
THE MIPS RIO000
SUPERSCALAR

MICROPROCESSOR
Kenneth C. Yeager

Silicon Graphics, Inc.

Out-of order

superscalar

microprocessors

execute znstructions

beyond those stalled

by cache misses This

mMzznzmzzes the tzme

lost due to latency by

completing other

instructions and

initiating subsequent

cache refills early.

he Mips RlOOOO is a dynamic, super-
scalar microprocessor that implements T the 64-bit Mips 4 instruction set archi-

tecture. It fetches and decodes four instruc-
tions per cycle and dynamically issues them
to five fully-pipelined, low-latency execution
units. Instructions can be fetched and exe-
cuted speculatively beyond branches.
Instructions graduate in order upon comple-
tion. Although execution is out of order, the
processor still provides sequential memory
consistency and precise exception handling.

The RlOOOO is designed for high perfor-
mance, even in large, real-world applications
with poor memory locality. With speculative
execution, it calculates memory addresses
and initiates cache refills early. Its hierarchi-
cal, nonblocking memory system helps hide
memory latency with two levels of set-asso-
ciative, write-back caches. Figure 1 shows
the RlOOOO system configuration, and the
RlOOOO box lists its principal features.

Out-of-order superscalar processors are
inherently complex. To cope with this com-
plexity, the RlOOOO uses a modular design
that locates much of the control logic with-
in regular structures, including the active list,
register map tables, and instruction queues.

Design rationale
Memory bandwidth and latency limit the

performance of many programs. Because
packaging and system costs constrain these
resources, the processor must use them
efficiently.

The RlOOOO implements register mapping
and nonblocking caches, which comple-
ment each other to overlap cache refill oper-
ations. Thus, if an instruction misses in the
cache, it musi wait for its operand to be
refilled, but other instructions can continue
out of order. This increases memory use and
reduces effective latency, because refills
begin early and up to four refills proceed in

parallel while the processor executes other
instructions This type of cache design is
called “nonblocking,” because cache refills
do not block subsequent accesses to other
cache lines

Processors rely on compiler support io
optimize instruction sequencing This tech-
nique is especially effective for data arrays,
such as those used in many floating-point
applications For these arrays, a sophisticated
compiler can opclmize performance for a spe-
clfic cache organization However, compiler
optimization is less effective for the scalar val-
ues of many integer applications, because the
compiler has difficulty predicting which
instructions will generate cache misses

The RlOOOO design includes complex
hardware that dynamically reorders instnic-
tion execution based on operand availabili-
ty This hardware immediately adapts
whenever cache misses delay instructions
The processor looks ahead up to 32 instruc-
tions to find possible parallelism This
instruction window is large enough to hide
most of the latency for refills from the sec-
ondary cache However, it can hide only a
fraction of main memory latency, which is
typically much longer

It is relatively easy to add nonblocking
caches to an out-of-order piocessor, because
it already contains mechanisms that coordi-
nate dependencies between instructions

Implementation
We implemented the initial RlOOOO micro

processor using 0 35-pm CMOS technology
on a 16 64x17 934-mm chip This 298 mmz
chip contains 6 8 million transistois, includ-
ing 4 4 million in its primary cache arrays
We implemented data paths and time-critical
control logic in full custom design, making
wide use of dynamic and latch-based logic
We synthesized the less critical circuits using
static register-based logic

28 IEEEMicro 0272-1732/96/$5.00 0 1996 IEEE

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

Mips RI0000
This processor features a four-\vay superscahr KISC

processor that

fc:rc:hes and clcc~)des four instructions pcr cycle.
spec~ilativel!; executes hqont i tmnchrs, with a
f(Jiir-entry 1.m ncli stack.
uses d p i m i c out-of-c.)rdcr execcition.
iniplrtnrrits rcAgistrr rt~i;iining using inap ialiles,
a11cI
achicl;cs in-orcler graduation for precise exccptions.

Pi1.e intlrl)endcnt piprlincd C X C ~ C I I I ion units includc

System f lexi b i I i ty
Alternate configurations allow the RlOOOO to operate in a

wide range of systems-as a uniprocessor or in a multi-
processor cluster. The system maintains cache coherency using
either snoopy or directory-based protocols. The R10000's sec-
ondary cache ranges from 512 Kbytes to 16 Mbytes.

Operation overview
Figure 2 (next page) shows a block diagram and a pipeline

timing diagram for the R10000. There are six nearly inde-
pendent pipelines.

The instruction fetch pipeline occupies stages 1 through
3. In stage 1, the RlOOOO fetches and aligns the next four
instructions. In stage 2, it decodes and renames these instruc-
tions and also calculates target addresses for jump and
branch instructions. In stage 3, it writes the renamed instruc-
tions into the queues and reads the busy-bit table to deter-
mine if the operands are initially busy. Instructions wait in
the queues until all their operands are ready.

The five execution pipelines begin when a queue issues
an instruction in stage 3. The processor reads operands from
the register files during the second half of stage 3, and exe-
cution begins in stage 4. The integer pipelines occupy one
stage, the load pipeline occupies two, and the floating-point
pipelines occupy three. The processor writes results into the
register file during the first half of the next stage.

I I 1

Secondary cache
(512K to 16-Mbyte

synchronous SRAM)

Secondary cache
(512K to 16-Mbyte

synchronous SRAM)

2x1 -data 9-bit + 9-
26-bit tag + 7-bit ECC

(32-Kbyte instr cache
32-Kbyte data cache)

(32-Kbyte instr cache
32-Kbyte data cache)

8-bit ECC System interface bus
12-bit command

Figlure 1. System configuration. The cluster bus directly
connects as many as four chips.

