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The IBM S/390 G5 microprocessor
in IBM’s newest CMOS mainframe system
provides more than twice the performance of
the previous generation, the G4. The G5 sys-
tem offers improved reliability and availabil-
ity, along with new architectural features such
as support for IEEE floating-point arithmetic
and a redesigned L2 cache and processor inter-
connect. IBM announced the G5 system on
7 May 1998 and began volume shipments in
September 1998.

The G5 system implements the ESA/390
instruction-set architecture,1 which is based
on and compatible with the original S/360
architecture introduced in 1964. Therefore,
it has no RISC (reduced-instruction-set com-
puting) concepts and is one of the most com-
plex of all CISC (complex-instruction-set
computing) architectures. Designers had to
meet a unique set of challenges to achieve the
G5’s level of performance—for example,
achieving a very high frequency given the
complexity of the architecture.

Background 
Until the early 1990s, IBM designed all its

mainframe systems with bipolar circuit tech-
nology. This was the best performing tech-
nology for its time, but it required water
cooling of the circuit modules and led to sys-
tems consuming large amounts of floor space.

The last of these bipolar mainframes was
announced in 1993. The following year, IBM
announced the first step in its revolutionary
shift to CMOS technology for its mainframe
systems. Each year thereafter, IBM introduced
a new-generation CMOS-based system.2

Although these systems gave users very
good price/performance, they could not com-
pete with the last-generation bipolar system
in terms of raw MIPS (millions of instructions
per second). IBM continued to ship bipolar
systems for users requiring that level of per-
formance. IBM also introduced the ability to
couple multiple systems together so that users
could seamlessly execute and manage jobs
across systems. In 1997 IBM announced the
S/390 G4 system,3,4 with performance equiv-
alent to the last bipolar system. Less than a
year later, the S/390 G5 system debuted.5

The microprocessors run at 500 MHz in
the fastest version of the G5 system. These
models use a self-contained chiller unit to cool
the multichip module (MCM) containing the
processors, the L2 cache, and other support
chips. IBM also ships purely air-cooled sys-
tems running at 417 and 385 MHz. The L2
and support chips run at half the frequency
of the microprocessor on all versions of the
system. 

The S/390 G5 microprocessor uses IBM’s
CMOS 6X technology. This is a 0.25-micron
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technology with an Leffof 0.15 micron on the
nFET with six levels of aluminum wiring. The
14.6-mm × 14.7-mm die contains approxi-
mately 25 million transistors. These comprise
seven million transistors for logic, 13 million
for the L1 cache, and five million for other
arrays. The chip operates at 1.9 volt at the cir-
cuit level and dissipates approximately 25 watts
of power. The junction temperature is about
20°C for the models using the chiller unit.

The design team used a full-custom
approach6 for the dataflow logic. We synthe-
sized most of the control logic and then man-
ually optimized schematics and layout to
improve cycle time. The design predomi-
nantly uses static logic, but there is some
dynamic logic in certain critical paths. Figure
1 shows a micrograph of the processor.

The G5 microprocessor’s design is based on
that of the previous-generation G4, but with
numerous enhancements that yield a faster
cycle time, fewer cycles per instruction (CPI),7

new IEEE-compatible floating-point archi-
tecture, and significant improvements in reli-
ability and availability. In addition, the design
of the L2 cache and processor interconnect
structure is entirely new for the G5.

Microarchitecture
An efficient implementation of the highly

complex ESA/390 architecture leads to some
unusual trade-offs in a processor’s design. The
G5 design team weighed these trade-offs and
selected a rather simple microarchitecture that
could yield a very high frequency. Neverthe-
less, compared with the G4, the G5 proces-
sor does implement many significant features
to further improve CPI.

The most obvious trade-off is that the
processor is not superscalar, unlike previous
IBM bipolar mainframes, which had very
sophisticated superscalar engines. The
ESA/390 architecture has numerous, relatively
commonly used, instructions that require
tens, hundreds, or even thousands of clock
cycles to execute no matter what implemen-
tation is chosen. Therefore, instead of exe-
cuting more than one instruction per cycle,
the design optimizes the number of cycles for
these long-running instructions to achieve a
good CPI. 

