
410272-1732/05/$20.00  2005 IEEE Published by the IEEE computer Society

The graphics processing unit
(GPU) market is large, growing, and varied,
shipping more than 500 million units per
year. Table 1 profiles this market. The core
GPU market is interactive gaming on the PC
platform, where the goal is film-quality ren-
dering with real-time response. Game releas-
es rival movie openings in revenue. The
release of Halo 2, an Xbox title, grossed $125
million in the first 24 hours
(www.pcmag.com). In contrast, The Incredi-
bles grossed $70.5 million during its first three
days (www.the-numbers.com).

In addition to workstations
used to develop motion pic-
tures and games, GPU mar-
kets include traditional
professional workstations,
flight and driving simulators,
and various consumer
devices. General-purpose
computing using GPUs is
both an area of research and
an emerging market. GPUs
are well suited for large data-
parallel problems such as
fluid dynamics, weather sim-
ulation, and financial option
price modeling.

The computational load
on GPUs keeps growing, and
image quality has made huge

strides during the last 15 years. Figure 1 illus-
trates the evolution of image quality.

The graphics problem
What does a GPU do? Under the control

of an application generically called a render-
er, the GPU computes the color of each pixel.
This image synthesis entails resampling a scene
described by triangles of materials simulated
using sampled images (textures) and numer-
ically approximated properties. The GPU per-
forms image synthesis calculations in three
steps. First, it processes the triangles’ vertices,

John Montrym
Henry Moreton

Nvidia

GRAPHICS PROCESSING UNITS (GPUS) CONTINUE TO TAKE ON INCREASING

COMPUTATIONAL WORKLOADS AND TODAY SUPPORT INTERACTIVE

RENDERING THAT APPROACHES CINEMATIC QUALITY. THE ARCHITECTURAL

DRIVERS FOR GPUS ARE PROGRAMMABILITY, PARALLELISM, BANDWIDTH, AND

MEMORY CHARACTERISTICS. THIS ARTICLE DESCRIBES HOW ONE TEAM

APPROACHED THE DESIGN PROBLEM.

THE GEFORCE 6800

Table 1. Graphics processing unit market

breakdown.

Sector Millions of Units
Interactive gaming 50
Digital content creation

professional 1
home 50

Computer-aided design and manufacture 1
Visual simulations 0.1
General computing 3
Consumer

handheld devices 50
consoles 100
media centers 5
cell phones 600

Total 860.1

42

HOT CHIPS 16

IEEE MICRO

Figure 1. Evolution of image quality in PC games. In the 1990 game Marooned, the PC state of
the art was two-dimensional sprites, and the graphics card was little more than a CRT controller
(a). Simple three-dimensional graphics appeared in 1991, as shown in Hovertank (b). The Doom
series introduced texture mapping of simple characters in 1993 (c). Quake, in 1996, brought
greater quality, texture filtering, and more characters (d). Today, with Doom3, we see correct
shadows, accurate lighting models, and high-quality filtering (e). (Images used by permission of
Id Software Inc. Wolfenstein 3D, DOOM, QUAKE, and DOOM 3 are either registered trade-
marks or trademarks of Id Software Inc. in the United States and/or other countries.)

(a) (b) (c)

(d) (e)

Figure 2. Basic primitives used in rendering. The renderer approximates objects using trian-
gles, defined by vertices (a) and lines connecting the vertices to make triangles (b). The sim-
plest form of lighting assumes a perfectly diffuse surface (c). In simple texture mapping, the
GPU samples and filters images to determine pixel fragment color (d). Given the eye loca-
tion and surface orientation at the fragment, the GPU can look up a reflected color (e) in a
texture called an environment, or cube, map to perform reflection mapping. The GPU can
also simulate bumpiness (bump mapping) by perturbing local surface orientation (f).