The integer and floating-point sections have separate
instruction queues, register files, and data paths. This separa-
tion reduces maximum wire lengths and allows fully parallel
operation. Together, the two register files need more free reg-
isters than would a combined unit, but they are physically
smaller, because each register has fewer read and write ports.

Instruction fetch
For good performance, the processor must fetch and

decode instructions at a higher bandwidth than it can execute
them. It is important to keep the queues full, so they can look
ahead to find instructions to issue out of order. Ultimately, the
processor fetches more instructions than it graduates, because
it discards instructions occurring after mispredicted branches.

The processor fetches instructions during stage 1, as
shown in Figure 3. The instruction cache contains address tag
and data sections. To implement two-way set associativity,
each section has two parallel arrays. The processor compares
the two tag addresses to translated physical addresses to
select data from the correct way. The small, eight-entry
instruction translation look-aside buffer (TLB) contains a sub-
set of the translations in the main TLB.

The processor fetches four instructions in parallel at any
word alignment within a 16-word instruction cache line. We
implemented this feature with a simple modification to the
cache's sense amplifiers, as shown in Figure 4. Each sense
amplifier is as wide as four bit columns in the memory array,
and a 4-to-1 multiplexer selects one column (which repre-
sents one instruction) for fetching. The RlOOOO fetches
unaligned instructions using a separate select signal for each
instruction. These instructions rotate, if necessary, so that
they are decoded in order. This ordering reduces the amount
of dependency logic.

April1996 29

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

External interface Data cache refill and write-back

Stage 1 Stage 2 Stage 3 Stage 4

I

interface f)

(64 bits)
.. .

Stage 5 Stage 6 Stage 7

6-bit physical register numbers 6-bit data paths

Register renaming

L - -
Instruction
cache refill Instruction fetch Instruction decode

Y
5-bit logical register numbers

Integer
queue

entrics)

6 independent pipelines

Execution unit
pipelines (5)

Dynamic issue

Floating-point
latency=2
,

Loadistore
latency=2

Integer
latency=l

J

Write results in register file

Read operands from register file

Instruction fetch and decode pipeline fills queues
4 instructions in parallel
Up to 4 branch instructions are predicted
Fetching continues speculatively until prediction verified

Figure 2. RIO000 block diagram (a) and pipeline t iming diagram (b). The block diagram shows pipeline stages lef t t o
r ight t o correspond t o pipeline t iming.

Usually, the processor decodes all four instructions during
the next cycle, unless the queues or active list is full. Instructions
that are not immediately decoded remain in an eight-word
instruction buffer, simplifying timing for sequential fetching.

Branch unit
Branch instructions occur frequently and must execute

quickly. However, the processor cannot usually determine
the branch direction until several or even many cycles after

30 /€€€Micro

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

Word I-cache memory cells

VirtL

U
2 !! a

r) Address error check

Virtual

Translated
physical address
PAd r (39: 1 2)

8 entries I
Cachetag I 2 ways

VAdr(13:6)
Cache data

Refill bypass r * b I Aligner lnst I

select Instruction
VAdr(13:2)

Branch mediction

Branch lfll L;y history
table

Instruction fetch virtual address

Figure 3. Instruction fetch, pipeline stage 1.

decoding the branch. Thus, the processor predicts the direc-
tion a conditional branch will take and fetches instructions
speculatively along the predicted path. The prediction uses
a 2-bit algorithm based on a 512-entry branch history table.
This table is indexed by bits 11:3 of the address of the branch
instruction. Simulations show an 87 percent prediction accu-
racy for Spec92 integer programs.

In the Mips architecture, the processor executes the
instruction immediately following a jump or branch before
executing instructions at the target address. In a pipelined
scalar processor, this delay slot instruction can be executed
for free, while the target instruction is read from the cache.
This technique improved branch efficiency in early RISC
microprocessors. For a superscalar design, however, it has no
performance advantage, but we retained the feature in the
RlOOOO for compatibility.

When the program execution takes a jump or branch, the
processor discards any instructions already fetched beyond
the delay slot. It loads the jump’s target address into the pro-
gram counter and fetches new instructions from the cache
after a one-cycle delay. This introduces one “branch bub-
ble” cycle, during which the RlOOOO decodes no instructions.

Branch stack. When it decodes a branch, the processor
saves its state in a four-entry branch stack. This contains the

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

5
+ lnstr 0

(oldest)

6 * lnstr 1

7
+ lnstr 2

8
-+ lnstr 3

++++
Word-line decoders

Figure 4. Unaligned fetching from instruction cache.

alternate branch address, complete copies of the integer and
floating-point map tables, and miscellaneous control bits.
Although the stack operates as a single logical entity, it is
physically distributed near the information it copies.

When the branch stack is full, the processor continues
decoding only until it encounters the next branch instruc-
tion. Decoding then stalls until resolution of one of the pend-
ing branches.

Branch verification. The processor verifies each branch
prediction as soon as its condition is determined, even if ear-
lier branches are still pending. If the prediction was incorrect,
the processor immediately aborts all instructions fetched
along the mispredicted path and restores its state from the
branch stack.

Fetching along mispredicted paths may initiate unneeded
cache refills. In this case, the instruction cache is nonblock-
ing,, and the processor fetches the correct path while these
ref& complete. It is easier and often desirable to complete
such refills, since the program execution may soon take the
other direction of the branch, such as at the end of a loop.

