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Abstract 

This paper presents ReVive, a novel general-purpose rollback 
recovery mechanism for shared-memory multiprocessors. ReVive 
carefully balances the conflicting requirements of availability, per- 
formance, and hardware cost. ReVive performs checkpointing, 
logging, and distributed parity protection, all memory-based. It 
enables recovery from a wide class of errors, including the perma- 
nent loss of an entire node. To maintain high performance, ReVive 
includes specialized hardware that performs frequent operations in 
the background, such as log and parity updates. To keep the cost 
low, more complex checkpointing and recovery functions are per- 
formed in software, while the hardware modifications are limited 
to the directory controllers of the machine. Our simulation results 
on a 16-processor system indicate that the average error-free ex- 
ecution time overhead of using ReVive is only 6.3%, while the 
achieved availability is better than 99.999% even when the errors 
occur as often as once per day. 

1 Introduction 

Cache-coherent shared-memory multiproeessors are seeing wi- 
despread use in commercial, technical, and scientific applications. 
In recent years, fault-tolerance has become an increasingly impor- 
tant feature of such systems. In some commercial applications, 
high availabilizy is needed, as business transactions are being pro- 
cessed by the system. Some applications execute for a long time 
and require a highly reliable execution environment. Examples 
of such applications are those that mine large data sets and many 
simulations. Unfortunately, both availability and reliability are dif- 
ficult to achieve in modern large systems. Improvements in silicon 
technology result in smaller feature sizes, while power dissipation 
constraints result in lower operating voltages. Both of these make 
modern integrated circuits prone to transient and permanent faults. 
In large systems the problem is worse, as those systems contain 
many interacting components that must all operate correctly. 

To deal with these problems, much work has been done in er- 
ror recovery. Typically, error recovery mechanisms are categorized 
into Forward and Backward Error Recovery (FER and BER). With 
FER, hardware redundancy is added to the system, which makes 
it possible to determine the correct outcome of an operation, even 
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if one (or more) of the participating devices fails. It is possible to 
design cost-effective FER that targets only a single device, such 
as the processor core [3, 28, 30]. However, general-purpose FER 
is not cheap. The most popular such method is triple-modular re- 
dundancy (TMR), in which each operation is performed by three 
identical devices and a majority vote decides the correct result. For 
most systems, the cost of TMR is prohibitively high. BER, also 
called rollback recovery or checkpointing, can be used in such sys- 
tems. With rollback recovery, the system stores information about 
its past state. When an error is detected, this information allows the 
system to be restored into a previous error-free state. The main ad- 
vantage of BER is that no hardware replication is required. How- 
ever, it has three disadvantages: the performance overhead during 
error-free execution, storage overhead, and the higher recovery la- 
tency. 

In this paper, we present ReVive, a novel, cost-effective scheme 
for rollback recovery in shared-memory multiprocessors with dis- 
tributed memory. ReVive is compatible with off-the-shelf proces- 
sors, caches, and memory modules. It only requires modifications 
to the directory controllers of the machine, to perform memory- 
based distributed parity protection and logging in the background. 
Both hardware and storage requirements are very modest. 

ReVive has both good error-free performance and quick recov- 
ery from a wide class of errors, including permanent loss of an 
entire node. Our experiments with 12 applications on a simulated 
16-processor system show that the average overhead of error-free 
execution is only 6.3%. When an error occurs, the system is un- 
available for less than half a second on average, including the cor- 
rect work lost due to the rollback. The resulting availability is 
better than 99.999%, even when errors occur as often as once per 
day. 

This paper is organized as follows: Section 2 presents a novel 
taxonomy of BER schemes for multiprocessors; Section 3 presents 
the design of ReVive; Section 4 explains some implementation is- 
sues in ReVive; Section 5 presents our evaluation setup; Section 6 
contains the evaluation; Section 7 describes related work; finally, 
Section 8 concludes. 

2 BER in Multiprocessors: A Taxonomy 

To understand the design space of BER schemes, we have de- 
signed a taxonomy that classifies the schemes according to three 
axes: how checkpoint consistency is achieved, how the separation 
between the checkpoint and the working data is done, and how 
checkpoint storage is protected from errors. Figure 1 shows the 
resulting design space. We now consider each axis in turn. 
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Figure 1. Design space of multiprocessor BER schemes. 

