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Abstract 

Microprocessor clock frequency has improved by nearly 40% 
annually over the past decade. This improvement has been 
provided, in equal measure, by smaller technologies and 
deeper pipelines. From our study of  the SPEC 2000 bench- 
marks, we find that for  a high-performance architecture imple- 
mented in lOOnm technology, the optimal clock period is ap- 
proximately 8fan-out-of-four ( F 04  ) inverter delays for  integer 
benchmarks, comprised of  6 F 04  of  useful work and an over- 
head of  about 2 F04. The optimal clock period for  floating- 
point benchmarks is 6F04. We find these optimal points to be 
insensitive to latch and clock skew overheads. Our study indi- 
cates that further pipelining can at best improve performance 
of  integer programs by a factor o f  2 over current designs. At 
these high clock frequencies it will be difficult to design the 
instruction issue window to operate in a single cycle. Con- 
sequently, we propose and evaluate a high-frequency design 
called a segmented instruction window. 

1 Introduction 

Improvements in microprocessor performance have been sus- 
tained by increases in both instruction per cycle (IPC) and 
clock frequency. In recent years, increases in clock fre- 
quency have provided the bulk of the performance improve- 
ment. These increases have come from both technology scal- 
ing (faster gates) and deeper pipelining of designs (fewer gates 
per cycle). In this paper, we examine for how much further 
reducing the amount of logic per pipeline stage can improve 
performance. The results of this study have significant impli- 
cations for performance scaling in the coming decade. 

Figure 1 shows the clock periods of the lntel family of 
x86 processors on the y-axis. The x-axis shows the year of 
introduction and the feature size used to fabricate each pro- 
cessor. We computed the clock period by dividing the nom- 
inal frequency of the processor by the delay of one FO4 at 
the corresponding technology ~. The graph shows that clock 
frequency has increased by approximately a factor of 60 over 
the past twelve years. During this period process technology 

] We measure the amount of logic per pipeline stage in terms of 
fan-out-of-four (FO4) - the delay of one inverter driving four copies of 
itself. Delays measured in FO4 are technology independent. The data 
points in Figure 1 were computed assuming that 1 FO4 roughly corre- 
sponds to 360 picoseconds times the transistor's drawn gate length in 
microns [6]. 
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Figure 1 : The year of introduction, clock frequency and fabrication 
technologies of the last seven generations of lntel processors. Logic 
levels are measured in fan-out-of-four delays (FO4). The broken line 
shows the optimal clock period for integer codes. 

has been scaled from 1000nm to 130nm, contributing an 8- 
fold improvement in clock frequency. The amount of logic per 
pipeline stage decreased from 84 to 12 FO4, contributing to 
the increase in clock frequency by a factor of 7. So far, both 
technology scaling and reduction in logic per stage have con- 
tributed roughly equally to improvements in clock frequency. 

However, decreasing the amount of logic per pipeline stage 
increases pipeline depth, which in turn reduces IPC due to in- 
creased branch misprediction penalties and functional unit la- 
tencies. In addition, reducing the amount of logic per pipeline 
stage reduces the amount of useful work per cycle while not 
affecting overheads associated with latches, clock skew and 
jitter. Therefore, shorter pipeline stages cause the overhead to 
become a greater fraction of the clock period, which reduces 
the effective frequency gains. 

Processor designs must balance clock frequency and IPC 
to achieve ideal performance. Previously, Kunkel and Smith 
examined this trade-off [9] by investigating the pipelining of 
a CRAY 1-S supercomputer to determine the number of lev- 
els of logic per pipeline stage that provides maximum per- 
formance. They assumed the use of Earle latches between 
stages of the pipeline, which were representative of high- 
performance latches of that time. They concluded that, in the 
absence of latch and skew overheads, absolute performance 
increases as the pipeline is made deeper. But when the over- 
head is taken into account, performance increases up to a point 
beyond which increases in pipeline depth reduce performance. 
They found that maximum performance was obtained with 8 
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Figure 2: Circuit and timing diagrams of a basic pulse latch. The shaded area in Figure 2b indicates that the signal is valid. 

gate levels per stage for scalar code and with 4 gate levels per 
stage for vector code, which, using the equivalence we develop 
in Appendix A, is approximately 10.9 and 5.4 FO4 respec- 
tively. 

In the first part of  this paper, we re-examine Kunkel and 
Smith's  work in a modern context to determine the optimal 
clock frequency for current-generation processors. Our study 
investigates a superscalar pipeline designed using CMOS tran- 
sistors and VLSI technology, and assumes low-overhead pulse 
latches between pipeline stages. We show that maximum per- 
formance for integer benchmarks is achieved when the logic 
depth per pipeline stage corresponds to 7.8 FO4 6 FO4 of  
useful work and 1.8 FO4 of overhead. The dashed line in Fig- 
ure 1 represents this optimal clock period. Note that the clock 
periods of current-generation processors already approach the 
optimal clock period. In the second portion of this paper, we 
identify a microarchitectural structure that will limit the scal- 
ability of the clock and propose methods to pipeline it at high 
frequencies. We propose a new design for the instruction issue 
window that divides it into sections. We show that although 
this method reduces the IPC of integer benchmarks by 11% 
and that of floating-point benchmarks by 5%, it allows signifi- 
cantly higher clock frequencies. 

The remainder of this paper is organized in the following 
fashion. To determine the ideal clock frequency we first quan- 
tify latch overhead and present a detailed description of this 
methodology in Section 2. Section 3 describes the method- 
ology to find the ideal clock frequency, which entails experi- 
ments with varied pipeline depths. We present the results of  
this study in Section 4. We examine specific microarchitec- 
tural structures in Section 5 and propose new designs that can 
be clocked at high frequencies. Section 6 discusses related 
work, and Section 7 summarizes our results and presents the 
conclusions of  this study. 