A 4-bit branch mask, corresponding to entries within the
branch stack, accompanies each instruction through the
qul-ues and execution pipelines. This mask indicates which
pending branches the instruction depends on. If any of these
branches was mispredicted, the processor will abort the
instruction when that branch decision is reversed. Whenever
the RlOOOO verifies a branch, it resets the corresponding mask
bits throughout the pipeline.

April1996 31

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

6 5 5 5 5 6
1 FLTX 1 fR 1 fS 1 ff 1 fD 1 MADD 1 Original instruction format in memory

Fields are rearranqed durinq instruction predecode i
4

as instruction is wntten intothe cache during refill

Instruction format in cache contains extra 4-bit unit field
- I I I I

i J!t"t"
(4 write Ports FP map

16 read ports)
/ Read Read Read

n

I . Done

E EFIb, FiTZM
4 4 1 0 3 6 6 6 6 5 5 1 6 3 ;

Floating-point queue 16 entries pointers Active list

Figure 5. Register renaming, pipeline stage 2. The RIO000 rearrangesfields dur ing instruction predecode as it writes the
instruction into the cache dur ing refill. The instruction format in the cache contains an extra 4-bit un i t field.

Decode logic
The RlOOOO decodes and maps four instructions in paral-

lel during stage 2 and writes them into the appropriate
instruction queue at the beginning of stage 3.

Decoding stops if the active list or a queue becomes full,
but there are very few decode restrictions that depend on
the type of instructions being decoded. The principal excep-
tion involves integer multiply and divide instructions. Their
results go into two special registers-Hi and Lo. No other
instructions have more than one result register. We did not
add much logic for these infrequently used instructions;
instead, they occupy two slots in the active list. Once the
processor decodes such an instruction, it does not decode
any subsequent instructions during the same cycle. (In addi-
tion, it cannot decode an integer multiply or divide as the
fourth instruction in a cycle.)

Instructions that read or modify certain control registers
execute serially. The processor can only execute these
instructions, which are mostly restricted to rare cases in the
kernel operating system mode, when the pipeline is empty.
This restriction has little effect on overall performance.

Register mapping
Figure 5 illustrates the RlOOOO's register-mapping hardware.

To execute instructions out of their original program order, the
processor must keep track of dependencies on register
operands, memory addresses, and condition bits. (The con-
dition bits are eight bits in the status register set by floating-
point compare instructions.) TO determine register
dependencies, the RlOOOO uses register renaming. It deter-

mines memory address dependencies in the address queue.
It sets each condition bit operand during decode if its value
is known. If not, it renames the bit with the tag of the float-
ing-point compare instruction that will eventually set its value.

From a programmer's perspective, instructions execute
sequentially in the order the program specifies. When an
instruction loads a new value into its destination register, that
new value is immediately available for subsequent instruc-
tions to use. However, a superscalar processor performs sev-
eral instructions simultaneously, and their results are not
immediately available for subsequent instructions.
Frequently, the next sequential instruction must wait for its
operands to become valid, but the operands of later instruc-
tions may already be available.

The RlOOOO achieves higher performance by executing
these later instructions out of order, but this reordering is invis-
ible to the programmer. Any result it generates out of order is
temporary until all previous instructions have completed. Then
this instruction graduates, and its result is committed as the
processor's state. Until it graduates, an instruction can be abofl-
ed if it follows an exception or a mispredicted branch. The
previous contents of its logical destination register can be
retrieved by restoring its previous mapping.

In most processors, there is no distinction between logi-
cal register numbers, which are referenced within instruc-
tion fields, and physical registers, which are locations in the
hardware register file. Each instruction field directly address-,
es the corresponding register. Our renaming strategy, how-
ever, dynamically maps the logical-register numbers into
physical-register numbers. The processor writes each new

32 EEEMicro

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

result into a new physical register. After mapping, the proces-
sor determines dependencies simply by comparing physi-
cal-register numbers; it no longer must consider instruction
order. Again, the existence of these physical registers and
the mapping of logical registers to physical registers are invis-
ible to the programmer.

The RlOOOO executes instructions dynamically after resolv-
ing all dependencies on previous instructions. That is, each
instruction must wait until all its operands have been comput-
ed. Then the RlOOOO can execute that instruction, regardless of
the original instruction sequence. To execute instructions cor-
rectly, the processor must determine when each operand reg-
ister is ready. This can be complicated, because logical-register
numbers may be ambiguous in terms of operand values. For
example, if several instructions speclfying the same logical reg-
ister are simultaneously in the pipeline, that register may load
repeatedly with different values.

There must be more physical than logical registers,
because physical registers contain both committed values
and temporary results for instructions that have completed
but not yet graduated. A logical register may have a sequence
of values as instructions flow through the pipeline. Whenever
an instruction modifies a register, the processor assigns a
new physical register to the logical destination register and
stores these assignments in register map tables. As the RlOOOO
decodes each instruction, it replaces each of the logical-reg-
ister fields with the corresponding physical-register number.

Each physical register is written exactly once after each
assignment from the free list. Until it is written, it is busy. If
a subsequent instruction needs its value, that instruction must
wait until it is written. After the register is written, it is ready,
and its value does not change. When a subsequent instruc-
tion changes the corresponding logical register, that result is
written into a new physical register. When this subsequent
instruction graduates, the program no longer needs the old
value, and the old physical register becomes free for reuse.
Thus, physical registers always have unambiguous values.

There are 33 logical (numbers 1 through 31, Hi, and Lo) and
64 physical integer registers. (There is no integer register 0. A
zero operand field indicates a zero value; a zero destination
field indicates an unstored result.) There are 32 logical (num-
bers 0 through 31) and 64 physical floating-point registers.