2.1 Checkpoint Consistency 

Since threads executing on different processors interact with 
each other, they may create recovery dependences:  when one pro- 
cessor is rolled back, it may be necessary to also roll back other 
processors. To maintain checkpoint consistency, three approaches 
are used: 

Global. All processors periodically synchronize to create a sin- 
gle, global checkpoint [8, 13, 14, 15, 20, 21]. This is the simplest 
approach. 

Coordinated Local. Each processor periodically creates a local 
checkpoint of its own state. If the processor has been interacting 
with some other processors, then those other processors are forced 
to create their own checkpoints at the same time [1, 4, 5, 25, 32]. 
The advantage is that independent computations do not synchro- 
nize for checkpointing, while a disadvantage is that interactions 
must be recorded. 

Uncoordinated Local. Each processor periodically creates local 
checkpoints. Interactions between processors are recorded but do 
not affect checkpoint creation. At recovery time, however, local 
checkpoints and interactions are used to find a consistent recovery 
line. This approach allows synchronization-free checkpointing, 
but runs the risk of the domino  effect [22]. Uncoordinated check- 
pointing is mostly used in loosely-coupled systems, where com- 
munication is infrequent and synchronization expensive [6, 7, 26]. 
However, it has also been used in tightly-coupled systems [27]. 

2.2 Checkpoint Separation 

We group schemes into four classes based on how checkpoint 
data is separated from working data. 

Full Separation. Checkpoint data is completely separate from 
working data [4, 6, 26]. A naive way to establish a checkpoint is 
to copy the entire state of the machine to another area. A better 
way is to realize that much of the machine state does not change 
between checkpoints. Thus, establishing a new checkpoint con- 
sists of merely updating the old one, by copying into it the state 
that has changed since the old checkpoint was established. There 
are other optimizations to reduce copying, such as m e m o r y  exclu- 
sion [ 18]. 

Partial Separation with Buffering. With partial separation, 
checkpoint data and working data are one and the same, except 

for those elements that have been modified since the last check- 
point. Consequently, less storage is needed [21]. With buffer- 
ing, the modified elements are accumulated in a buffer, typically a 
cache or a write buffer [1, 5, 32]. When a new checkpoint is cre- 
ated, the main state of the machine is typically updated by flushing 
the buffer into main memory. While checkpoint generation may 
be regularly scheduled, it may also be asynchronously triggered 
by buffer overflow. 
Partial Separation with Renaming. When a checkpoint is es- 
tablished, all state is marked as read-only. An update to a page 
causes the page to be copied to a new location, which is marked as 
writable and mapped into the working state in place of the original 
page. The original page is no longer part of the working state but 
remains in the checkpoint state. When a new checkpoint is estab- 
lished, all such pages are garbage-collected [8, 15, 20]. In COMA 
machines, this approach can be used at the granularity of memory 
lines [14, 15]. 
Partial Separation with Logging. Logging does the opposite of 
renaming: the old, checkpoint value, is copied to a log, while the 
original location is modified and remains part of the working state 
[13, 25, 27, 32]. As a result, logging does not require support to 
map and unmap pages or memory lines into and out of the work- 
ing state. This makes logging more suitable to fine grain copying, 
which minimizes fragmentation. Typically, the log is a contigu- 
ous structure which contains data that is needed only for rollback 
recovery to a previous checkpoint. Once a new checkpoint is es- 
tablished, the log space can be easily reclaimed without requiring 
garbage collection mechanisms. 

Different separation mechanisms may be used for different 
parts of a machine's state. For example, both buffering and log- 
ging are used in [32]. 