(a) (b) (c)

(d) (e) (f)

computing screen positions and attributes
such as color and surface orientation. Next, a
rasterizer samples each triangle to identify
fully and partially covered pixels, called frag-
ments. Finally, it processes the fragments using
texture sampling, color calculation, visibility,
and blending. The vertex and fragment pro-
cessing steps enjoy a high degree of indepen-
dent programmable processing.

How does a rendering application use the
GPU to simulate the appearance of materials?
Figure 2 shows a progression of scene draw-
ing techniques.

The desire for increased realism has driven
greater precision and functionality. A recent
example is high-dynamic-
range (HDR) rendering.1 In
Figure 3, for example, the light
through the window is hun-
dreds of times brighter than
the obelisks, but the obelisks
are not solid black. The glow
produces a more cinematic
image.

Until recently, in interac-
tive systems, GPUs represent-
ed final colors with fractions
between 0.0 and 1.0, at 8-bit
precision. The GPU’s frag-
ment processor also clamped
calculations to this limited
range. Along with limited precision, this result-
ed in cheaper hardware. The first evolution-
ary step was support for increased range and
precision during calculation. Today, a GPU
performs calculations and stores integer and
floating-point results at up to 32-bit precision.

Three-phase rendering
A typical cinematic renderer divides the

work for each frame into three phases: pre-
rendering, main rendering, and postprocess-
ing. First, the renderer computes the data it
will need for the main rendering phase. These
data consist of shadow maps or shadow vol-
umes for each light source, along with envi-
ronment maps. In the main phase, the
renderer draws the scene from the camera’s
viewpoint; this is what we usually think of as
computer graphics rendering. For every light
source, the renderer accumulates light energy
contributions to each pixel. In the postpro-
cessing phase, the renderer uses image pro-

cessing, for example, to simulate lens flare and
map HDR color values to the display device’s
limited gamut.

Shadows increase geometric complexity and
provide important visual cues. In games, they
set a mood—for example, creating fear when
you see an enemy’s shadow in a corridor.
Shadows have long been one of the most chal-
lenging problems in interactive computer
graphics. A renderer can handle most image
synthesis through local calculations, but ren-
dering shadows correctly requires considering
whether each triangle obscures light to any
other triangle.

One pertinent and well-known algorithm
is stencil shadow volumes.2,3 First, the renderer
creates the depth buffer for the scene, writing
only depth values. During the second stage,
the renderer makes a preprocessing pass for
each light source. It draws triangles (but not
color or depth) into the stencil buffers, count-
ing entry and exit to compute the regions of

43MARCH–APRIL 2005

Figure 3. High-dynamic-range rendering.

Figure 4. Steps in stencil shadow-volume calculation. For a subject character (a), the render-
er computes the object’s silhouette edges, shown here highlighted in white, with respect to
the light (b). The renderer draws quadrilaterals (triangle pairs) starting at each silhouette
edge, extruded away from the light source, and updates the stencil buffer (c). This process
yields the rendered scene with shadows (d).

(a) (b) (c) (d)

space in which some object casts a shadow or
obscures the light source. Specifically, front-
facing triangles increment the stencil value at
a pixel, and back-facing triangles decrement
this value. After the renderer has drawn all the
triangles, the stencil value at each sample indi-
cates whether the light source illuminates that
sample or whether it is in shadow. A nonzero
stencil value indicates shadow.

Figure 4 illustrates shadow volume genera-
tion. The silhouette quadrilaterals combined
with the facets of the model facing away from
the light define the shadow volumes. Because
the renderer must compute the shadow vol-
ume separately for each light, the number of
shadow triangles drawn can be very large.
Although the pixels are computationally sim-
ple during stencil shadow-volume generation,
it’s not uncommon for the shadow volume
prepass to consume about two-thirds of total
rendering time.

Architectural drivers
The GeForce 6800 architecture has three

major drivers.

• Programmability. Programmable ele-
ments, evolved from configurable logic,
afford much greater algorithmic flexibil-
ity. Programmability also lets content
developers add value with their propri-
etary algorithms.