Register map tables. Separate register files store integer
and floating-point registers, which the processor renames
independently. The integer and floating-point map tables
contain the current assignments of logical to physical regis-
ters. The processor selects logical registers using 5-bit instruc-
tion fields. Six-bit addresses in the corresponding register
files identify the physical registers.

The floating-point table maps registers f0 through f31 in a
32x6-bit multiport RAM. The integer table maps registers r l
through 1-31, Hi, and Lo in a 33~6-bit multiport RAM. (There
is special access logic for the Hi and Lo registers, the implic-
it destinations of integer multiply and divide instructions.)

These map tables have 16 read ports and four write ports
which map four instructions in parallel. Each instruction reads
the mappings for three operand registers and one destination
register. The processor writes the current operand mappings
and new destination mapping into the instruction queues,

while the active list saves previous destination mappings.
The RlOOOO uses 24 five-bit comparators to detect depen-

dencies among the four instructions decoded in parallel. These
cc'mparators control bypass multiplexers, which replace
dependent operands with new assignments from the free lists.

Free lists. The integer and floating-point free lists contain
lists of currently unassigned physical registers. Because the
processor decodes and graduates up to four instructions in
parallel, these lists consist of four parallel, eight-deep, cir-
cular FIFOs.

Active list. The active list records all instructions currently
active within the processor, appending each instruction as the
processor decodes it. The list removes instructions when they
gr:aduate, or if a mispredicted branch or an exception causes
them to abort. Since up to 32 instructions can be active, the
active list consists of four parallel, eight-deep, circular FIFOs.

Each instruction is identified by 5-bit tag, which equals an
address in the active list. When an execution unit completes
an, instruction, it sends its tag to the active list, which sets its
done bit.

'The active list contains the logical-destination register num-
ber and its old physical-register number for each instruction.
An instruction's graduation commits its new mapping, so the
old physical register can return to the free list for reuse.

When an exception occurs, however, subsequent instruc-
tions never graduate. Instead, the processor restores old map-
pings from the active list. The RlOOOO unmaps four
in:jtructions per cycle-in reverse order, in case it renamed
thme same logical register twice. Although this i s slower than
restoring a branch, exceptions are much rarer than mispre-
dicted branches. The processor returns new physical regis-
ters to the free lists by restoring their read pointers.

Busy-bit tables. For each physical register, integer and
floating-point busy-bit tables contain a bit indicating whether
tbe register currently contains a valid value. Each table is a
64x1-bit multiport RAM. The tables sets a bit busy when the
Corresponding register leaves the free list. It resets the bit
w'hen an execution unit writes a value into this register.
Twelve read ports determine the status of three operand reg-
isters for each of four newly decoded instructions. The queues
use three other ports for special-case instructions, such as
moves between the integer and floating-point register files.

Instruction queues
The RlOOOO puts each decoded instruction, except jumps

and no operation NOPs, into one of three instruction queues,
according to type. Provided there is room, the queues can
accept any combination of new instructions.

The chip's cycle time constrained our design of the
queues. For instance, we dedicated two register file read
ports to each issued instruction to avoid delays arbitrating
and multiplexing operand buses.

Integer queue. The integer queue contains 16 entries in
no specific order and allocates an entry to each integer
instruction as it is decoded. The queue releases the entry as
soon as it issues the instruction to an ALU.

Instructions that only one of the ALUs can execute have
priority for that ALU. Thus, branch and shift instructions have-
priority for ALU 1; integer multiply and divide have priority

April1996 33

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

5 6-bit destination reg no Tag of FP compare

Integer Q entry (xl6)
for reg files's 3 write ports

Function lmmed Branch Active Dest
code value mask list tag reg no

OPC
reg no

6
Read register file (stage 3)

I 1 E- Write register file (stage 5)
To execution units Destl orDest2

to comparators De'ay cycles 6-bit physical register numbers

Figure 6. Integer instruction queue, showing only one issue port. The queue issues t w o instructions in parallel.

Request

Issue

Operands

Execute
(a)

Register
Add Sub dependency

compare (=)

- .I
- I

i--

I
1 -cycle
latency

Load Add Sub

Request

r Operands

Address calculation

Data cacheiTLB

Execute
(W

I LL I ..A

Figure 7. Releasing register dependency in the integer
queue (a) and tentative issue of an instruction dependent
on an earlier load instruction (b).

for ALU 2. For simplicity, location in the queue rather than
instruction age determines priority for issue. However, a
round-robin request circuit raises the priority of old instruc-
tions requesting ALU 2.

Figure 6 shows the contents of an integer queue entry. It

contains three operand select fields, which contain physical-
register numbers. Each field contains a ready bit, initialized
from the busy-bit table. The queue compares each select
with the three destination selects corresponding to write
ports in the integer register file. Any comparator match sets
the corresponding ready bit. When all operands are ready,
the queue can issue the instruction to an execution unit.

Operand C contains either a condition bit value or the tag
of the floating-point compare instruction that will set its
value. In total, each of the 16 entries contains' ten 6-bit
comparators.

The queue issues the function code and immediate val-
ues to the execution units. The branch mask determines if the
instruction aborted because of a mispredicted branch. The
tag sets the done bit in the active list after the processor com-
pletes the instruction.

The single-cycle latency of integer instructions complicat-
ed integer queue timing and logic. In one cycle, the queue
must issue two instructions, detect which operands become
ready, and request dependent instructions. Figure 7a illus-
trates this process.