2 Estimating Overhead 

The clock period of the processor is determined by the follow- 
ing equation 

= ~logic "~ ~latch Jr ~sketu "~- ~j i t ter  (1) 

where ~b is the clock period, 49zo9ic is useful work performed 
by logic circuits, ~tatch is latch overhead, qb~kew is clock skew 
overhead and ckjitter is clock ji t ter overhead. In this sec- 
tion, we describe our methodology for estimating the overhead 
components, and the resulting values. 

A pipelined machine requires data and control signals at 
each stage to be saved at the end of  every cycle. In the sub- 
sequent clock cycle this stored information is used by the fol- 
lowing stage. Therefore, a portion of each clock period, called 
latch overhead, is required by latches to sample and hold val- 
ues. Latches may be either edge triggered or level sensitive. 
Edge-triggered latches reduce the possibility of race through, 
enabling simple pipeline designs, but typically incur higher 
latch overheads. Conversely, level-sensitive latches allow for 
design optimizations such as "slack-passing" and "time bor- 
rowing" [2], techniques that allow a slow stage in the pipeline 
to meet cycle time requirements by borrowing unused time 
from a neighboring, faster stage. In this paper we model a 
level-sensitive pulse latch, since it has low overhead and power 
consumption [4]. We use SPICE circuit simulations to quan- 
tify the latch overhead. 

Figure 2a shows the circuit for a pulse latch consisting of 
a transmission gate followed by an inverter and a feed-back 
path. Data values are sampled and held by the latch as follows. 
During the period that the clock pulse is high, the transmission 
gate of the latch is on, and the output of the latch (Q) takes the 
same value as the input (D). When the clock signal changes to 
low, the transmission gate is turned off. However, the transis- 
tors along one of the two feedback paths turn on, completing 
the feedback loop. The inverter and the feedback loop retain 
the sampled data value until the following clock cycle. 

The operation of a latch is governed by three parameters - -  
setup time (T~u), hold time (Th),  and propagation delay 
(Taq), as shown in Figure 2b. To determine latch overhead, 
we measured its parameters using the test circuit shown in Fig- 
ure 3. The test circuit consists of  a pulse latch with its output 
driving another similar pulse latch whose transmission gate is 
turned on. On-chip data and clock signals may travel through 
a number of  gates before they terminate at a latch. To simu- 
late the same effect, we buffer the clock and data inputs to the 
latch by a series of  six inverters. The clock signal has a 50% 
duty cycle while the data signal is a simple step function. We 
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Figure 3: Simulation setup to find latch overhead. The clock and 
data signals are buffered by a series of six inverters and the output 
drives a similar latch with its transmission gate turned on. 

simulated transistors at 100nm technology and performed ex- 
periments similar to those by Stojanovi6 et  al.  [14], using the 
same P-transistor to N-transistor ratios. In our experiments, we 
moved the data signal progressively closer to the falling edge 
of the clock signal. Eventually when D changes very close to 
the falling edge of the Clk signal the latch fails to hold the cor- 
rect value of D. Latch overhead is the smallest of the D-Q de- 
lays before this point of failure [14]. We estimated latch over- 
head to be 36ps (1 FO4) at 100rim technology. Since this delay 
is determined by the switching speed of transistors, which is 
expected to scale linearly with technology, its value in FO4 
will remain constant at all technologies. Note that throughout 
this paper transistor feature sizes refer to the drawn gate length 
as opposed to the effective gate length. 

In addition to latch overhead, clock skew and jitter also 
add to the total overhead of a clock period. A recent study 
by Kurd e t  al. [10] showed that, by partitioning the chip into 
multiple clock domains, clock skew can be reduced to less 
than 20ps and jitter to 35ps. They performed their studies at 
180nm, which translates into 0.3 FO4 due to skew and 0.5 
FO4 due to jitter. Many components of clock skew and jit- 
ter are dependent on the speed of the components, and those 
that are dependent on the transistor components should scale 
with technology. However, other terms, such as delay due to 
process variation, may scale differently, hence affecting the 
overall scalability. For simplicity we assume that clock skew 
and jitter will scale linearly with technology and therefore their 
values in FO4 will remain constant. Table 1 shows the values 
of the different overheads that we use to determine the clock 
frequency in Section 4. The sum of latch, clock skew and jitter 
overhead is equal to 1.8 FO4. We refer to this sum in the rest 
of the paper as ~b . . . .  head.  

3 Methodology 

To study the effect of deeper pipelining on performance, we 
varied the pipeline depth of a modern superscalar architecture 
similar to the Alpha 21264. This section describes our simula- 
tion framework and the methodology we used to perform this 
study. 

3.1 S imulat ion  F r a m e w o r k  

We used a simulator developed by Desikan et  al. that mod- 
els both the low-level features of the Alpha 21264 proces- 
sor [3] and the execution core in detail. This simulator has 
been validated to be within an accuracy of 20% of a Compaq 

Table 1: Overheads due to latch, clock skew and jitter. 

Integer Vector FP 

164. gzip 
175.vpr 
176.gcc 
181.mcf 

197.parser 
252.con 

253.perlbmk 
256.bzip2 
300.twolf 

171.swim 
172.mgrid 
173.applu 

183.equake 

Non-vector FP 

177.mesa 
178.galgel 

179.art 
188.ammp 
189.1ucas 

Table 2: SPEC 2000 benchmarks used in all simulation exper- 
iments. The benchmarks are further classified into vector and non- 
vector benchmarks. 