• Parallelism. The rendering problem has
a great deal of data parallelism. The
scenes comprise objects defined by
vertices, which the GPU can process
independently. The renderer expresses
the result of its calculations as millions of
independent pixels. These high levels of
parallelism permit the efficient deploy-
ment of broadly and deeply parallel com-
putational resources.

• Memory. The memory subsystem is the
most precious resource in any graphics
system, and its characteristics heavily
influence the GPU’s design. Designers
must fit the GPU architecture to the
memory subsystem’s bandwidth and
latency characteristics.

Programmability
The GeForce 6800’s programming model

enables parallelized acceleration. There are two

separate programs: The application executes a
vertex program independently on every ver-
tex; similarly, the GPU applies a fragment pro-
gram independently to every pixel fragment.
For every vertex received in the command
stream, the GPU launches a thread executing
the vertex program. For every rasterized pixel
fragment, the machine dispatches one thread
of the fragment program. Each thread has its
own unique inputs available in read-only reg-
isters. Supporting hardware loads these inputs
before thread launch. Each thread also has
write-only output registers, whose content the
machine forwards to the next processing stage.
In addition to these inputs and outputs, each
thread has private temporary registers, read-
only program parameters, and access to filtered
and resampled texture map images.

Nvidia introduced the first programmable
GPU, the GeForce3, in 2001. The GeForce3
supported a programmable vertex processor.4

In 2002, the original GeForce FX series intro-
duced programmable vertex and fragment
processors. Now, the GeForce 6800 has uni-
fied these capabilities and made them orthog-
onal. The fragment processor supports
dynamic flow control, as the vertex processor
did in the GeForce FX. In addition, the ver-
tex program can access the texture subsystem,
previously available only to fragment pro-
grams. The FX had introduced floating-point
textures and frame buffers; the GeForce 6800
adds the ability to blend and filter in floating-
point. Finally, from a language and API per-
spective, the GeForce 6800 supports both
Direct3D and OpenGL with just-in-time
compiled machine-independent assembler as
well as higher-level C-like programming lan-
guages.

Parallelism
Contrasting CPUs and GPUs makes it eas-

ier to understand the motivation behind the
GPU architecture. The GPU workload offers
more independent calculations than a typical
CPU workload; the programmer’s view is sin-
gle threaded, while the machine is actually
deeply multithreaded. The GPU can afford
larger amounts of floating-point computational
power because the control overhead per oper-
ation is lower than that for a CPU, and a GPU
can effectively execute extensive floating-point
computations. The simple programming

44

HOT CHIPS 16

IEEE MICRO

model and large amount of independent cal-
culation result in deep and wide parallelism for
the GeForce 6800 to exploit.

Another interesting difference between
CPUs and GPUs is the use of dedicated
mode-controlled functional units for special-
ized performance-critical tasks. In addition to
the programmable vertex and fragment
processors, there are specialized units for data
fetch, rasterization (conversion from triangles
to pixel fragments), and texture filtering. We
determined the processor instruction set by
analyzing the graphics workload. For exam-
ple, because of their importance to graphics
algorithms, the GeForce 6800 includes fast
and accurate transcendental functions and
inner-product instructions.

Memory
The memory bandwidth demands of GPU

systems have always been insatiable, largely
because there are so many concurrently active
threads. CPUs have dealt with memory limi-
tations by using ever-larger caches, but graph-
ics working-set sizes have grown at least as fast
as transistor density, and it remains prohibitive
to implement an on-chip cache large enough
to achieve 99 percent hit rates. Caches as part
of the memory hierarchy cannot affordably
support long-term reuse. Therefore, our GPU
cache designs assume a 90 percent hit rate
with many misses in flight. Stated another
way, we implement caches that support effec-
tive streaming with local reuse of fetched data.

