To support this hypothesis, we examined
the performance of runahead execution on a
future processor model,5 which is six micro-
ops wide with a 58-stage pipeline, 512-entry
window, 1-Mbyte L2 cache, and 1,008-cycle
main-memory latency. Runahead execution
on this future model is just as effective and
improves IPC by 23 percent on average.

The effectiveness of the processor’s instruc-
tion supply mechanism (branch prediction
and instruction fetch unit) bounds the per-
formance improvement of runahead execu-
tion, especially on the wider, deeper, and
larger future processor model. Our previous
paper described how a processor with a bet-
ter instruction supply mechanism benefits
more from runahead execution. As architects
continue to improve branch prediction and
instruction fetch units, the performance
improvement provided by runahead execu-
tion will increase.

Future-generation processors will also have
larger L2 caches. Figure 3 shows that imple-
menting runahead execution on a processor
with a 1-Mbyte L2 cache improves the IPC

by 17 percent. With a 4-Mbyte L2 cache, IPC
improves by 16 percent. So, runahead execu-
tion remains effective for large L2 caches. For
the Int00 suite, runahead execution becomes
more effective as L2 cache size increases,
because a larger L2 cache is more tolerant to
the pollution generated by inaccurate
prefetches in runahead mode.

Runahead execution benefit analysis
Runahead execution provides performance

improvements in two main areas: instruction
and data prefetching. The instruction-
prefetching improvement comes from
prefetching runahead instructions into the L2
cache and the trace (or instruction) cache, and
training the branch predictors during runa-
head mode. Data-prefetching improvement
comes from prefetching runahead load
requests into the L2 cache and L1 data cache,
and training the hardware data prefetchers’
buffers during runahead mode.

We find that, on average, 88 percent of the
IPC improvement comes from data prefetch-
ing. All benchmark suites, except the server
suite, owe more than 70 percent of the per-
formance improvement to data prefetching.
Because server applications are branch inten-
sive and have large instruction footprints, 45
percent of the performance improvement for

23NOVEMBER–DECEMBER 2003

SPEC95 FP00 Int00 Web MM Prod Server WS Average

Benchmark suites

0.0

0.5

1.0

.1.5

12%

35%

13%

15%

22%
12%

16%
52%

22%

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Baseline with 128-entry instruction window
Baseline with runahead execution and 128-entry instruction window
Model with 256-entry instruction window
Model with 384-entry instruction window
Model with 512-entry instruction window

Figure 2. Performance of runahead versus large windows.

the server suite comes from instruction
prefetching.

Runahead execution improves performance
because the processing during runahead mode
fully or partially eliminates the cache misses
incurred during normal mode. On average,
the baseline processor incurs 13.7 L1 data
cache misses and 4.3 L2 data misses per 1,000
instructions. If we add runahead execution to
the baseline processor, the L1 data cache miss
rate during normal mode decreases by 18 per-
cent. With runahead execution, 15 percent of
the baseline processor’s L2 data misses do not
occur during normal mode. Another 18 per-
cent of the L2 data misses in the baseline
processor begin during runahead mode but
are not fully complete by the time instructions
in normal mode need them. We find that the
performance improvement of runahead exe-
cution correlates well with the reduction in
normal-mode L2 data misses, indicating that
the main benefit of runahead execution comes
from prefetching data from main memory to
the L2 cache.

Overall, the L2 data prefetch accuracy of
runahead execution is 94 percent, and its L2
instruction prefetch accuracy is 98 percent.
This shows that runahead execution is an
accurate prefetching technique, as we expect-
ed, because it follows the path that the instruc-
tion stream will follow in the future.

Runahead execution has two immediate
advantages: It permits small-instruction-

window processors to attain the same perfor-
mance as processors with much larger
instruction windows, and it does so with a
simple, cost-effective implementation that
enables seamless integration into today’s high-
performance processors. It provides these
advantages using a simple algorithm that
increases the tolerance of an out-of-order
processor to long-latency memory operations.
As these long latencies increase in future
processor generations, runahead execution
could become more important and effective.
As architects continue to improve the branch
prediction algorithms and instruction fetch
units, the effectiveness of runahead execution
will continue to increase. MICRO

References
1. J.E. Smith and A.R. Pleszkun, “Implemen-

tation of Precise Interrupts in Pipelined
Processors,” Proc. 12th Ann. Int’l Symp.
Computer Architecture (ISCA 85), ACM
Press, 1985, pp. 36-44.