DS-10L workstation. For our experiments, the base latency 
and capacities of on-chip structures matched those of the Al- 
pha 21264, and the level-2 cache was configured to be 2MB. 
The capacities of the integer and floating-point register files 
alone were increased to 512 each, so that the performance of 
deep pipelines was not unduly constrained due to unavailabil- 
ity of registers. We modified the execution core of the simu- 
lator to permit the addition of more stages to different parts of 
the pipeline. The modifications allowed us to vary the pipeline 
depth of different parts of the processor pipeline, including the 
execution stage, the register read stage, the issue stage, and the 
commit stage. 

Table 2 lists the benchmarks that we simulated for our 
experiments, which include integer and floating-point bench- 
marks taken from the SPEC 2000 suite. Some of the floating- 
point (FP) benchmarks operate on large matrices and exhibit 
strong vector-like behavior; we classify these benchmarks as 
vector floating-point benchmarks. When presenting simula- 
tion results, we show individual results for integer, vector FP, 
and non-vector FP benchmarks separately. All experiments 
skip the first 500 million instructions of each benchmark and 
simulate the next 500 million instructions. 

3.2 Microarchi tec tura l  Structures  

We use Cacti 3.0 [12] to model on-chip microarchitectural 
structures and to estimate their access times. Cacti is an an- 
alytical tool originally developed by Jouppi and Wilton [7]. 
All major microarchitectural structures--data cache, register 
file, branch predictor, register rename table and instruction is- 
sue window--were  modeled at 100nm technology and their 
capacities and configurations were chosen to match the corre- 
sponding structures in the Alpha 21264. We use the latencies 
of the structures obtained from Cacti to compute their access 
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q~toa.!y (FO4) DL1 

2 16 10 
3 t l  7 
4 9 5 
5 7 4 
6 6 4 
7 6 3 
8 5 3 
9 5 3 
10 4 2 
11 4 2 
12 4 2 
13 4 2 
14 4 2 
15 3 2 
16 3 2 

Alpha 21264 (17.4) 3 

Branch Rename Issue Register 
Predictor Table Window File 

1 1 1 

Integer FLoating Point 
Add Mult Add [ Div Sq~ [ Mult 

6 9 61 35 105 157 35 
4 6 41 24 70 105 24 
3 5 31 18 53 79 18 
3 4 25 14 42 63 14 
2 3 21 12 35 53 12 
2 3 18 10 30 45 10 
2 3 16 9 27 40 9 
2 2 14 8 24 35 8 
2 2 13 7 21 32 7 
1 2 12 7 19 29 7 
1 2 11 6 18 27 6 
1 2 10 6 17 25 6 
1 2 9 5 15 23 5 
1 2 9 5 14 21 5 
1 2 8 5 14 20 5 
1 1 7 4 12 18 I 4 

i 

Table 3: Access latencies (clock cycles) of microarchitectural structures and integer and floating-point operations at 100rim technology (drawn 
gate length). The functional units are fully pipelined and new instructions can be assigned to them every cycle. The last row shows the latency of 
on-chip structures on the Alpha 21264 processor (180nm). 

penalties (in cycles) at different clock frequencies. 

3 . 3  S c a l i n g  P i p e l i n e s  

We find the clock frequency that will provide maximum per- 
formance by simulating processor pipelines clocked at differ- 
ent frequencies. The clock period of the processor is deter- 
mined by the following equation: ~b = ~blog,c + q~ . . . .  he,~a. 
The overhead term is held constant at 1.8 FO4, as discussed 
in Section 2. We vary the clock frequency (1/~b) by varying 
q~togic from 2 FO4 to 16 FO4. The number of pipeline stages 
(clock cycles) required to access an on-chip structure, at each 
clock frequency, is determined by dividing the access time of 
the structure by the corresponding ~biogi~. For example, if the 
access time of the level-1 cache at 100nm technology is 0.28ns 
(8 FO4), for a pipeline where c~togi~ equals 2 FO4 (0.07ns), the 
cache can be accessed in 4 cycles. 

Though we use a 100nm technology in this study, the ac- 
cess latencies at other technologies in terms of the FO4 met- 
tic will remain largely unchanged at each corresponding clock 
frequency, since delays measured in this metric are technology 
independent. Table 3 shows the access latencies of structures 
at each qSlogi~. These access latencies were determined by di- 
viding the structure latencies (in pico seconds) obtained from 
the cacti model by the corresponding clock period. Table 3 
also shows the latencies for various integer and floating-point 
operations at different clocks. To compute these latencies we 
determined ~blogi~ for the Alpha 21264 processor (800MHz, 
180nm) by attributing 10% of its clock period to latch over- 
head (approximately 1.8 FO4). Using this q~logic and the func- 
tional unit execution times of the Alpha 21264 (in cycles) we 
computed the execution latencies at various clock frequencies. 
In all our simulations, we assumed that results produced by the 
functional units can be fully bypassed to any stage between Is- 
sue and Execute. 

In general, the access latencies of the structures increase as 
q~togic is decreased. In certain cases the access latency remains 
unchanged despite a change in ~logic. For example, the access 
latency of the register file is 0.39ns at 100nm technology. If 
#3Zogic was 10 FO4 the access latency of the register file would 
be approximately 1.1 cycles. Conversely, if~btogic was reduced 
to 6 FO4, the access latency would be 1.8 clock cycles. In both 
cases the access latency is rounded to 2 cycles. 