Because of bandwidth limitations, we aim
for 100 percent memory bandwidth
utilization, which forces the internal proces-
sors and fixed-function units to be latency tol-
erant and to respect page locality. We also
schedule DRAM cycles to minimize idle data-
bus time caused by read-write direction
changes. GPUs improve page locality by map-
ping two- and three-dimensional spatial local-
ity to corresponding locality at the granularity
of a one-dimensional DRAM page.

The GeForce 6800 memory subsystem
comprises four independent 64-pin partition
controllers. Because of fluctuations in DRAM
supply, it’s important that the GeForce 6800
maintain plenty of flexibility with respect to
the specific memory used. The memory con-
troller supports double-data-rate (DDR2) and
its graphics-oriented counterpart GDDR3

signaling and protocols at various clock fre-
quencies with widely programmable memory
cycle timings. The memory controller also
maps linear addresses to pages and individual
partitions. For efficiency, the controllers arbi-
trate among a dozen sources of read and write
traffic, and they balance bus utilization with
latency. To further increase effective band-
width, the controller uses lossless compression
and decompression, which is transparent to
clients.

Performance regimes
The GPU application space is extremely mul-

timodal: No single performance mode charac-
terizes any given application. For example,
stencil shadow volumes can consume two-thirds
of a frame’s rendering time without writing any
color or depth values. Different applications,
and different millisecond time slices within a
single application, have different characteristics.
In designing for these regimes, we sought opti-
mal use of the most expensive resource, sizing
key memory clients to saturate all available
memory bandwidth. Dozens of rendering
regimes require “speed of light” performance
limited only by memory bandwidth.

We already mentioned stencil shadow-
volume rendering as a specialized non–
color-updating phase of rendering. This ren-
dering step has two highly specialized modes
of operation: one mode renders only depth
values, and the other updates only the stencil
value. Because we designed the GPU to satu-
rate DRAM bandwidth at 16 pixels per clock
cycle when the renderer is updating both color
and depth, the processor must deliver an even
higher pixel rate to saturate memory when
performing only depth or stencil work.

45MARCH–APRIL 2005

GeForce 6800 statistics
The GeForce 6800 has high-throughput programmable floating-point processors, efficient

special-purpose engines, and a flexible memory subsystem that supports a wide range of
DRAM types, from the commodity to the exotic. Its notable statistics include

• 222 million transistors,
• 303-mm2 area,
• 550-MHz double-data-rate memory clock,
• 400+ MHz core clock,
• 400 million vertices per second, and
• 120+ Gflops peak (equal to six 5-GHz Pentium 4 processors).

A tour of the GeForce 6800
Figure 5 is a top-level dia-

gram of the GeForce 6800.
Work flows from top to bot-
tom, starting with the six
identical programmable ver-
tex processors. Because all
vertices are independent of
each other, the data fetcher
assigns incoming work to any
idle processor, and the paral-
lel utilization is nearly perfect.
The “GeForce 6800 statis-
tics” sidebar provides more
specifics.

Results from the vertex
stage are reassembled in the
original application-specified
order to feed the triangle
setup and rasterization units.
For each primitive, the ras-

46

HOT CHIPS 16

IEEE MICRO

Command and data fetch

Triangle setup rasterizer

Shader thread dispatch

Fragment crossbar

Z-cull

Memory
partition

Memory
partition

Memory
partition

Memory
partition

Level 2
texture
cache

Pixel-
blending
units

Vertex processors

Fragment
processors

Figure 5. GeForce 6800 block diagram.

Constant RAM
512 × 128 bits

Input
registers

16 × 128 bits

Output
registers

16 × 128 bits

Temporary
registers

32 × 128 bits

Special-
function

unit

Instruction
RAM

512 × 123 bits

Vertex
texture

unit

Level 2
texture
cache

Multiply

Add

Memory
Texture related
Computation unit

Figure 6. Vertex processor block diagram.

terizer identifies constituent pixel fragments
and sends them to a fragment processor. Six-
teen programmable fragment processors oper-
ate on the workload in parallel. Each thread
receives the (x, y) addresses and interpolated
inputs from the rasterizer. Because fragments
are independent of one another, the proces-
sors approach 100 percent utilization.