Another complication of the ESA/390
architecture is that it is not a load-store archi-

tecture. The most common instruction for-
mat, RX-format, operates on data from a reg-
ister and storage; this would be equivalent to
two RISC instructions. The processor’s
pipeline design is optimized for executing
these RX-format instructions in one cycle. In
addition, there is a rich set of storage-to-stor-
age instructions in the ESA/390 architecture
that takes variable-length operands from two
different memory locations and stores the
result. Finally, the architecture has many other
complexities that need efficient implementa-
tion: instructions that operate on decimal
data, many addressing modes, multiple
address spaces, precise interrupts, virtual
machine emulation, and two different float-
ing-point architectures.

Any practical implementation of the
ESA/390 architecture must use some form of
microcode to handle the more complex
instructions; a purely hardware implementa-
tion would have too many design bugs to be
shipped on a reasonable schedule. The G5
processor therefore uses millicode (a form of
Licensed Internal Code) to implement many
of the architecture’s complex elements. Milli-
code is our name for the vertical microcode
that executes on the processor.

Figure 2 shows a high-level diagram of the
G5 microprocessor, which is logically parti-
tioned into four units:

• The L1 cache, or buffer control element
(BCE), contains the cache data arrays,
cache directory, translation-lookaside
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Figure 1. Micrograph of the IBM S/390 G5
microprocessor.

.



buffer (TLB), and address translation
logic.

• The I unit handles instruction fetching,
decoding, and address generation and
contains the queue of instructions await-
ing execution.

• The E unit contains the various execu-
tion units, along with the local working
copy of the general, access, and floating-
point registers.

• The R unit is the recovery unit that holds
a checkpointed copy of the entire

microarchitected state of the processor,
timing facility, and various other miscel-
laneous state information. 

L1 cache 
The 256-Kbyte L1 cache is four-way set

associative and four times larger than the L1
cache in the G4 processor. The cache is uni-
fied in that it holds instruction, operand, and
millicode data and is a store-through design.
The cache is two-way interleaved to support
two simultaneous requesters. The L1 cache
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supports a data rate of 4 gigabytes/s for data
filling from L2.

Since the cache is much larger than in the
G4, we carefully evaluated the line size and
eventually selected 256 bytes as optimal. The
performance improvement this gives over a
smaller cache line size more than makes up for
the trailing-edge penalty of waiting for the last
bytes of a line to be loaded into L1.

The cache is accessed by a real address, or to
be more precise, by an absolute address.
Because of the large cache size, four virtual
bits of the address are needed in selecting a
congruence class, along with all the address
bits that are not subject to translation. The
G5 uses an interesting approach to this prob-
lem by having an absolute address history
table (AAHT) predict the absolute address
value for these four bits before the request
accesses the cache directory.8 If the prediction
is later determined to be incorrect after the
TLB is checked, the cache hit is suppressed
and the request is recycled after updating the
AAHT with the correct value. There is one
AAHT for instruction addresses and another
for operand addresses.

The TLB contains 1,024 entries and is
four-way set associative. All dynamic address
translation and access register translation
(ART) is done in hardware without assists
from millicode for all the ESA/390 address-
ing modes. The ART lookaside buffer (ALB)
contains eight entries and is fully associative.

The L1 cache unit also contains a 32-Kbyte
writable millicode array containing the milli-
code for the 64 most commonly used
ESA/390 instructions implemented in milli-
code. This array is loaded at initial power-on
reset time and is not modified during normal
system operation.

I unit and E unit 
Figure 3 shows the instruction pipeline, as

implemented in the I unit and E unit. The
pipeline is effectively seven stages from the
instruction fetch cycle to the writing of results
for RX-format instructions. Note that for reg-
ister-to-register instructions, the RR-format,
no operand fetch is necessary from the L1
cache, so the pipeline length is reduced by one
stage, depending on the format of adjacent
instructions. The R unit has three additional
stages for checkpointing of results, but these
cannot cause pipeline stalls.

The I unit calculates operand addresses in
the address add cycle. It then sends these
requests to the L1 cache for processing and
later informs the E unit when operand data is
present in the operand buffers.