By varying the processor pipeline as described above, 
we determine how deeply a high-performance design can be 
pipelined before overheads, due to latch, clock skew and jitter, 
and reduction in IPC, due to increased on-chip structure access 
latencies, begin to reduce performance. 

4 Pipelined Architectures 

In this section, we first vary the pipeline depth of an in-order 
issue processor to determine its optimal clock frequency. This 
in-order pipeline is similar to the Alpha 21264 pipeline except 
that it issues instructions in-order. It has seven stages--fetch, 
decode, issue, register read, execute, write back and commit. 
The issue stage of the processor is capable of issuing up to four 
instructions in each cycle. The execution stage consists of four 
integer units and two floating-point units. All functional units 
are fully pipelined, so new instructions can be assigned to them 
at every clock cycle. We compare our results, from scaling 
the in-order issue processor, with the CRAY 1-S machine [9]. 
Our goal is to determine if either workloads or processor de- 
sign technologies have changed the amount of useful logic per 
pipeline stage (qbtogic) that provides the best performance. We 
then perform similar experiments to find q~loaic that will pro- 
vide maximum performance for a dynamically scheduled pro- 
cessor similar to the Alpha 21264. For our experiments in 
Section 4, we make the optimistic assumption that all microar- 
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Figure 4: In-order pipeline performance with and without latch overhead. Figure 4a shows that when there is no latch overhead performance 
improves as pipeline depth is increased. When latch and clock overheads are considered, maximum performance is obtained with 6 FO4 useful 
logic per stage (~logic), as shown in Figure 4b. 

chitectural components can be perfectly pipelined and be par- 
titioned into an arbitrary number of stages. 

4.1 In-order Issue Processors 

Figure 4a shows the harmonic mean of the performance of 
SPEC 2000 benchmarks for an in-order pipeline, if there were 
no overheads associated with pipelining (~b . . . .  head = 0) and 
performance was inhibited by only the data and control depen- 
dencies in the benchmark. The x-axis in Figure 4a represents 
fblogi~ and the y-axis shows performance in billions of instruc- 
tions per second (BIPS). Performance was computed as a prod- 
uct of IPC and the clock frequency-----equal to 1/qSlogic. The in- 
teger benchmarks have a lower overall performance compared 
to the vector floating-point (FP) benchmarks. The vector FP 
benchmarks are representative of scientific code that operate 
on large matrices and have more ILP than the integer bench- 
marks. Therefore, even though the execution core has just two 
floating-point units, the vector benchmarks out perform the in- 
teger benchmarks. The non-vector FP benchmarks represent 
scientific workloads of a different nature, such as numerical 
analysis and molecular dynamics. They have less ILP than 
the vector benchmarks, and consequently their performance 
is lower than both the integer and floating-point benchmarks. 
For all three sets of benchmarks, doubling the clock frequency 
does not double the performance. When ~.btogic is reduced from 
8 to 4 FO4, the ideal improvement in performance is 100%. 
However, for the integer benchmarks the improvement is only 
18%. As q~iogic is further decreased, the improvement in per- 
formance deviates further from the ideal value. 

Figure 4b shows performance of the in-order pipeline with 
qboverhead set to 1.8 FO4. Unlike in Figure 4a, in this graph the 
clock frequency is determined by 1/(qSlogic+q~ . . . .  head). For 
example, at the point in the graph where ~blogic is equal to 8 
FO4, the clock frequency is 1/(10 FO4). Observe that max- 
imum performance is obtained when qbtogi~ corresponds to 6 
FO4. In this experiment, when q~logic is reduced from 10 to 6 
FO4 the improvement in performance is only about 9% com- 
pared to a clock frequency improvement of 50%. 

4.2 Comparison with the CRAY-1S 

Kunkel and Smith [9] observed for the Cray-1S that maximum 
performance can be achieved with 8 gate levels of useful logic 
per stage for scalar benchmarks and 4 gate levels for vector 
benchmarks. If the Cray-lS were to be designed in CMOS 
logic today, the equivalent latency of one logic level would 
be about 1.36 FO4, as derived in Appendix A. For the Cray- 
1S computer this equivalent would place the optimal q~togic at 
10.9 FO4 for scalar and 5.4 FO4 for vector benchmarks. The 
optimal ¢kZogic for vector benchmarks has remained more or 
less unchanged, largely because the vector benchmarks have 
ample ILP, which is exploited sufficiently well by both the in- 
order superscalar pipeline and the Cray-1 S. The optimal qblogic 
for integer benchmarks has more than halved since the time of 
the Cray-lS processor, which means that a processor designed 
using modem techniques can be clocked at more than twice 
the frequency. 

One reason for the decrease in the optimal qSlogi, of inte- 
ger benchmarks is that in modem pipelines average memory 
access latencies are lower, due to on-chip caches. The Alpha 
21264 has a two-level cache hierarchy comprising of a 3-cycle, 
level-I data cache and an off-chip unified level-2 cache. In 
the Cray-lS all loads and stores directly accessed a 12-cycle 
memory. Integer benchmarks have a large number of depen- 
dencies, and any instruction dependent on loads would stall 
the pipeline for 12 cycles. With performance bottlenecks in 
the memory system, increasing clock frequency by pipelining 
more deeply does not improve performance. We examined the 
effect of scaling a superscalar, in-order pipeline with a mem- 
ory system similar to the CRAY-1S (12 cycle access memory 
access, no caches) and found that the optimal ~bloglc was 11 
FO4 for integer benchmarks. 