Finally, a crossbar distributes color and depth
results from the fragment processors to 16 fixed-
function pixel-blending units, which perform
frame buffer operations such as color blending,
antialiasing, and stencil test and update. It’s pos-
sible to feed the result from any fragment
processor to any frame buffer location.

Vertex processor
The vertex processor executes very large

instruction words. The instruction load unit
forms a 123-bit internal instruction from
either of two driver-visible instruction set
architectures (ISAs); Nvidia supports two ISA
generations to aid in streamlining initial prod-
uct and driver development. As Figure 5
shows, there are six vector floating-point
processors. Each processor’s data path com-
prises a vector multiply-add unit, a scalar spe-
cial-function unit, and a texture unit, as
shown in Figure 6. The vector unit can per-
form four IEEE single-precision multiply,
add, or multiply-add operations, as well as
inner products, max, min, and so on. The spe-
cial-function unit performs transcendental
operations such as sine, cosine, log, and expo-
nential to within one unit in the last place
(ULP) of IEEE single-precision accuracy for
operands in the nominal range.

The computational units fetch operands
from a 512 × 128-bit constant RAM, from tem-
porary registers up to 32 × 128 bits, and from
16 × 128-bit input registers. The processor feeds
computed results back into the temporary reg-
isters or out to one of the 16 × 128-bit output
registers. The vertex processor reads instructions
from a 512-entry instruction RAM.

To preserve a simple implementation-
independent programming model, the vertex
processor uses threads to make the data path
appear to have unity latency, and it uses score-
boarding to hide texture fetch latency. The
implementation is fully multiple instruction,
multiple data; therefore, data-dependent
branches are free of the penalty normally

accompanying single-instruction, multiple-
data implementations. Finally, the processor
can issue instructions to both vector and scalar
data paths at every clock cycle.

Primitive setup and rasterizer
The APIs define the various activities occur-

ring between the vertex and fragment stages
with unique precision requirements. There-
fore, these activities don’t require program-
mability and are implemented efficiently in
fixed-function units.

The primitive assembly unit assembles
primitives such as lines or triangles from trans-
formed vertices. Vertex positions arrive as
4-vectors of homogeneous coordinates, the
standard method for handling perspective
foreshortening.5 Although we divide through
by the fourth component, we check to see
whether the assembled primitive is outside the
view frustum. If so, the primitive is culled;
otherwise, after perspective division, we apply
the viewport scale and offset to obtain screen-
space x, y, and z (depth). Next, the setup unit
computes coefficients describing the primi-
tive’s edges. Finally, the rasterizer converts the
primitive into pixel fragments for input to the
array of fragment processors. The rasterizer
traverses the primitive in a DRAM-page-
friendly order like that shown in Figure 7.

Fragment processor
The GPU forwards attributes, specified at

47MARCH–APRIL 2005

Figure 7. Page-friendly rasterization.

the triangle’s vertices, from the vertex proces-
sor to the fragment processor. The fragment
processor smoothly interpolates these attrib-
utes across the triangle’s face. Using these
interpolated input attributes, a fragment pro-
gram computes output colors, using math and
texture lookup instructions. The GeForce
6800 fragment processor can perform opera-
tions with 16- or 32-bit floating-point preci-
sion (FP16 and FP32). The inputs to the
fragment processor are position, color, depth,
fog, and 10 generic 4 × FP32 attributes. The
processor sends its outputs to as many as four
render target buffers. Like the vertex proces-
sor, the fragment processor is general purpose,
and it has constants, temporary register
resources, and branching capabilities similar
to those of the vertex processor.