2.3 Checkpoint Storage Protection 

Finally, we group schemes into three classes based on how the 
checkpoint storage is protected from errors: 
Safe External  Storage. The checkpoint is stored in external stor- 
age that is assumed to be safe [6, 26]. Typically, such storage is a 
disk array. Since RAID can be used to protect disks against most 
common errors [ 17], the assumption of safety is reasonable. 
Safe Internal Storage. The checkpoint is stored in main mem- 
ory or other internal storage and made safe through redundancy 
across the nodes. Checkpoint state can be restored even if storage 
on a limited number of nodes (typically one) is damaged. In some 
systems, safe internal storage is provided by duplication of Check- 
point data in main memory [5, 8, 14, 15]. Alternatively, it can be 
provided using N + 1 parity. In this case, lost checkpoint data in 
a node can be recovered by examining the memories of the other 
N nodes [20, 21]. Checkpointing to main memory is much faster 
than checkpointing to external storage [21]. 
Specialized Fault Class. The checkpoint storage is not pro- 
tected with redundancy across nodes. However, the system is 
not expected to recover from faults that can damage that stor- 
age [ 1, 4, 13, 25, 27, 32]. For example, a design for recovery from 
processor errors can keep the checkpoint in caches or memory 
without redundancy, while a system designed for recovery from 
cache errors can keep the checkpoint in main memory. 

Overall, designs using safe external storage can recover from 
even the most general fault, namely loss of the entire machine. The 
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designs using safe internal storage cannot recover if more than a 
certain number (typically, one) of internal storage components are 
faulty. Finally, the designs with a specialized fault class cannot 
recover from even a single error that makes any checkpoint storage 
component unavailable. 

3 ReVive  Des ign  

This section presents our cost-effective design for rollback re- 
covery. We first discuss the choice of design point (Section 3.1), 
then describe the mechanisms supported (Section 3.2), and finally 
explain our choice of parameters for the design (Section 3.3). 

3.1 Choice of Design Point 

Our goal is a cost-effective general-purpose rollback recov- 
ery mechanism for high-availability and high-performance shared- 
memory multiprocessors. Cost-effectiveness implies that only a 
modest amount of extra hardware can be added. General-purpose 
implies recovery from a wide class of errors, including permanent 
loss of an entire node. High availability requires that system down- 
time due to an error be short. Finally, high performance mandates 
low overhead during error-free operation. 

ReVive is compatible with off-the-shelf processors, caches, and 
memorY modules used in modern multiprocessors. For example, 
the SGI Origin 2000 [ 11 ] uses off-the-shelf processor chips, which 
include caches and cache controllers, and can use off-the-shelf 
DRAM modules. The major custom-designed components are the 
directory controller, the network interface and the memory con- 
troller. We keep our hardware modifications limited to the direc- 
tory controller (Figure 2). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Figure,2. SealabM shared-memory multiproeessor with ReVive. 

Our design choice is influenced by the availability require- 
ments. The error frequency we expect is from once a day to once a 
month [19]. To achieve reliability of 99.999%, our target system's 
unavailable time due to an error should be no more than 864 mil- 
liseconds 'for the high error frequency range and no more than 24 
seconds for the low error frequency range. 

In the rest of this section, we discuss which design point in 
our taxonomy of Section 2 is most conducive to our goal, give an 
overview of our solution, and then explain the types of errors from 
which our scheme can recover. 
Checkpoint Consistency: Global. Global schemes are the sim- 
plest because they do not need to record interactions between 

processors. Furthermore, they are suited to shared-memory ma- 
chines, where processor communication and synchronization are 
efficiently supported. For example, in the Origin 2000, 16 proces- 
sors can synchronize at a barrier in 10/is [10]. 
Checkpoint Separation: Partial Separation with Logging. Par- 
tial Separation schemes have low storage overhead and, because 
they restore only a fraction of the working state, recover quickly. 
Among these schemes, Logging is the most flexible. With Log- 
ging, we can choose the checkpoint frequency; with Buffering, 
buffer overflows trigger checkpoint generation. With Logging, we 
perform fine-grain copying, which has low overhead and mini- 
mizes memory fragmentation; with Renaming, the copying can 
only be easily done in software at the page granularity. Finally, the 
simplicity of logging allows an efficient hardware-assisted imple- 
mentation through simple extensions to the directory controller. 
Checkpoint Storage: Safe Internal Storage with Distributed 
Parity. Given the low speed of disks, using external storage for 
checkpoints typically induces a high recovery time. Furthermore, 
it dictates a low checkpoint frequency to maintain tolerable over- 
head under error-free conditions [21]. For this reason, we store 
the checkpoint data in memory. However, since we target a broad 
range of errors, we must assume that the contents of main memory 
can be damaged and even a node can be lost. Consequently, we 
protect memory with parity distributed across memory modules. 
This scheme uses much less memory than mirroring. Addition- 
ally, instead of having dedicated parity node(s) as in [20], we dis- 
tribute the parity pages evenly across the system. This approach 
allows all nodes to be used for computation and avoids possible 
bottlenecks in the parity node(s). Finally, instead of updating the 
parity in software at checkpoint creation time, we extend the di- 
rectory controller hardware to automatically update the distributed 
parity whenever a memory write occurs. This approach reduces 
the overhead of creating a checkpoint. 