A second reason for the decrease in optimal qS,ogic is the 
change in implementation technology. Kunkel and Smith as- 
sumed the processor was implemented using many chips at 
relatively small levels of integration, without binning of parts 
to reduce manufacturer's worst case delay variations. Con- 
sequently, they assumed overheads due to latches, data, and 
clock skew that were as much as 2.5 gate delays [9] (3.4 FO4). 
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Figure 5: The harmonic mean of the performance of integer and 
floating point benchmarks, executing on an out-of-order pipeline, ac- 
counting for latch overhead, clock skew and jitter. For integer bench- 
marks best performance is obtained with 6 FO4 of useful logic per 
stage (~blogic), For vector and non-vector floating-point benchmarks 
the optimal ~biogic is 4 FO4 and 5 FO4 respectively. 

In contrast, modern VLSI microprocessors are comprised of 
circuits residing on the same die, so their process characteris- 
tics are more highly correlated than if they were from separate 
manufacturing runs fabricated perhaps months apart. Conse- 
quently, their speed variations and hence their relative skews 
are much smaller than in prior computer systems with lower 
levels of integration. Furthermore, the voltages and tempera- 
tures on one chip can be computed and taken into account at 
design time, also reducing the expected skews. These factors 
have reduced modern overhead to 1.8 FO4. 

4.3 Dynamically Scheduled Processors 

We performed similar experiments using a dynamically sched- 
uled processor to find its optimal ~togic. The processor config- 
uration is similar to the Alpha 21264: 4-wide integer issue and 
2-wide floating-point issue. We used a modified version of the 
simulator developed by Desikan et al. [3]. Figure 5 shows a 
plot of the performance of SPEC 2000 benchmarks when the 
pipeline depth of this processor is scaled. The performance 
shown in Figure 5 includes overheads represented by latch, 
clock skew and jitter (ff . . . .  heoa)- Figure 5 shows that over- 
all performance of all three sets of benchmarks is significantly 
greater than for in-order pipelines. For a dynamically sched- 
uled processor the optimal c~logic for integer benchmarks is 
still 6 FO4. However, for vector and non-vector floating-point 
benchmarks the optimal ~blo~ is 4 FO4 and 5 FO4 respec- 
tively. The dashed curve plots the harmonic mean of all three 
sets of benchmarks and shows the optimal q~togic to be 6 FO4. 

4.4 Sensitivity of~togic  to dpo~,~rhe~u 

Previous sections assumed that components of 0 . . . .  he<,d, 
such as skew and jitter, would scale with technology and there- 
fore overhead would remain constant. In this section, we ex- 
amine performance sensitivity to $ . . . .  head. Figure 6 shows 
a plot of the performance of integer SPEC 2000 benchmarks 
against q~tog~c for different values of ~b . . . .  head. In general, if 

Figure 6: The harmonic mean of the performance of integer bench- 
marks, executing on an out-of-order pipeline for various values of 
~overhead. 

the pipeline depth were held constant (i.e. constant q~toalc), 
reducing the value of ~ . . . .  head yields better performance. 
However, since the overhead is a greater fraction of their clock 
period, deeper pipelines benefit more from reducing qb . . . .  head 
than do shallow pipelines. 

Interestingly, the optimal value of ~blogic is fairly insensi- 
tive to ~b . . . .  h,,~d. In section 2 we estimated ~b . . . .  head to be 
1.8 FO4. Figure 6 shows that for C~overhead values between 1 
and 5 FO4 maximum performance is still obtained at a qbtogic 
of 6 FO4. 

4.5 Sensitivity of ~ogic to Structure Capacity 

In previous sections we found the optimal C~togic by varying 
the pipeline depth of a superscalar processor with structure ca- 
pacities configured to match those of the Alpha 21264. How- 
ever, at future clock frequencies the Alpha 21264 structure ca- 
pacities may not yield maximum performance. For example, 
the data cache in the Alpha 21264 processor is 64KB and has a 
3-cycle access latency. When the processor pipeline is scaled 
to higher frequencies, the cache access latency (in cycles) will 
increase and may unduly limit performance. In such a situ- 
ation, a smaller capacity cache with a correspondingly lower 
access latency could provide better performance. 

The capacity and latency of on-chip microarchitectural 
structures have a great influence on processor performance. 
These structure parameters are not independent and are closely 
tied together by technology and clock frequency. To iden- 
tify the best capacity and corresponding latency for various 
on-chip structures, at each of our projected clock frequencies, 
we determined the sensitivity of IPC to the size and delay of 
each individual structure. We performed experiments indepen- 
dent of technology and clock frequency by varying the latency 
of each structure individually, while keeping its capacity un- 
changed. We measured how IPC changed with different la- 
tencies for each structure. We performed similar experiments 
to find the sensitivity of IPC to the capacity of each structure. 
We then used these two IPC sensitivity curves to determine, at 
each clock frequency, the capacity (and therefore latency) of 
every structure that will provide maximum performance. With 
that "best" configuration we simulated structures that were 
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Figure 7: The harmonic mean of the performance of all SPEC 
2000 benchmarks when optimal on-chip microarchitectural structure 
capacities are selected. 

slightly larger/slower and smaller/faster to verify that the con- 
figuration was indeed optimal for that clock rate. At a clock 
with ~blogic of 6 FO4, the major on-chip structures have the 
following configuration: a level-1 data cache of 64KB, and 6 
cycle access latency; a level-2 cache with 512KB, and 12 cycle 
access latency and a 64 entry instruction window with a 3 cy- 
cle latency. We assumed all on-chip structures were pipelined. 