Fragment processor detail
As Figure 8 shows, each of the 16 fragment

processors includes an interpolation block for
input attributes, two vector math units, a
special-function/normalize unit, and a texture
unit. Both computation blocks can perform
4-vector floating-point operations. The lower
block can do a multiply-add operation. Com-
bined, the two blocks can sustain 12 floating-
point operations per pixel per clock cycle. The
lower block also supports the same transcen-
dental functions supported in the vertex proces-
sor’s special-function unit. To hide the latency
of texture lookups that fetch from external
memory, each fragment processor maintains
state for hundreds of in-flight threads.

Superscalar instruction issue
Microsoft’s DirectX 9 graphics API sup-

ports a vector-oriented instruction set. The
assembler has instructions that perform most
operations on 4-vectors of FP32 data. How-
ever, many fragment processing algorithms
treat alpha, the transparency component, sep-
arately from the three color components. As

a result, the assembler has
provisions to indicate a pair-
ing of instructions—that is,
an instruction operating on a
3-vector, usually RGB, paired
with an instruction operating
on a scalar, usually alpha.
This mechanism permits dual
issue of source-level instruc-

tions. The GeForce 6800’s fragment processor
supports fully general 4-vector split opera-
tions—4-vector, 3/1-vector, and 2/2-vector
operations—as Figure 9 illustrates.

The two computation stages can exploit
this dual issue of instructions to perform two
distinct operations on different subsets of the
4-vector. Together with texture and special
functions, each fragment processor can exe-
cute up to six DirectX 9 instructions per pixel
per clock cycle. Figure 10 is an example of six-
issue code.

Texture unit
The literature provides a good overview of

texture mapping.6-8 A texture map is an array
of data in one, two, or three dimensions. The
simplest uses of texture in rendering involve
mapping a decal image onto some object built
from a collection of geometric primitives. Fig-
ure 11 provides an example. Because each

48

HOT CHIPS 16

IEEE MICRO

Level 1
texture cache

Level 2
texture cache

Fragment
texture unit

Vector and
special-function unit

Temporary
registers

Output

Vector
unit

Attribute
interpolation

Memory
Texture related
Computation unit

Figure 8. Fragment processor block diagram.

R G B A R G B AR G B A

4-vector single issue 3/1-vector dual issue 2/2-vector dual issue

Figure 9. Vector issue options.

pixel maps to a region of the image, filtering
is necessary to eliminate image frequency con-
tent above the sampling rate implied by the
pixel footprint in texture space. Instead of the
fragment footprint, which includes a cover-
age mask, the texture unit uses the fully cov-
ered pixel footprint to determine filtering.

With arbitrary programs, a texture is more
generally a way to express a function of one,
two, or three variables as a table. We can think
of the function value as a color 4-tuple (red,
green, blue, and alpha) or more generally as
an n-tuple of arbitrary values. As with simple
image mapping, the fixed-function texture
unit’s job is to return a properly sampled
result, given the input address vector. Proper
sampling is a weighted average of a collection
of samples near the ideal sample location, with
minimal aliasing, and it shouldn’t introduce
too much blurring.

The texture unit operates with a deeply
pipelined cache. Typically, the cache has many
hits and misses in flight. To reduce memory
traffic, the application can use compressed-
texture formats. To facilitate fine-grained
access and random addressability, these for-
mats use small-grained fixed-ratio schemes,
with a fixed compression ratio of 4:1. Because
the ratio is fixed, it is also a lossy scheme.

The texture subsystem must filter results
before returning them to the requesting frag-
ment processor. The GeForce 6800 supports
four types of filtering: point-, bilinear-, and
trilinear-sampled, and anisotropic. A point-
sampled request simply returns the texel (tex-
ture element, or pixel) nearest to the address
the requester provided. When performing
bilinear-sampled filtering, the texture unit
takes the weighted average of four texels.
Trilinear-sampled filtering uses prefiltered ver-
sions of the texture, which form a hierarchy,
or stack, of textures called a mip-map,9 illus-
trated in Figure 12. In trilinear-sampled
mode, the filtering operation blends eight tex-
els—that is, the operation linearly blends two
bilinearly filtered levels.