To achieve two-cycle load latency, an instruction that
depends on the result of an integer load must be issued ten-
tatively, assuming that the load will be completed success-
fully. The dependent instruction is issued one cycle before
it is executed, while the load reads the data cache. If the load
fails, because of a cache miss or a dependency, the issue of
the dependent instruction must be aborted. Figure 7b illus-
trates this process.

Address queue. The address queue contains 16 entries.
Unlike the other two queues, it is a circular FIFO that pre-
serves the original program order of its instructions. It allo-
cates an e n m when the processor decodes each load or store

34 lEEE Micro

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

instruction and removes the entry after that instruction grad-
uates. The queue uses instruction order to determine memo-
ry dependencies and to give priority to the oldest instruction.

When the processor restores a mispredicted branch, the
address queue removes all instructions decoded after that
branch from the end of the queue by restoring the write
pointer. The queue issues instructions to the address calcu-
lation unit using logic similar to that used in the integer
queue, except that this logic contains only two register
operands.

The address queue is more complex than the other queues.
A load or store instruction may need to be retried if it has a
memory address dependency or misses in the data cache.

Two 16-bitxlb-bit matrixes track dependencies between
memory accesses. The rows and columns correspond to the
queue’s entries. The first matrix avoids unnecessary cache
thrashing by tracking which entries access the same cache set
(virtual addresses 135). Either way in a set can be used by
instructions that are executed out of order. But if two or more
queue entries address different lines in the same cache set, the
other way is reserved for the oldest entry that accesses that set.
The second matrix tracks instructions that load the same bytes
as a pending store instruction. It determines this match by com-
paring double-word addresses and 8-bit byte masks.

Whenever the external interface accesses the data cache,
the processor compares its index to all pending entries in
the queue. If a load entry matches a refill address, it passes
the refill data directly into its destination register. If an entry
matches an invalidated command, that entry’s state clears.

Although the address queue executes load and store
instructions out of their original order, it maintains sequen-
tial-memory consistency. The external interface could vio-
late this consistency, however, by invalidating a cache line
after it was used to load a register, but before rhat load
instruction graduates. In this case, the queue creates a soft
exception on the load instruction. This exception flushes the
pipeline and aborts that load and all later instructions, so the
processor does not use the stale data. Then, instead of con-
tinuing with the exception, the processor simply resumes
normal execution, beginning with the aborted load instruc-
tion. (This strategy guarantees forward progress because the
oldest instruction graduates immediately after completion.)

Store instructions require special coordination between
the address queue and active list. The queue must write into
the data cache precisely when the store instruction graduates.

The Mips architecture simulates atomic memory operations
with load-link (LL) and store-conditional (SC) instruction pairs.
These instructions do not complicate system design, because
they do not need to lock access to memory. In a typical
sequence, the processor loads a value with an LL instruction,
tests and modifies it, and then conditionally stores it with an
SC instruction. The SC instruction writes into memory only if
there was no conflict for this value and the link word remains
in the cache. The processor loads its result register with a one
or zero to indicate if memory was written.

Floating-point queue. The floating-point queue contains
16 entries. It is very similar to the integer queue, but it does
not contain immediate values. Because of extra wiring delays,
floating-point loads have three-cycle latency.

ALU1 result
1 I

1 -cycle
bypass

ALU 1
64-bit adder

ALU2 result ’ I
Load bypass

Figure 8. ALU 1 block diagram.

Register files
Integer and floating-point register files each contain 64

physical registers. Execution units read operands directly from
the register files and write results directly back. Results may
bypass the register file into operand registers, but there are
no separate structures, such as reservation stations or reorder
buffers in the wide data paths.

The integer register file has seven read ports and three
write ports. These include two dedicated read ports and one
dedicated write port for each ALU and two dedicated read
ports for the address calculate unit. The integer register’s sev-
enth read port handles store, jump-register, and move-to-
floating-point instructions. Its third write port handles load,
branch-and-link, and move-from-floating-point instructions.

A separate 64-wordxl-bit condition file indicates if the
value in the corresponding physical register is non-zero. Its
three write ports operate in parallel with the integer register
file. Its two read ports allow integer and floating-point con-
ditional-move instructions to test a single condition bit
instead of an entire register. This file used much less area
than two additional read ports in the register file.

The floating-point register file has five read and three write
ports. The adder and multiplier each have two dedicated
read ports and one dedicated write port. The fifth read port
handles store and move instructions; the third write port han-
dles load and move instructions.

Integer execution units
During each cycle, the integer queue can issue two instruc-

tions to the integer execution units.
Integer ALUs. Each of the two integer ALUs contains a

64bit adder and a logic unit. In addition, ALU 1 contains a
64bit shifter and branch condition logic, and ALU 2 contains
a partial integer multiplier array and integer-divide logic.
Figure 8 shows the ALU 1 block diagram. Each ALU has two
64bit operand registers that load from the register file. To

April1996 35

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

I Table 1 . Latency and repeat rates for integer instructions. I
Latency Repeat rate

Unit (cycles) (cycles) Instruction

Either ALU 1 1 Add, subtract, logical, move Hi/Lo, trap
ALU 1 1 1 Integer branches
ALU 1 1 1 Shift
ALU 1 1 1 Conditional move
ALU 2 516 6 32-bit multiply

911 0 10 64-bit multiply
(to Hi/Lo registers)

ALU 2 34/35 35 32-bit divide
66/67 67 64-bit divide

Loadlstore 2 1 Load integer
- 1 Store integer

Pipelined unit
-. ..