Figure 7 shows the performance of a pipeline with opti- 
mally configured microarchitectural structures plotting perfor- 
mance against q~togic. This graph shows the harmonic mean of 
the performance (accounting for q~ . . . .  hea,~) of all the SPEC 
2000 benchmarks. The solid curve is the performance of a 
Alpha 21264 pipeline when the best size and latency is cho- 
sen for each structure at each clock speed. The dashed curve 
in the graph is the performance of the Alpha 21264 pipeline, 
similar to Figure 5. When structure capacities are optimized at 
each clock frequency, on the average, performance increases 
by approximately 14%. However, maximum performance is 
still obtained when dpzogic is 6 FO4. 

4 .6  E f f e c t  o f  P i p e l i n i n g  o n  I P C  

Thus far we have examined scaling of the entire processor 
pipeline. In general, increasing overall pipeline depth of a 
processor decreases IPC because of dependencies within crit- 
ical loops in the pipeline [2] [13]. These critical loops include 
issuing an instruction and waking its dependent instructions 
(issue-wake up), issuing a load instruction and obtaining the 
correct value (DL1 access time), and predicting a branch and 
resolving the correct execution path. For high performance 
it is important that these loops execute in the fewest cycles 
possible. When the processor pipeline depth is increased, the 
lengths of these critical loops are also increased, causing a de- 
crease in IPC. In this section we quantify the performance ef- 
fects of each of the above critical loops and in Section 5 we 
propose a technique to design the instruction window so that 
in most cases the issue-delay loop is 1 cycle. 

To examine the impact of the length of critical loops on 
IPC, we scaled the length of each loop independently, keep- 
ing the access latencies of other structures to be the same as 
those of the Alpha 21264. Figure 8 shows the IPC sensitivity 

Figure 8: IPC sensitivity to critical loops in the data path. The 
x-axis of this graph shows the number of cycles the loop was extended 
over its length in the Alpha 21264 pipeline. The y-axis shows relative 
IPC. 

of the integer benchmarks to the branch misprediction penalty, 
the DLI access time (load-use) and the issue-wake up loop. 
The x-axis of this graph shows the number of cycles the loop 
was extended over its length in the Alpha 21264 pipeline. The 
y-axis shows IPC relative to the baseline Alpha 21264 proces- 
sor. IPC is most sensitive to the issue-wake up loop, followed 
by the load-use and branch misprediction penalty. The issue- 
wake up loop is most sensitive because it affects every instruc- 
tion that is dependent on another instruction for its input val- 
ues. The branch misprediction penalty is the least sensitive 
of the three critical loops because modem branch predictors 
have reasonably high accuracies and the misprediction penalty 
is paid infrequently. The floating-point benchmarks showed 
similar trends with regard to their sensitivity to critical loops. 
However, overall they were less sensitive to all three loops than 
integer benchmarks. 

The results from Figure 8 show that the ability to exe- 
cute dependent instructions back to back is essential to per- 
formance. Similar obsevations have been made in other stud- 
ies [13] [1]. 

5 A Segmented Instruction Window Design 

In modem superscalar pipelines, the instruction issue win- 
dow is a critical component, and a naive pipelining strategy 
that prevents dependent instructions from being issued back 
to back would unduly limit performance. In this section we 
propose a method to pipeline the instruction issue window to 
enable clocking it at high frequencies. 

To issue new instructions every cycle, the instructions in 
the instruction issue window are examined to determine which 
ones can be issued (wake up). The instruction selection logic 
then decides which of the woken instructions can be selected 
for issue. Stark et al. showed that pipelining the instruction 
window, but sacrificing the ability to execute dependent in- 
structions in consecutive cycles, can degrade performance by 
up to 27% compared to an ideal machine [13]. 

Figure 9 shows a high-level representation of an instruction 
window. Every cycle that a result is produced, the tag associ- 
ated with the result (destination tag) is broadcast to all entries 
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Figure 9: A high-level representation of the instruction window. 

in the instruction window. Each instruction entry in the win- 
dow compares the destination tag with the tags of  its source 
operands (source tags). If the tags match, the corresponding 
source operand for the matching instruction entry is marked 
as ready. A separate logic block (not shown in the figure) se- 
lects instructions to issue from the pool of ready instructions. 
At every cycle, instructions in any location in the window can 
be woken up and selected for issue. In the following cycle, 

e m p t y  slots in the window, from instructions issued in the pre- 
vious cycle, are reclaimed and up to four new instructions can 
be written into the window. In this section, we first describe 
and evaluate a method to pipeline instruction wake-up and then 
evaluate a technique to pipeline instruction selection logic. 

5.1 Pipelining Instruction Wakeup 

Palacharla et al. [ 11 ] argued that three components constitute 
the delay to wake up instructions: the delay to broadcast the 
tags, the delay to perform tag comparisons, and the delay to 
OR the individual match lines to produce the ready signal. 
Their studies show that the delay to broadcast the tags will be 
a significant component of  the overall delay at feature sizes of 
180nm and below. To reduce the tag broadcast latency, we pro- 
pose organizing the instruction window into stages, as shown 
in Figure 10. Each stage consists of a fixed number of  instruc- 
tion entries and consecutive stages are separated by latches. A 
set of destination tags are broadcast to only one stage during a 
cycle. The latches between stages hold these tags so that they 
can be broadcast to the next stage in the following cycle. For 
example, if an issue window capable of holding 32 instructions 
is divided into two stages of 16 entries each, a set of tags are 
broadcast to the first stage in the first cycle. In the second cy- 
cle the same set of tags are broadcast to the next stage, while 
a new set of tags are broadcast to the first 16 entries. At every 
cycle, the entire instruction window can potentially be woken 
up by a different set of  destination tags at each stage. Since 
each tag is broadcast across only a small part of the window 
every cycle, this instruction window can be clocked at high fre- 
quencies. However, the tags of results produced in a cycle can 
wake up instructions only in the first stage of  the window dur- 
ing that cycle. Therefore, dependent instructions can be issued 
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Figure lO: A segmented instruction window wherein the tags are 
broadcast to one stage of the instruction window at a time. We also 
assume that instructions can be selected from the entire window. 