A new feature in the G5 processor is a 2,048-
entry BTB that is two-way associative. It uses
a 2-bit algorithm for branch prediction and is
active for both ESA/390 code and for milli-
code. Both types of code share the same BTB.

The E unit is partitioned into a fixed-point
unit and a floating-point unit. The fixed-point
unit contains a 64-bit binary adder, a 64-bit
logical/shift/and-insert-under-mask unit, and
an 8-digit decimal adder. We describe the
floating-point unit in more detail later.

The ESA/390 architecture is unique among
today’s architectures in that it contains a rich set
of instructions that operate on decimal data.
Decimal instructions are used intensively in the
financial industry, so performance is very impor-
tant. The G4 processor included an 8-digit dec-
imal adder and executed add/subtract/compare
operations in hardware while using millicode to
perform more-complex operations such as dec-
imal multiply, divide, pack/unpack, and con-
vert between decimal and binary format. 
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The G5’s decimal performance is signifi-
cantly improved by having a decimal multi-
plier. It also has hardware to generate one
decimal digit of the quotient and uses a mil-
licode routine that iterates to perform the
entire division operation. In addition, we
added dedicated control logic to perform the
other decimal instructions purely in hardware.

Instructions that manipulate the program
status word (PSW) are also somewhat perfor-
mance critical, but they are architecturally
complex. To execute them easily, the G4
design used millicode. To improve the CPI,
the G5 processor implements all these instruc-
tions in hardware.

The ESA/390 architecture requires very
precise handling of interrupts and exceptions.
These requirements impose a significant bur-
den on designers. Although we optimize their
design for “normal” operations, we must still
obey the architectural specifications without
impacting cycle time. 

The G5 design uses a concept called single-
instruction mode to handle interrupts and
exceptions. Normally, the processor is running
fully pipelined. However, when the L1 cache or
the I unit detects that there may be an excep-
tion associated with an upcoming instruction,
it informs the E unit, which then requests the
entire processor to serialize operations. (In cer-
tain cases the E unit may detect the exception
itself.) This serialization causes all instructions
waiting for execution or in an I-buffer to be
flushed. The next instruction then executes in
the single-instruction mode without anything
else in the pipeline. In this second pass, if there
really is an exception or an interrupt, the hard-
ware invokes a millicode interrupt handler to
perform all the steps the architecture requires. In
some cases, the normal-speed detection is only
a gross, pessimistic check. Only in the single-
instruction-mode pass are the precise checks
made. When the processor enters the single-
instruction mode, the instructions executing at
that time slow down significantly. However, this
mode is entered so infrequently (when there is
not going to be a true interrupt) that the over-
all impact on performance is negligible.

R unit 
The entire microarchitected state of the

processor is kept in the R unit. There are 256
registers, half of them 32 bits and the other

half 64 bits. All are protected by error-cor-
recting code (ECC). These registers contain
a copy of the data in ESA/390-architected reg-
isters such as general registers, control regis-
ters, floating-point registers, PSW, and so on.
However, the R unit also contains a copy of
working registers for millicode plus numer-
ous processor and system control registers that
only millicode can access.

For cycle time reasons, frequently used reg-
isters, such as general and floating-point reg-
isters, have their master copy in the E unit.
The R unit registers have a single read port
and a single write port, whereas the E unit
copy has multiple read and write ports. Some
of the more commonly used control registers
are also shadowed in the I unit, E unit, and
L1 cache as needed. 

For every clock cycle in which the E unit
produces a result, that value is also written
into the R unit copy. First the R unit checks
whether the result was correct (see the later
section on processor recovery) and then it gen-
erates ECC on that result. Finally, this check-
pointed result is written into the R unit
registers along with its ECC. The contents of
R unit registers represent the complete check-
pointed state of the processor during any given
cycle, should it be necessary to recover from a
hardware error.

Millicode 
The G5 microprocessor implements 284

ESA/390 instructions totally in hardware.
Millicode is used to implement the remain-
der of the ESA/390 instructions that are either
more complex or relatively infrequently used
and therefore do not warrant a hardware
implementation. The millicode instruction
set consists of all the ESA/390 hardware
instructions plus 102 instructions that only
millicode can use.