~ Floating-point adoer ---1
55-bit P A

1 Pipelined unit

I Floating-poirt m;iltiplicr
__ -

Figure 9. Floating-point execution units block diagram.

achieve one-cycle latency, the three write ports of the regis-
ter file bypass into the operand register.

The integer queue controls both ALUs. It provides function

codes, immediate values, bypass
contiols, and so forth

Integer multiplication and divi-
sion. ALU 2 iteiatively computes
integei multiplication and division
As mentioned earlier, these instruc-
tions have two destination registers,
Hi and Lo For multiply instructions,
Hi and Lo contain the high and low
halves of a double precision prod-
uct For divide instructions, they con-
tain the remainder and quotient

ALU 2 computes integer multipli-
cation using Booth’s algorithm,
which generates a partial product foi
each two bits of the inultiplier The
algorithm generates and accumulates
four partial products per cycle ALU

2 is busy for the first cycle after the instruction is issued, and
for the last two cycles to store the result

To compute an integer division, ALU 2 uses a nonrestor-
ing algorithm that generates one bit per cycle ALU 2 is busy
for the entire operation

Table 1 lists latency and repeat rates for common integer
instructions

Floating-point execution units
Figure 9 shows the mantissa data path for these units

(Exponent logic is not shown) The adder and multiplier have
three-stage pipelines Both units are fully pipelined with a
single-cycle repeat rate Results can bypass the register file
for either two cycle or three-cycle latency All floating-point
operations are issued from the floating-point queue

Floating-point values are packed in IEEE Std 754 single- or
double-precision formats in the floating point register file
The execution units and all internal bypassing use an
unpacked format that explicitly stores the hidden bit and
separates the 11-bit exponent and 53-bit mantissa Operands
are unpacked as they arc read, and results are packed befoie
they are written back Packing and unpacking are imple-
mented with two-input multiplexers that select bits accord-
ing to single or double precision formats This logic is
between the execution unita and register file

Floating-point adder. The adder does floating-point addi
tion, subtraction, compare, and conversion operations Its
first stage subtracts the opeiand exponents, selects the larg-
er operand, and aligns the smaller mantissa in a 55-bit right
shifter The second stage adds 01 subtracts the mantissas,
depending on the operation and the signs of the operands

A magnitude additiofl can produce a carry that requires a
one-bit shift right foi post normalization Conceptually, the
processor must round the result after generating it To avoid
extra delay, a dual, carry-chain addei generates both +1 and
+2 versions of the sum The processor selects the +2 chain
if the operation requires a right shift for post normalization

On the other hand, a magnitude subtraction can cause
massive cancellation, producing high-ordei zeros in the
result A leading-zero prediction cii cult determines how
many high order zeros the subtraction will produce Its out-

36 IEEEMicro

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

put controls a j 5-bit left shifter that
normalizes the result.

Floating-point multiplier. The
multiplier does floating-point multi-
plication in a full double-precision
array. Because it is slightly less busy
than the adder, it also contains the
multiplexers that perform move and
conditional-move operations.

During the first cycle, the unit
Booth-encodes the j3-bit mantissa of
the multiplier and uses it to select 27
partial, products. (With Booth encod-
ing, only one partial product is need-
ed for each two bits of the

Table 2. Latency arid repeat rates for floating-point instructions.

Latency Repeat rate
Unit (cycles) (cycles) Instruction

Add 2

Divide 12
19

33
LoadMOre 3

Multiply 2

Square root l a

-

1
1

14
21
20
35

1
1

Add, subtract, compare
Integer branches
32-bit divide
64-bit divide
32-bit square root
64-bit square root
Load floating-point value
Store floating-point value

multiplier) A compression tree uses an array of (4, 2) carry-
save adders, which sum four bits into two sum and carry out-
puts During the second cycle, the resulting 106-bit sum and
carry values are combined using a 106-bit carry-propagate
adder A final 53-bit adder rounds the result

Floating-point divide and square root. Two indepen-
dent iterative units compute floating-pomt divlsion and square-
root operations Each unit uses an SRT algonthm that generates
two bits per iteration stage The divide unit cascades two stages
within each cycle to generate four bits per cycle

These units share register file ports with the multiplier
Each operation preempts two cycles The first cycle issues the
instruction and reads its operands from the register file At
the end of the operation, the unit uses the second cycle to
write the result into the register file

Table 2 lists latency and repeat rates for common floating-
point instructions

Memory hierarchy
Memory latency has a major impact on processor perfor-

mance. To run large programs effectively, the RlOOOO imple-
ments a nonblocking memory hierarchy with two levels of
set-associative caches. The on-chip primary instruction and
data caches operate concurrently, providing low latency and
high bandwidth. The chip also controls a large external sec-
ondary cache. All caches use a least-recently-used (LRU)
replacement algorithm.

Both primary caches use a virtual address index and a
physical-address tag. To minimize latency, the processor can
access each primary cache concurrently with address trans-
lation in its TLB. Because each cache way contains 16 Kbytes
(four times the minimum virtual page size), two of the vir-
tual index bits (13:12) might not equal bits in the physical
address tag. This technique simplifies the cache design. It
works well, as long as the program uses consistent virtual
indexes to reference the same page. The processor stores
these two virtual address bits as part of the secondary-cache
tag. The secondary-cache controller detects any violations
and ensures that the primary caches retain only a single copy
of each cache line.