back to back only if they are in the first stage of the window. 
We evaluated the effect of  pipelining the instruction win- 

dow on IPC by varying the pipeline depth of  a 32-entry instruc- 
tion window from 1 to 10 stages. Figure 11 shows the results 
from our experiments when the number of stages of the win- 
dow is varied from 1 to 10. Note that the x-axis on this graph 
is the pipeline depth of  the wake-up logic. The plot shows that 
IPC of integer and vector benchmarks remain unchanged until 
the window is pipelined to a depth of 4 stages. The overall 
decrease in IPC of the integer benchmarks when the pipeline 
depth of  the window is increased from 1 to 10 stages is approx- 
imately 11%. The floating-point benchmarks show a decrease 
of 5% for the same increase in pipeline depth. Note that this 
decrease is small compared to that of naive pipelining, which 
prevents dependent instructions from issuing consecutively. 

5.2 Pipelining Instruction Select 

In addition to wake-up logic, the selection logic determines 
the latency of the instruction issue pipeline stage. In a con- 
ventional processor, the select logic examines the entire in- 
struction window to select instructions for issue. We propose 
to decrease the latency of the selection logic by reducing its 
fan-in. As with the instruction wake-up, the instruction win- 
dow is partitioned into stages as shown in Figure 12. The se- 
lection logic is partitioned into two operations: preselection 
and selection. A preselection logic block is associated with 
all stages of  the instruction window ($2-$4) except the first 
one. Each of these logic blocks examines all instructions in 
its stage and picks one or more instructions to be considered 
for selection. A selection logic block (S 1) selects instructions 
for issue from among all ready instructions in the first section 
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Figure 11 : IPC sensitivity to instruction window pipeline depth, 
assuming all entries in the window can be considered for selection. 

and the instructions selected by $2-$4. Each logic block in 
this partitioned selection scheme examines fewer instructions 
compared to the selection logic in conventional processors and 
can therefore operate with a lower latency. 

Although several configurations of instruction window and 
selection logic are possible depending on the instruction win- 
dow capacity, pipeline depth, and selection fan-in, in this study 
we evaluate the specific implementation shown in Figure 12. 
This instruction window consists of 32-entries partitioned into 
four stages and is configured so that the fan-in of SI is 16. 
Since each stage in the window contains 8 instructions and all 
the instructions in Stage 1 are considered for selection by S 1, 
up to 8 instructions may be pre-selected. Older instructions 
in the instruction window are considered to be more critical 
than younger ones. Therefore the preselection blocks are or- 
ganized so that the stages that contain the older instructions 
have a greater share of the pre-selected instructions. The logic 
blocks $2, $3, and $4 pre-select instructions from the second, 
third, and fourth stage of the window respectively. Each se- 
lect logic block can select from any instruction within its stage 
that is ready. However, $2 can pre-select a maximum of five 
instructions, $3 a maximum of 2 and $4 can pre-select only 
one instruction. The selection process works in the following 
manner. At every clock cycle, preselection logic blocks $2-$4 
pick from ready instructions in their stage. The instructions 
pre-selected by these blocks are stored in latches L1-L7 at the 
end of the cycle. In the second cycle the select logic block S l 
selects 4 instructions from among all the ready instructions in 
Stage 1 and those in L1-L7 to be issued to functional units. 

With an instruction window and selection logic as de- 
scribed above, the IPC of integer benchmarks was reduced 
by only 4% compared to a processor with a single cycle, 32- 
entry, non-pipelined instruction window and select fan-in of 
32. The IPC of floating-point benchmarks was reduced by only 
1%. The rather small impact of pipelining the instruction win- 
dow on IPC is not surprising. The floating-point benchmarks 
have fewer dependences in their instruction streams than in- 
teger codes, and therefore remain unaffected by the increased 
wake up penalties. For the integer benchmarks, most of the 
dependent instructions are fairly close to the instructions that 
produce their source values. Also, the instruction window ad- 
justs its contents at the beginning of every cycle so that the 
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Figure 12: A 32-entry instruction window partitioned into four 
stages with a selection logic fan-in of 16 instructions 

older instructions collect to one end of the window. This fea- 
ture causes dependent instructions to eventually collect at the 
"bottom" of the window and thus enables them to be woken 
up with less delay. This segmented window design will be 
capable of operating at greater frequencies than conventional 
designs at the cost of minimal degradation in IPC. 

6 Related Work  

Aside from the work of Kunkel and Smith [9] discussed in 
Section 4, the most .relevant related work explores alternate 
designs for improving instruction window latencies. Stark et 
al. [13] proposed a technique to pipeline instruction wake up 
and select logic. In their technique, instructions are woken up 
"speculatively" when their grandparents are issued. The ra- 
tionale behind this technique is that if an instruction's grand- 
parents' tags are broadcast dunng  the current cycle its parents 
will probably be issued the same cycle. While speculatively 
woken instructions can be selected, they cannot be issued until 
their parents have been issued. Although this technique re- 
duces the IPC of the processor compared to a conventional 
1-cycle instruction window, it enables the instruction window 
to function at a higher clock frequency. 