3.1.1 Overview of Solution 

During error-free execution, all processors are periodically in- 
terrupted to establish a global checkpoint. Establishing a check- 
point involves flushing the caches to memory and performing a 
two-phase commit operation [23]. After that, main memory con- 
tains the checkpoint state. Between checkpoints, the memory con- 
tent is being modified by program execution. When a line of 
checkpoint data in main memory is about to be overwritten, the 
home directory controller logs its content to save its checkpoint 
state. After the next checkpoint is established, the logs can be 
freed and their space reused. In practice, sufficient logs are kept 
to enable recovery across as many checkpoints as the worst-case 
error detection latency requires. 

When an error is detected, the logs are used to restore the mem- 
ory state at the time of the last checkpoint that precedes the error. 
The caches are invalidated to eliminate any data modified since the 
checkpoint and the execution can proceed. 

To enable recovery from errors that result in lost memory con- 
tent, pages from different nodes are organized into parity groups. 
Each main memory write is intercepted by the home directory 
controller, which triggers an update of the corresponding parity 
located in a page on another node. The parity information will 
be used when the system detects an error that caused the loss of 
memory content in one node (e.g., if a memory module fails or the 
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node is disconnected). Then, the parity and data from the remain- 
ing nodes are used to reconstruct the lost memory content, which 
includes both the logs and the program state. Logs are recovered 
first. Then the regular rollback described above can proceed. Af- 
ter that, normal execution can continue, while the remaining lost 
memory is reconstructed in the background. 

3.1.2 Types of Errors Supported 

Error Detection Assumptions. In our system, we assume error 
detection support that provides fail-stop behavior [23] for the Re- 
Vive hardware in the directory controller (Figure 2). This can be 
done with careful design and judicious use of replication in that 
module. In addition, parity update messages and their acknowl- 
edgments have to be protected by error detection codes. Finally, 
the data paths in the memory controllers and memory modules also 
have to use error detection codes. All of this is needed to detect 
garbled parity or log updates before they damage the checkpoint 
state. We do not make any additional fail-stop assumptions. Of 
course, error detection latency must have an upper bound of no 
more than a few checkpoint intervals, to keep the space require- 
ments in the logs reasonably modest. Further discussion of error 
detection mechanisms is beyond the scope of this paper. 

Recovery from Multi-Node Errors .  ReVive can recover from 
multiple transient errors that occur in the white areas of Figure 2 
in multiple nodes simultaneously. For example, consider a glitch 
that causes a reset of all the processors in the system and the loss of 
all cached data. This leaves the checkpoint and the logs in memory 
intact, and so ReVive can recover. Another example when ReVive 
recovery is possible is an interconnect glitch that damages several 
in-transit messages in different parts of the network or network 
interfaces. However, ReVivE cannot recover from multiple errors 
that occur in the gray areas of Figure 2 in multiple nodes simul- 
taneously. For example, two malfunctioning memory modules on 
different nodes may damage a parity group beyond ReVive's abil- 
ity to repair. 

Recovery from One-Node Errors. ReVive can recover from mul- 
tiple permanent or transient errors that occur in a single node. This 
includes complete loss of an entire node. For example, this occurs 
when a node's network interface permanently fails. In this case, 
ReVive performs recovery of the lost memory and a rollback. An- 
other example of a one-node error is a single faulty processor that 
erroneously modifies memories in several nodes. After this error 
is detected, a rollback to a past checkpoint restores the system. 