Load/store unit. Figure 10 contains a block diagram of
the load/store unit and the data cache. The address queue
issues load and store instructions to the address calculation
unit and the data cache. When the cache is not busy, a load

Load result (also to floating-point register)

calculator r) Address error check

I lBypass

2 banks, interleaved
I

Refill bypass

Control

Figure IO. Address calculation unit and data cache block
diagram.

instruction simultaneously accesses the TLB, cache tag array,
and cache data array. This parallel access results in two-cycle
load latency.

Address calculation. The RlOOOO calculates virtual mem-
ory addresses as the sum of two 64-bit registers or the sum
of a register and a 16-bit immediate field. Results from the
ALUs or the data cache can bypass the register files into the
operand registers. The TLB translates these virtual address-
es to physical addresses.

Memory address translation (TLB). The Mips-4 archi-
tecture defines 64-bit addressing. Practical implementations

April1996 37

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

p;? , Di2 ,,Di3,
Cache hit - Way0 Way0

Processor uses 64-bit
data, set-associative

Refill or write-back use
128-bit data (way known)

Figure 11. Arrangement o f ways in the data cache.

reduce the maximum address width to reduce the cost of the
TLB and cache tag arrays The R10000's fully-associative
translation look-aside buffer translates &bit virtual address-
es into 40-bit physical addresses This TLB is similar to that
of the R4000, but we increased it to 64 entries Each entry
maps a pair of virtual pages and independently selects a page
size of any power of 4 between 4 Kbytes and 16 Mbytes The
TLB consists of a content-addressable memory (CAM sec-
tion), which compares virtual addresses, and a RAM section,
which contains corresponding physical addresses

I I I I

Primary instruction cache. The 32-Kbyte instruction
cache contains 8,192 instruction words, each predecoded
into a 36-bit format The processor can decode this expand-
ed format more rapidly than the original instruction format
In particular, the four extra bits indicate which functional
unit should execute the instruction The predecoding also
rearranges operand- and destination-select fields to be in the
same position for every instruction Finally, it modifies sev-
eral opcodes to simplify decoding of integer or floating-point
destination registers

The processor simultaneously fetches four instructions in
parallel from both cache ways, and the cache hit logic selects
the desired instructions These instructions need not be
aligned on a quad-word address, but they cannot cross a 16-
word cache line (see Figure 3)

Primary data cache. The data cache inteileaves two 16-
Kbyte banks for increased bandwidth The processor allo-
cates the tag and data arrays of each bank independently to
the four following requesting pipelines

- external interface (refill data, interventions, and so on), - tag check for a newly calculated address, - retrying a load instruction, and
* graduating a store instruction

To simplify interfacing and reduce the amount of buffer-
ing required, the external interface has priority for the arrays
it needs Its requests occur two cycles before cache reads or
writes, so the processor can allocate the remaining resources
among its pipelines

The data cache has an eight-word line size, which is a con

I I I I I I I

MRU table

__ - __ . - - 1 128-bit data (bidirectional pins)

Secondary cache tag check
Compare tag address and state

I l l
@ Refill secondary cache from memory if borh ways miss

Figure 12. Refill f rom the set-associative secondary cache. In this example, t h e secondary clock equals the processor's
internal pipeline clock It may be slower.

38 IEEE Micro

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

venient compromise. Larger sizes reduce the tag RAM array
area and modestly reduce the miss rate, but increase the
bandwidth consumed during refill. With an eight-word line
size, the secondary-cache bandwidth supports three or four
overlapped refills.

Each of the data cache’s two banks comprises two logical
arrays to support two-way set associativity. Unlike the usual
arrangement, however, the cache ways alternate between
these arrays to efficiently support different-width accesses,
as Figure 11 shows.

The processor simultaneously reads the same double word
from both cache ways, because it checks the cache tags in
parallel and later selects data from the correct way. It dis-
cards the double word from the incorrect way. The external
interface refills or writes quad words by accessing two dou-
ble words in parallel. This is possible because it knows the
correct cache way in advance.

This arrangement makes efficient use of the cache’s sense
amplifiers. Each amplifier includes a four-to-one multiplex-
er anyway, because there are four columns of memory cells
for each amplifier. We implemented this feature by changing
the select logic.

Secondary cache. We used external synchronous static
RAM chips to implement the 512-Kbyte to 16-Mbyte, two-
way set-associative secondary cache. Depending on system
requirements, the user can configure the secondary-cache
line size at either 16 or 32 words.

Set associativity reduces conflict misses and increases pre-
dictability. For an external cache, however, this usually
requires special RAMS or many more interface pins. Instead,
the RlOOOO implements a two-way pseudo-set-associative
secondary cache using standard synchronous SRAMs and
only one extra address pin.

Figure 12 shows how cache refills are pipelined. The sin-
gle group of RAMS contains both cache ways. An on-chip
bit array keeps track of which way was most recently used
for each cache set. After a primary miss, two quad words are
read from this way in the secondary cache. Its tag is read
along with the first quad word. The tag of the alternate way
is read with the second quad word by toggling of the extra
address pin.

Three cases occur: If the first way hits, data becomes avail-
able immediately. If the alternate way hits, the processor
reads the secondary cache again. If neither way hits, the
processor must refill the secondary cache from memory.

Large external caches require error correction codes for data
integrity. The RlOOOO stores both a 9-bit ECC code and a par-
ity bit with each data quad word. The extra parity bit reduces
latency because it can be checked quickly and stop the use of
bad data. If the processor detects a correctable error, it retries
the read through a two-cycle correction pipeline.

We can configure the interface to use this correction
pipeline for all reads. Although this increases latency, it
allows redundant lock-step processors to remain synchro-
nized in the presence of correctable errors.