In Figure 11, a circle in screen space (Figure
11b) maps to an ellipse in texture space (Fig-
ure 11a). This means the texels needed to
obtain one pixel’s color value occupy an ellip-
tical footprint in texture memory. The degree
of anisotropy is the ratio of the ellipse’s major
and minor axes. Larger anisotropy ratios require

49MARCH–APRIL 2005

ps_2_0

def c1, 2.0, -1.0, 0.0, 0.0

dcl t0.rg

dcl t1

dcl t4.rgb

dcl v0

dcl_2d s0

dcl_2d s1

dcl_cube s2

dcl_2d s3

clock 1

texld r0, t0, s0; # tex fetch

madr r0,r0,c1.r,c1.g # _bx2 in tex

nrm r1.rgb, t4 # nrm in shdr0

dp3 r1.r,r1,r0 # 3D dot in shdr1

mul r0.a,r0,r0 # dual issue in shdr1

clock 2

mul r1.a,r0.a,c2.a # dual issue in shdr0

mul r0.rgb,r1.r,r0 # dual issue in shdr0

add r0.a,r1.r,r1.r # fx2 in shdr0

mad r0.rg,r0.a,c1,c1.a # mad in shdr1

mul r1.ba,r1.a,r0.a,c2 # dual issue in shdr1

clock 3

rcp r0.a,r0.a # recip in shdr0

mul r0.rgr0,r0.a # div in shdr0

mul r0.a,r0.a,r1.a # dual issue in shdr0

texld r2,r0, s1 # texture fetch

mad r2.rgb,r0.a,r2,c5 # mad in shdr1

abs r0.a,r0.a # abs in shdr1

log r0.a,r0.a # log in shdr1

<< etc >>

mov oC0, r0 # output color

Figure 10. Annotations in this DirectX 9 program code show
how the compiler schedules instruction sequences for the
GeForce 6800 fragment processor.

Figure 11. Texture and perspective view: texture with elliptical footprint (a),
perspective image with circular footprint in screen space (b), texture close-
up (c), and resampled image (d).

(a) (b)

(c) (d)

more texels to be read and
evaluated when performing an
anisotropic filtering operation.
The GeForce 6800 supports
up to 16:1 anisotropic filter-
ing, and it processes texture
lookup requests at four FP16
texels per clock cycle per tex-
ture unit.

Pixel engines
The GeForce 6800 con-

tains 16 pixel engines. These
fixed-function units perform
depth and stencil test and
update, as well as color blend-
ing, at 16 pixels per clock
cycle. If no color destination
is active, depth and stencil
test can run at 32 pixels per
clock cycle; fast depth and
stencil update accelerates
shadow volume rendering.
Blending of 16-bit floating-
point frame buffer values has
proved to be one of the
GeForce 6800’s most impor-
tant new features because it
directly accelerates HDR ren-
dering and light accumula-
tion. The memory controller
uses lossless color and depth
compression to reduce band-
width demands. Finally, the
pixel engines support high-
quality antialiasing (filtering).

Pixel pipeline detail. Each
pixel engine connects to a
specific memory partition
(see Figure 5). The pixel
engines expand the depth and
color of each fragment into
multiple samples when the
renderer enables antialiasing.

When possible, the engines losslessly compress
depth and color, indicated by depth com-
pression and color compression in Figure 13.
The depth and color units then read and write
to the local memory partition to carry out the
depth and stencil, and color-blend operations.

Antialiasing. The GeForce 6800 supports var-

ious antialiasing options, which trade image
quality for performance. The two primary
algorithms are multisampling and supersam-
pling. Both involve generating two, four, or
eight samples for each displayed pixel, then
taking a weighted average of all samples to
produce the pixel’s displayed color.