Executing a complex ESA/390 instruction
is like executing a hardwired subroutine call.
The I unit detects at decode time that milli-
code will be required to execute an instruc-
tion. Processor hardware then sets up certain
working registers that millicode will need later.
This setup is optimized for different types of
instructions, to minimize the amount of mil-
licode processing necessary. Finally, the
processor’s instruction address is changed to
point to the starting address for the required
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millicode routine. From then on, the proces-
sor is said to be executing in millimode—a
highly privileged mode of operation in which
millicode can essentially do anything it wants
to the processor and the system. 

When in millimode, the processor fetches
and executes instructions just as it would in
normal ESA/390 mode. When the millicode
routine has completed, it executes an instruc-
tion that is similar to a hardwired subroutine
return. This exits millimode, putting the
processor back in ESA/390 mode, and restores
the instruction address to point to the next
ESA/390 instruction. The ESA/390 program
is not aware that any of this has occurred; it just
appears as if its next instruction has been exe-
cuted. Obviously, if an ESA/390 program tries
to execute an instruction that is only valid in
millimode, the hardware will cause a program
exception that will prevent it from executing.

When the processor is executing in mil-
limode, the millicode has complete read/write
access to all R unit registers. To reduce the
number of clock cycles required when enter-
ing and leaving millimode, the millicode uses
a completely different set of general registers
and access registers from those normally used
for ESA/390 programs.

Besides executing the complex S/390 instruc-
tions, millicode also performs various service
functions. These include logging data associat-
ed with any hardware errors that may have
occurred, scrubbing memory for correctable
errors, supporting operator console functions,
and controlling low-level I/O operations.

Virtual machine emulation 
The ESA/390 architecture provides for up

to two levels of virtual machines running on
a processor (that is, a virtual machine running
under a virtual machine running under the
native hardware). This capability is exploited
by IBM’s PR/SM (Processor Resource/Sys-
tems Manager) environment, which lets users
run multiple operating systems simultane-
ously on the system. Likewise, the Virtual
Machine operating system uses this capabili-
ty to give customers the appearance of a com-
plete ESA/390 system for their own use.

An efficient implementation of these virtu-
al machines requires extensive hardware sup-
port, along with millicode to manage the
transition between virtual machine levels.

Hardware support includes three complete
copies of all 16 ESA/390-architected control
registers and three copies of the timing facil-
ity registers. These three copies represent the
host mode, first-level guest, and second-level
guest emulation environments. In addition,
logic included in the I unit detects various
conditions that require interception by a high-
er level of emulation.

IEEE floating-point architecture
IBM’s mainframes have included floating-

point arithmetic in their architecture since the
1960s. As Table 1 shows, this architecture
includes 32-, 64-, and 128-bit operands, each
with seven bits of exponent. A 1-bit change
in the exponent corresponds to a 4-bit shift
in the fraction. Therefore, it is called hexa-
decimal floating point (HFP).

In recent years, users have been interested
in interoperability with other platforms and
therefore require efficient and compatible data
exchange. Most other platforms have a float-
ing-point architecture that conforms, more or
less, with the IEEE 754 standard. Also, Java
implementations require adherence to this
standard, and emulating the operations is slow
and inefficient. Therefore, IBM wanted to give
mainframe programs the ability to perform
arithmetic in IEEE 754 floating-point format.

The G5 microprocessor contains a com-
plete implementation of the IEEE 754 stan-
dard, along with continued full support for
IBM’s traditional HFP format. To distinguish
between the two floating-point architectures,
the IEEE-compatible version is called binary
floating point, or BFP.

The new architecture adds 121 new instruc-
tions to the existing ESA/390 architecture: 87
BFP instructions, 26 additional HFP instruc-
tions, and eight support instructions. This is
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Table 1. ESA/390 floating-point architecture data formats.

Exponent Exponent Total width 

Format Sign bits bias Fraction (bits)

HFP short 1 7 64 24 32
HFP long 1 7 64 56 64
HFP extended 1 7 64 112 128
BFP single 1 8 127 24 32
BFP double 1 11 1,023 53 64
BFP quad 1 15 16,383 113 128

.



in addition to the 54 existing HFP instructions.
Also, the number of floating-point registers has
grown from four to 16, all of them 64 bits wide.