2. M.V. Wilkes, “The Memory Gap and the
Future of High-Performance Memories,”
ACM Computer Architecture News, vol. 29,
no. 1, Mar. 2001, pp. 2-7.

3. E. Sprangle and D. Carmean, “Increasing
Processor Performance by Implementing

24

MICRO TOP PICKS

IEEE MICRO

SPEC95 FP00 Int00 Web MM Prod Server WS Average

Benchmark suites

0.0

0.5

1.0

1.5

2.0

12%
7%

6%

35%

30%

27%

13%
14%

30%

15%
12%

11%
22%

19%

13%

12%
10%

8%

16%
13%

8%

52%
40%

32%
22%

17%
16%

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Baseline with
512-Kbyte L2 cache
512-Kbyte L2 cache and runahead execution
1-Mbyte L2 cache
1-Mbyte L2 cache and runahead execution
4-Mbyte L2 cache
4-Mbyte L2 cache and runahead execution

Figure 3. IPC improvement of runahead execution for 512-Kbyte, 1-Mbyte, and 4-Mbyte L2 caches.

Deeper Pipelines,” Proc. 29th Ann. Int’l
Symp. Computer Architecture (ISCA 02),
IEEE CS Press, 2002, pp. 25-34.

4. J. Dundas and T. Mudge, “Improving Data
Cache Performance by Pre-Executing
Instructions Under a Cache Miss,” Proc.
1997 Int’l Conf. Supercomputing (ICS 97),
ACM Press, 1997, pp. 68-75.

5. O. Mutlu et al., “Runahead Execution: An
Alternative to Very Large Instruction Win-
dows for Out-of-Order Processors,” Proc.
9th IEEE Int’l Symp. High-Performance Com-
puter Architecture (HPCA 03), IEEE CS
Press, 2003, pp. 129-140.

6. S. Jourdan et al., “The Effects of Mispre-
dicted-Path Execution on Branch Prediction
Structures,” Proc. 1996 ACM/IEEE Conf.
Parallel Architectures and Compilation Tech-
niques (PACT 96), IEEE Press, 1996, pp. 58-
67.

7. S. Palacharla et al., “Complexity Effective
Superscalar Processors,” Proc. 24th Ann.
Int’l Symp. Computer Architecture (ISCA 97),
ACM Press, 1997, pp. 206-218.

8. G. Hinton et al., “The Microarchitecture of
the Pentium 4 Processor,” Intel Technology
J., Feb. 2001.

Onur Mutlu is a doctoral student at The Uni-
versity of Texas at Austin. His research inter-
ests include high-performance processor
microarchitecture, with a focus on multi-
threading, data prefetching, and memory sub-
system design. Mutlu has a BSE in computer
engineering and a BS in psychology from the
University of Michigan, and an MS in com-
puter engineering from the University of
Texas at Austin.

Jared Stark is a research scientist at Intel’s
Hillsboro Microarchitecture Research Lab.
His research interests include branch predic-
tion, dynamic instruction scheduling, and
aggressive speculation. Stark has a BS in elec-

trical engineering and an MS and a PhD in
computer engineering, all from the Universi-
ty of Michigan. He is a member of the IEEE.

Chris Wilkerson is a research scientist at
Intel’s Hillsboro Microarchitecture Research
Lab. His research interests include low-power,
high-performance, highly scalable processor
designs; and high-performance processor
designs that target specific application classes
such as graphics, media, database, and man-
aged runtime systems. Wilkerson has an MS
in electrical and computer engineering from
Carnegie Mellon University. He is a member
of the AAA.

Yale N. Patt is the Ernest Cockrell Jr. Cen-
tennial Chair in Engineering at The Univer-
sity of Texas at Austin, where he directs the
research of 13 PhD students on problems in
high-performance microarchitecture. Patt has
a BS from Northeastern University, and an
MS and a PhD from Stanford University, all
in electrical engineering. He is the coauthor,
with Sanjay Patel, of Introduction to Comput-
er Systems: From Bits and Gates to C and
Beyond, 2nd ed. (McGraw-Hill, 2004). An
IEEE and an ACM Fellow, Patt is a recipient
of the IEEE/ACM Eckert-Mauchly Award
(1996), the IEEE Piore Medal (1995), and
the ACM Karl V. Karlstrom Outstanding
Educator Award (2000).

Direct questions and comments about this
article to Onur Mutlu, The University of
Texas at Austin, Electrical and Computer
Engineering, 1 University Station Stop
C0803, Austin, TX 78712; onur@ece.
utexas.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

25NOVEMBER–DECEMBER 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