Brown et al. [1] proposed a method to move selection logic 
off the critical path. In this method, wake-up and select are 
partitioned into two separate stages. In the first stage (wake- 
up) instructions in the window are woken up by producer tags, 
similar to a regular instruction window. All instructions that 
wake up speculate they will be selected for issue in the fol- 
lowing cycle and assert their "available" signals. In the next 
cycle, the result tags of these instructions are broadcast to the 
window, as though all of them have been issued. However, the 
selection logic selects only a limited number of instructions 
from those that asserted their "available" signal. Instructions 
that do not get selected (collision victims) and any dependents 
that are woken up before they can be issued (pileup victims) are 
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detected and re-scheduled. The authors show that this tech- 
nique has an IPC within 3% of a machine with single-cycle 
scheduling logic. 

7 Conclusion 

In this paper, we measured the effects of  vary ingc lock  fre- 
quency on the performance of a superscalar pipeline. We de- 
termined the amount of useful logic per stage (q~logic) that 
will provide the best performance is approximately 6 FO4 in- 
verter delays for integer benchmarks. If ~blogic is reduced be- 
low 6 FO4 the improvement in clock frequency cannot com- 
pensate for the decrease in IPC. Conversely, if  ~)logic is in- 
creased to more than 6 FO4 the improvement in IPC is not 
enough to counteract the loss in performance resulting from a 
lower clock frequency. For vector floating-point benchmarks 
the optimal ~logic w a s  at 4 FO4. The clock period (qStogic + 
qSo.e~he~d) at the optimal point is 7.8 FO4 for integer bench- 
marks, corresponding to a frequency of 3.6GHz at 100rim 
technology. For vector floating-point benchmarks the opti- 
mal clock period is 5.8 FO4 which corresponds to 4.8GHz at 
100rim technology. 

These optimal clock frequencies can be achieved only if 
on-chip microarchitectural structures can be pipelined to op- 
erate at high frequencies. We identified the instruction issue 
window as a critical structure, which will be difficult to scale 
to those frequencies. We propose a segmented instruction win- 
dow design that will allow it to be pipelined to four stages 
without significant decrease in IPC. Scaling the pipeline depth 
of the window to 10 stages only decreases the IPC of SPEC 
2000 integer benchmarks by 11% and floating-point bench- 
marks by 5%. 

Although this study uses the parameters of a 100nm tech- 
nology, our use of  the technology-independent FO4 metric will 
permit our results to be translated to other technologies. We 
assume that 1 FO4 corresponds to 360 picoseconds times the 
transistor's drawn gate length. But, for highly tuned processes, 
such as the Intel 0.13-pm process, the drawn gate length and 
effective gate length may differ substantially [16]. However, 
our estimate of  the optimal pipeline depth remains unchanged 
regardless of the exact value assigned to a FO4 delay though 
the actual cycle time will depend on the operating conditions 
and process technology specifications. 

While we did not consider the effects of  slower wires, they 
should not affect this study, which uses a fixed microarchi- 
tecture. To first order, wire delays remain constant as a fixed 
design is scaled to smaller feature sizes [15]. Although wire 
resistance increases, wire lengths decrease, thus preserving the 
absolute wire delay across technologies. However, long wires 
that arise as design complexity increases can have a substantial 
impact on the pipelining of the microarchitecture. For exam- 
ple, the high clock rate target of the Intel Pentium IV forced 
the designers to dedicate two pipeline stages just for data trans- 
portation [5]. We will examine the effects of wire delays on 
our pipeline models and optimal clock rate selection in future 
work. 

Microprocessor performance has improved at about 55% 
per year for the last three decades, with much of the gains 
resulting from higher clock frequencies, due to process tech- 

nology and deeper pipelines. However, our results show that 
pipelining can contribute at  mos t  another factor of two to 
clock rate improvements. Subsequently, in the best case, clock 
rates will increase at the rate of  feature size scaling, which 
is projected to be 12-20% per year. Any additional perfor- 
mance improvements must come from increases in concur- 
rency, whether they be instruction-level parallelism, thread- 
level parallelism, or a combination of  the two. If the goal is 
to maintain historical performance growth rates, concurrency 
must start increasing at 33% per year and sustain a total of 50 
IPC within the next 15 years. While this goal presents tremen- 
dous challenges, particularly in the face of  increasing on-chip 
communication delays, rich opportunities for novel architec- 
tures lie ahead. 
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A ECL gate equivalent in FO4 

The  C r a y - l S  processor was designed in an E C L  technology,  
using four and five input N A N D  gates [8] with eight gate levels  
at every pipel ine stage. Because  of  its implementa t ion  f rom 
discrete E C L  devices and the design of  t ransmission lines for 
the wires  connect ing the chips, the latency o f  one wire and one 
gate delay were roughly equivalent.  Fur thermore,  because of  
the transmission line effect o f  the wires, additional gate fanout 
loading can largely be ignored. The  result is that the latency 
of  a pipeline stage was approximately  equal  to the delay o f  
16 logic gates. Our C M O S  equivalent  of  one Cray E C L  gate 
circuit  consists of  a 4-input N A N D  driving a 5-input N A N D ,  
where  the first accounts for gate delay and the second accounts 
for the wire delay. Figure  13 shows the test circuit  we used to 
per form this measurement .  SP ICE  simulat ions show that this 
one E C L  gate equivalent  has a latency equal  to 1.36 FO4.  

Figure  13: Circuit to measure the delay of CRAY- IS gates in terms 
of FO4. 
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