We expect that the traditional HFP instruc-
tions will be used predominantly for the next
few years while applications are being devel-
oped to exploit the BFP architecture. There-
fore, the G5 design is optimized to perform
HFP arithmetic, while implementing BFP
arithmetic as simply as possible. We accom-
plished this by evolving the G4 floating-point-
unit (FPU) design point9 to incorporate BFP.10

The FPU resides in the E unit. All floating-
point operations are performed within the
FPU in HFP format. When a BFP instruc-
tion is executing, the operands are first con-
verted to HFP format immediately after
passing through registers Areg and Breg in Fig-
ure 2. At the end of the arithmetic operation,

the result is converted back to BFP format
immediately before entering the Creg in the
figure. This includes rounding required by
BFP operations.

Obviously, there is much control logic,
along with small pieces of dataflow logic, to
handle the idiosyncrasies of BFP arithmetic
and instances when numbers cannot be fully
represented in HFP format. All three data for-
mats (32-bit, 64-bit, and 128-bit), including
all special-case operands, are handled in hard-
ware without any millicode intervention. All
this adds up to a design producing results that
are fully compatible with the IEEE 754 stan-
dard while using relatively little additional die
area compared with the G4 FPU.

The FPU operates on HFP operands in a
fully pipelined manner at a rate of one result
per cycle with three cycles of latency. For BFP,
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it is pipelined with two cycles per result with
five cycles of latency. 

System structure
In addition to excellent uniprocessor per-

formance, the S/390 G5 system also excels in
symmetric multiprocessor (SMP) perfor-
mance. The G5 features up to 12 processors
interconnected by a sophisticated system con-
troller that contains the L2 cache and data-
switching logic. The system structure is
binodal, and each node contains essentially
half a system. The two nodes are in a tightly
coupled configuration and mounted on the
same MCM. All processors in the system can
access the entire memory with essentially uni-
form access time. 

Figure 4 shows the G5 system structure. All
data buses shown in this figure are 128 bits
wide and run at 250 MHz. There are up to
12 processors, labeled CP (central processor)
in the figure. A maximum of 10 can be con-
figured as ESA/390 CPUs. The remaining
CPs serve as I/O processors that manage the
huge volume of data moving into and out of
the I/O subsystem, or they may be configured
as spares in the event of a processor failure.

The system controller consists of two chips,
labeled L2 CNTLR in the figure. These con-
tain the L2 directories and configuration
array; they manage all data switching and
buffers in the system controller. The system
controller also contains eight L2 cache
dataflow/array chips labeled L2 cache. Each
of these chips contains 1 Mbyte of L2 cache
and all data switches and buffers needed to
move data between the processors, L2 cache,
memory, and the I/O subsystem. The total L2
cache is large—8 Mbytes.

Each node of the system controller contains
two I/O interface chips that connect with the
L2 chips. The I/O subsystem is attached to
these I/O interface chips via self-timed inter-
faces (STIs), with six STIs per chip. Each STI
port runs at 333 Mbytes/s in each direction,
and all 24 can run simultaneously, producing
a total I/O bandwidth of 16 Gbytes/s.

The G5 system contains four memory cards,
each with four banks. All four memory cards
can transfer data simultaneously to yield a total
memory bandwidth of 16 Gbytes/s. The max-
imum installable memory for the system is 24
Gbytes. (Memory above 2 Gbytes is used effi-

ciently in the PR/SM environment or as
expanded memory for paging.)

The system also has two cryptographic
coprocessor chips, labeled CE in the figure,
that support RSA and DES functions in hard-
ware. The MCM also contains a clock chip
that distributes the master oscillator to all
other chips and contains the service interface
to the service element. The service element is
a laptop computer running OS/2 that man-
ages system operation.

Figure 5 is a photograph of the high-end
MCM. In its lower end models, IBM ships
essentially the upper half of Figure 4. This has
a maximum of six processors, 4 Mbytes of L2
cache, two I/O interface chips, and two mem-
ory cards.