System interface
The RlOOOO communicates with the outside world using

a 64-bit split-transaction system bus with multiplexed address

arid data. This bus can directly connect as many as four
R1.OOOO chips in a cluster and overlaps up to eight read
re’quests.

The system interface dedicates SubsVdntkdl resources to
support concurrency and out-of-order operation. Cache
refills are nonblocking, with up to four outstanding read
resquests from either the secondary cache or main memory.
These are controlled by the miss handling table.

The cached buffer contains addresses for four outstanding
re:id requests. The memory data returned from these requests
is stored in the four-entry incoming buffer, so that it can be
accepted at any rate and in any order. The outgoing buffer
holds up to five “victim” blocks to be written back to mem-
ory. The buffer requires the fifth entry when the bus invali-
dates a seconddry-cache h e .

An eight-entry cluster buffer tracks all outstanding opera-
tions on the system bus. It ensures cache coherency by inter-
rogating and, if necessary, by invalidating cache lines.

Uncached loads and stores execute serially when they are
the oldest instructions in the pipeline. The processor often
uses uncached stores for writing to graphics or other periph-
eral devices. Such sequences typically consist of numerous
se’quentially or identically addressed accesses. The uncached
buffer automatically gathers these into 32-word blocks to
conserve bus bandwidth.

Clocks. An on-chip phase-locked loop (PLL) generates all
timing synchronously with an external system interface clock.
For system design and upgrade flexibility, independent clock
divisors give users the choice of five secondary-cache and
seven system interface clock frequencies. To allow more
choices, we base these clocks on a PLL clock oscillating at
twice the pipeline clock. When the pipeline operates at 200
Mllz, the PLL operates at 400 MHz, and the user can config-
ur,: the system interface to run at 200, 133, 100, 80, 66.7, 57,
or 50 MHz. In addition, the user can separately configure the
secondary-cache to frequencies between 200 and 66.7 MHz.

Output drivers. Four groups of buffers drive the chip’s
output pins. The user can configure each group separately
to conform to either low-voltage CMOS or HSTL standards.
Thle buffer design for each group has special characteristics.

Figure 13 (next page) illustrates how these buffers con-
nect. The system interface buffer contains additional open-
drain pull-down transistors, which provide the extra current
needed to drive HSTL Class-2 multidrop buses.

We designed the secondary-cache data buffer to reduce
overlap current spikes when switching, because nearly 200
of these signals can switch simultaneously.

The cache address buffer uses large totem pole transistors
to rapidly drive multiple distributed loads. The cache clock
buffer drives low-impedance differential signals with mini-
mum output delay. A low-jitter delay element precisely aligns
these clocks. This delay is statically configured to adjust for
propagation delays in the printed circuit board clock net, so
the clock‘s rising edge arrives at the cache simultaneously
with the processor’s internal clock.

Test features. For economical manufacture, a micro-
processor chip must be easy to test with high fault coverage.
The RlOOOO observes internal signals with ten 128-bit linear-
feedback shift registers. These internal test points partition

April1996 39

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

R1 0000 microprocessor

Figure 13. Clocks a n d o u t p u t drivers.

the chip into three fully observed sections.
The registers are separate structures that do not affect the

processor’s logic or add a noticeable load to the observed sig-
nals. They use the processor’s clock to ensure synchronous
behavior and avoid any special clock requirements. They
are useful for debugging or production testing.

erformance
We are currently shipping 200-MHz RlOOOO microproces-

sors in Silicon Graphics’ Challenge servers, and several ven-
dors will soon ship the RlOOOO in systems specifically
designed to use its features. We project that such a system-
with a 200-MHz R l O O O O microprocessor, 4-Mbyte secondary
cache (200 MHz), 100-MHz system interface bus, and 180-ns
memory latency-will have the following performance:

., SPEC95int (peak) 9
e SPEC95fp (peak) 19

We scaled these benchmark results from the performance
of an R l O O O O running in an actual system in which the
processor, cache, and memory speeds were proportionate-
ly slower. We compiled the benchmarks using early versions
of the Mips Mongoose compiler.

AN AGGRESSIVE, SUF’ERSCALAR MICROPROCESSOR,
the RlOOOO features fast clocks and a nonblocking, set-asso-
ciative memory subsystem. Its design emphasizes concur-
rency and latency-hiding techniques to efficiently run large
real-world applications.

Acknowledgments
The RlOOOO was designed by the Mips “T5” project team,

whose dedication made this chip a reality The figures in this
article are deiived from the author’s design notes, and are
used with permission from Mips Technologies, Inc

Kenneth C. Yeager is a microprocessor designer at Mips
Technologies Inc. (a subsidiary of Silicon Graphics Inc.),
where he participated in the conception and design of the
RlOOOO superscalar microprocessor. His research interests
include the architecture, logic, and circuit implementation
of high-performance processors. Yeager received BS degrees
in physics and electrical engineering from the Massachusetts
Institute of Technology.

Direct questions concerning this article to the author at
Silicon Graphics Inc., M/S 1OL-175, 2011 N. Shoreline Blvd.,
Mountain View, CA 94043; yeager@mti.sgi.com.

Reader Interest Survey
Indicate your interest in this article by circling the appiopriate
number on the Reader Seivice Card

Low 153 Medium 154 High 155

40 /€€€Micro

Authorized licensed use limited to: University of Wisconsin. Downloaded on January 13, 2009 at 16:34 from IEEE Xplore. Restrictions apply.

mailto:yeager@mti.sgi.com