3.2 Mechanisms in ReVive 

The new mechanisms are hardware-based distributed parity 
protection in memory and hardware-based logging. This section 
describes these mechanisms plus how to perform a global check- 
point and a rollback. 

3.2.1 Distributed Parity Protection in Memory 

In Section 3.1, we explained our decision to protect the check- 
point data in main memory by using distributed parity. Techni- 
cally, parity protection is needed only for checkpoint data, as re- 
covery would overwrite non-checkpoint data with checkpoint con- 
tents. However, in error-free execution non-checkpoint data later 
becomes the new checkpoint data. We speed up the creation of a 

Node 0 Node 1 Node 2 Node 3 

Figure 3. Distributed parity organization (3+1 parity). 
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Figure 4. Distributed parity update on a write-back. Messages 
are numbered in the chronological order. 

new checkpoint by protecting the entire main memory with dis- 
tnbuted parity that is updated whenever the memory is updated. In 
this way, the distributed parity is already up-to-date when a new 
checkpoint is to be created. 

Figure 3 shows how memory pages are organized into parity 
groups (3 + 1 parity is shown). Figure 4 shows the actions per- 
formed when a memory line is written-back to main memory. The 
home directory controller intercepts the write-back request D ' .  It 
first reads the current contents D of the line from memory. Then 
the new contents D '  are written. At this time, the write-back can 
be acknowledged to the requester, if such an acknowledgment is 
required, but the directory entry for the line stays busy. The par- 
ity update U = D X O R  D' is computed and sent to the home of 
the parity. When it arrives there, the directory controller of the par- 
ity's home node reads the previous parity P ,  computes the updated 
parity P'  = P X O R  U = P X O R  (D X O R  D') ,  and stores 
it back. Then, the parity update is acknowledged to the home of 
the data. At such time, the directory entry for the memory line is 
marked as no longer busy and other transactions for that memory 
line can be processed. 

Note that the same hardware can be used to support distributed 
memory mirroring (maintaining an exact copy of each page on an- 
other node). Mirroring is just a degenerate case of our parity pro- 
tection mechanism, when one parity page is used to protect only 
one data page. In that case, the two memory reads and and the 
X O R  operations in Figure 4 can be omitted. 

Finally, we note that updating parity (or even mirroring) when- 
ever data is written to memory would be prohibitively expensive 
if performed in software. However, with our hardware implemen- 
tation, these updates are performed in the background while the 
processors continue program execution uninterrupted. 

3.2.2 Logging 

After a checkpoint is established, the checkpoint state consists 
of all the data in main memory. Subsequent program execution 
modifies this data. To prevent the loss of part of the checkpoint 
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Figure 5. Logging and parity updates for (a) read-exclusive and 
(b) write-back access to a line that has not already been logged 
since the last checkpoint. Only the home node of both the data 
and the log is shown. 

state, we use logging. Before a line in memory is written for 
the first time after a checkpoint, the previous content of the line 
is logged. In this way, all checkpoint data that has been over- 
written can still be found in the log. Like the parity updates in 
Section 3.2.1, the logging is performed by our enhanced directory 
controller. 

Main memory is modified by write-backs of dirty lines. When a 
write-back arrives at the homenode of the data, we check whether 
this is the first modification of the line since the last checkpoint. 
If it is, the previous content of the line is read from memory and 
saved in the log before the new content of the line is written to 
memory. Note that the log and the data are in the main memory 
of the same node, and that both are protected by distributed parity. 
The log and its parity must be fully updated before the data line 
can be written. 

Fortunately, most often we know that the block will be modified 
before the write-back is received by the home. Requests like read- 
exclusive or upgrade, which result from write misses in the cache 
or write hits on shared lines, signal an intent to modify the block. 
Figure 5(a) shows the operations performed by the hardware when 
a read-exclusive (RDX) message is received by the memory for a 
line that has not yet been logged since the last checkpoint. From 
Figure 5(a) we see that the data can be supplied to the requester as 
soon as it is read from memory. Alternatively, if an upgrade per- 
mission is all that is needed, it can be granted immediately. The 
logging is performed in the background by the directory controller. 
The directory entry for the block stays busy until the acknowledg- 
ment is received for the parity update. This ensures that no new 
operation is started for this block until its log entry has been fully 
created. When the write-back arrives, the line has already been 
logged and the write-back proceeds as shown in Figure 4. 