Reliability and availability
S/390 mainframe systems have long been

known for outstanding reliability and avail-
ability. The G5 system continues this tradi-
tion with additional improvements in this
area. CMOS is inherently an extremely reli-
able technology, and the vast majority of sys-
tems will never encounter a hardware error.
Nevertheless, errors can and do occur. Since
S/390 systems are often used for mission-crit-
ical and enterprise-wide applications, strict
data integrity and continuous availability are
key product requirements.

The microprocessor and many other system
parts have essentially 100% error detection and
recoverability from any transient error. In the
rare occurrence of a solid error in the logic, sev-
eral system features enable the use of redun-
dant hardware, often automatically and
transparently, to allow continued operation.
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Figure 5. Photograph of the multichip module used in the S/390 G5 system.
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Processor hardware error recovery
Previous IBM mainframe systems were

designed with traditional types of error-check-
ing logic: parity, state checking, local duplica-
tion of control logic, and so on. The general
rule of thumb was that 20% to 30% of all logic
was devoted to error detection and recovery.
This approach has several significant draw-
backs. First, the checking logic is often in crit-
ical paths and can be a limiting factor in cycle
time. It also introduces design complexities
that can impact schedules. Finally, it is not well
suited to a full-custom circuit design method-
ology, particularly in arithmetic units.

For the G4 and G5 microprocessors, the
design team took a radically different
approach, completely duplicating the I unit
and E unit. On every clock cycle, signals com-
ing from these units, including instruction
results, are cross-compared in the R unit and
the L1 cache. (These signals from the dupli-
cated I and E units are shown by the dashed
arrows in Figure 2.) If the signals don’t match,
hardware error recovery is invoked. This
checking scheme solves the problems associ-
ated with traditional checking, although at an
additional cost in die area. 

The R unit and L1 cache use traditional
error-checking approaches. All arrays in the L1
cache unit are protected with parity except for
the store buffers, which are protected with
ECC. Since the L1 is a store-through design,
another valid copy of the data will always be in
L2 or in memory. As an aside, since the L2 is a
store-in design, it is protected by ECC, because
it often holds the only valid copy of data.

If the R unit or L1 cache detects an error,
the processor automatically enters an error
recovery mode of operation. This process is
done purely in hardware without any milli-
code intervention, since the processor may be
in some indeterminate state that may not be
able to run millicode. This error recovery
mode also lets the processor recover while it
is executing in millimode. The process
includes the following steps:

1. The R unit freezes its checkpoint state
and does not allow any pending instruc-
tions to update it. 

2. The L1 cache forwards any store data that
it may have buffered to the L2 for instruc-
tions that have already been checkpointed.

3. Certain critical latches in the I unit, E
unit, and L1 cache are reset.

4. All arrays in the L1 cache unit and the
BTB are reset.

5. Each R unit register is read out in sequence,
with ECC logic correcting any errors it
may find, and the corrected values are writ-
ten back into the register file. In parallel,
all shadow copies of these registers in the I
unit, E unit, and L1 cache are updated.

6. All R unit registers are read a second time
to ensure there are no solid correctable
errors. If there are, the processor is check-
stopped; that is, the clocks are stopped
on that chip and it is no longer available
for system operation. 

7. The E unit forces a serialization inter-
rupt, which restarts instruction fetching
and execution. If recovery was successful,
neither an ESA/390 program nor the
operating system is aware that this recov-
ery sequence has occurred.

8. An asynchronous interrupt tells millicode
to log trace array and other data for later
analysis by IBM product engineering.

Two conditions may cause recovery to fail:
an uncorrectable error during step 5, or anoth-
er error occurring during step 7 before an
instruction is successfully completed. Both cases
result in a check-stop condition, and another
type of recovery action will then be invoked.

This whole sequence takes several thousand
clock cycles to complete, but since hardware
errors are so rare, performance is not critical.
For any type of hardware error in the proces-
sor (E unit cross-compare, cache parity error,
L1 control error, and so on), this same recov-
ery algorithm is invoked, since it can handle
all cases.