Multisampling executes the fragment pro-
gram once per pixel fragment and reuses the
resulting color value for all its samples. Super-
sampling reruns the fragment program to gen-
erate a unique color for every sample. In both
cases, we evaluate the depth correctly and
uniquely at each pixel subsample location.
This frequency of evaluation is necessary to
avoid image artifacts and to achieve smooth
edges at silhouettes and object interpenetra-
tions. Multisampling imposes a significantly
smaller fragment processor load while
antialiasing edges and interpenetrations.
Supersampling multiplies the fragment
processor load by the sample count to provide
additional antialiasing of each fragment’s
resulting color.

The GeForce 6800, the flagship of an
architectural line targeted at a large and

diverse market, supports interactive render-
ing approaching cinematic quality. The archi-
tecture is tailored to its highly parallel task and
can also scale down to low-power, low-cost
devices. The GeForce 6800 is one of the most
complex logic designs shipping in high vol-
ume today. MICRO

References
1. J. Cohen et al., “Real-time High Dynamic

Range Texture Mapping,” Proc. 12th
Eurographics Rendering Workshop,
European Assoc. for Computer Graphics,
2001, pp. 313-320.

2. F. Crow, “Shadow Algorithms for Computer
Graphics,” Proc. 24th Ann. Conf. Computer
Graphics and Interactive Techniques
(Siggraph 77), ACM Press, 1977, pp. 242-
248.

3. C. Everett and M.J. Kilgard, “Practical and
Robust Shadow Volumes for Hardware-
Accelerated Rendering,” Mar. 2002;
http://developer.nvidia.com/object/robust_
shadow_volumes.html.

4. E. Lindholm, M. Kilgard, and H. Moreton, “A
User-Programmable Vertex Engine,” Proc.

50

HOT CHIPS 16

IEEE MICRO

Data from fragment processor

Memory

Pixel X-bar interconnect

Multisample antialiasing

Frame buffer partition

Depth
compression

Color
compression

Depth raster
operation

Color raster
operation

Figure 13. Pixel engine block diagram.

Figure 12. Mip-map hierarchy.

51MARCH–APRIL 2005

28th Ann. Conf. Computer Graphics and
Interactive Techniques (Siggraph 01), 2001,
ACM Press, pp. 149-158.

5. J.D. Foley et al., Computer Graphics:
Principles and Practice, 2nd ed., Addison-
Wesley, 1990.

6. P.S. Heckbert and H.P. Moreton,
“Interpolation for Polygon Texture Mapping
and Shading,” State of the Art in Computer
Graphics: Visualization and Modeling,
Springer-Verlag, 1991, pp. 101-111.

7. P.S. Heckbert, “Survey of Texture Mapping,”
IEEE Computer Graphics and Applications,
vol. 6, no. 6, Nov. 1986, pp. 56-67.

8. T. Huettner and W. Strasser, “Fast Footprint
MIPmapping,” Proc. Eurographics/Siggraph
Workshop Graphics Hardware, ACM Press,
1999, pp. 35-44.

9. L. Williams, “Pyramidal Parametrics,” Proc.
10th Ann. Conf. Computer Graphics and
Interactive Techniques (Siggraph 83), ACM
Press, 1983, pp. 1-11.

John Montrym is the chief architect at
Nvidia, where he has influenced the develop-
ment of the architecture, hardware design, and
design methodologies of 12 GPU products.
He has a BS in electrical engineering from the
Massachusetts Institute of Technology.

Henry Moreton is a member of the architec-
ture group at Nvidia. His research interests
include GPU programming models and archi-
tecture. Moreton has a PhD in computer sci-
ence from the University of California, Berkeley.

Direct questions and comments about this
article to John Montrym or Henry Moreton
at Nvidia, 2701 San Tomas Expressway, Santa
Clara, CA 95050; montrym@nvidia.com or
moreton@nvidia.com.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

Get access
to individual IEEE Computer Society

documents online.

More than 100,000 articles

and conference papers available!

US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib/