Array recovery features
The algorithm is essentially 100% effective

for any type of transient error in the processor.
However, solid errors can occur—though less
frequently. The most common type of solid
error occurs in arrays, since they take up a sig-
nificant portion of the die. The G5 processor
features an automatic array delete mechanism
to deal with such errors. There is logic that
records the cache address when a cache pari-
ty error is detected. If another cache parity
error occurs on the same physical line or set,

20

S/390 G5 MICROPROCESSOR

IEEE MICRO

.



the logic automatically deletes the corre-
sponding line or set from further use. Proces-
sor operation then continues normally.

Most arrays have built-in redundant word-
lines to increase manufacturing yield. Chip test-
ing uses a laser to blow fuses and thereby utilize
these spare word-lines and make all arrays 100%
usable when the chips leave the factory. How-
ever, the arrays rarely have defects when the chip
is built, so these redundant word-lines go
unused. In the G5 we added the capability to
exploit these spare word-lines to automatically
replace defective sections of an array at a cus-
tomer’s site. The service element runs self-test on
the chips at power-on reset time, and any mar-
ginal arrays can be detected. The service ele-
ment then implements an algorithm that scans
values into latches on the chip that mirror the
fuses. This causes the redundant word-lines to
be used instead of the failing section of the array.

System recovery features
When a solid error occurs that is not in an

array, the processor will go into a check-
stopped state. For many years, IBM’s main-
frame systems have had several different
mechanisms that attempt to recover the job
running on a check-stopped processor and to
prevent system performance degradation.

One of these mechanisms is the processor
availability facility (PAF). The service element
scans out the latches from the check-stopped
processor and extracts the ESA/390-architect-
ed state. It then sends this data back to the sys-
tem and stores it in an area set aside for machine
check interrupt. The operating system, which
is still running on the system, is informed via a
machine-check interrupt that a processor has
check-stopped. The operating system can then
use this saved data to resume executing that job
on another processor. In this case, the check-
stop is not visible to the application program
that ran on the failed processor.

Another system recovery mechanism is con-
current processor sparing. In most cases, when
a customer orders a certain number of proces-
sors in an SMP system, IBM actually ships
one or more spare processors on the MCM.
These spare processors are not visible to the
customer. In a running system, they execute a
millicode idle loop. Upon a processor check-
stop, the customer can issue a command on
the console that lets the operating system use

one of these spare processors. The combina-
tion of PAF and concurrent sparing effective-
ly gives the customer a full-performance
system without loss of any jobs.

Finally, concurrent I/O processor sparing is
an automatic mechanism for allowing a spare
processor (or a functional processor) to be
placed into service as an I/O processor in the
event of a check-stop on one of the I/O
processors.

Transparent processor sparing
All of the mechanisms just described pro-

vide excellent recoverability from processor
check-stops. However, there are some draw-
backs. Some do not work on uniprocessor sys-
tems or in certain logically partitioned
environments. Also, the customer is aware
when one of these mechanisms is invoked.
The G5 system, however, introduces an even
more advanced recovery scheme called trans-
parent processor sparing. This mechanism
moves the microarchitected state of a failed
processor to a spare processor in the system.

With transparent processor sparing, when
a processor check-stops, the service element
scans out all latches on the failed processor. It
then processes this data to extract the contents
of all R unit registers that contain the com-
plete checkpointed microarchitected state of
the processor. In parallel with this, all remain-
ing processors are notified of the failure and
can select, under millicode control, which
spare processor will take over for the failed
processor. The service element then sends the
state information back to the system, where
it is temporarily saved in a work area in stor-
age. The millicode running on the spare
processor then makes any required changes to
the microarchitected state in storage—for
example, changing the processor ID. The mil-
licode then executes a hardware instruction
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that loads the entire contents of its own R unit
from storage in one atomic operation. When
this instruction completes, the spare processor
begins fetching and executing instructions
where the failed processor stopped.

This entire process is automatic and total-
ly transparent to the operating system and the
customer. Transparent processor sparing is
also effective when a processor is executing in
millimode at the time of failure.

The IBM S/390 G5 system realizes a per-
formance increase well above the industry

growth curve. The system’s processor achieves
excellent performance, and it incorporates reli-
ability and recovery features that we feel sur-
pass those of other systems. We look for these
trends to continue in future generations of
IBM’s mainframe systems, with higher clock
frequencies, more processors per system, and
further architectural extensions. MICRO
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