In some cases, the directory controller may not receive a read- 
exclusive or upgrade message before it receives the write-back for 
a line. For example, this occurs in uncached writes and when the 
processor writes to lines in shared-exclusive state. In this case, 
the operations on the log and the data are performed as part of 
the same transaction. This case is shown in Figure 5(b). Note 
that the second read to the line D in memory could be eliminated 
if the contents read by the first read are cached by the directory 
controller. In our evaluation we do not assume such support, as it 
would require a small data cache in the directory controller. 

A modified line only needs to be logged once between a pair of 
checkpoints. To this end, the directory controller is extended with 
one additional state bit for each memory line, which we call the 
Logged (L) bit. This bit is used to detect whether a particular line 
has already been logged. The L bits of all lines are gang-cleared 
after each new checkpoint is established. The L bit of a line is set 
when the line is logged, to prevent future logging of that line. 

Table 1 summarizes the events that trigger parity updates and 
logging, the actions performed, whether the actions are on the crit- 
ical path of the processor's execution, the number of additional 
memory accesses performed, the number of additional memory 
lines accessed and the number of additional inter-node messages 
required. As we can see, none of the actions directly affect the 
processor's execution, although the most complicated and, fortu- 
nately, least frequent case does result in delaying the acknowledg- 
ment ofa writeback. We also see that, although the new operations 
require 3 to 8 additional memory accesses, they access only 1 to 
3 additional memory lines. The remaining additional accesses are 
re-accessing already accessed memory locations. Furthermore, the 
log is accessed in a sequential manner, and so is its parity. Re- 
peated accesses to the same memory line and accesses to consecu- 
tive lines can be performed very efficiently in modem DRAMs. 

3.2.3 Establishing a Global Checkpoint 

Parity updates and logging allow the machine to recover to a 
previous checkpoint state. Establishing a new checkpoint essen- 
tially commits the work done since the previous checkpoint. Be- 
cause the main memory contains the checkpoint state, to create a 
new checkpoint we must first ensure that the entire current state of 
the machine is in the main memory. This is done by storing the 
execution context of each processor to memory and writing-back 
all dirty cached data to memory. Each processor waits until all its 
outstanding operations are complete. Then, we atomically commit 
the global checkpoint on all processors, which we do using a two- 
phase commit protocol [23]: all processors synchronize, mark the 
state as tentatively committed, synchronize again and fully com- 
mit. After the new checkpoint is established, we can free the space 
used by logs needed to recover to an old checkpoint that is no 
longer needed. If the maximum detection latency is small, we keep 
only two most recent checkpoints. This is needed because an er- 
ror can occur just before establishing the newest checkpoint, but 
be detected after it is already established. In that case we recover 
to the second most recent checkpoint. For larger error detection 
latencies we can keep sufficient logs to recover to as many past 
checkpoints as needed. Support for that can be easily provided 
without additional hardware modifications. 

Figure 6 shows the time-line of establishing a global check- 
point. The timing parameters are discussed in Section 3.3. 
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# of Extra # of Extra # of Extra 
Event Actions Critical Path? Memory Lines Network 

Accesses Accessed Messages 

Write-back to memory, Update data parity No, done after ack to CPU 3 1 2 
already logged (L=1). Figure 4. 
Read-exclusive or upgrade, Copy data to log No, done after reply to CPU 1 1 0 
not yet logged (L=0). Figure 5(a). Update log parity No, done after_reply to CPU 3 1 2 
Write-back to memory, Copy data to log No, but ack to CPU delayed 2 1 0 
not yet logged (L=0). Update log parity No, but ack to CPU delayed 3 1 2 
Figure 5(b). Update data parity No, done after ack to CPU 3 1 : 2 

Table 1. Events that trigger parity updates and logging. 
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Figure 6. Time-line of establishing a global checkpoint. 
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Figure 7. Time-line of recovering from node loss. 

3 . 2 . 4  R o l l b a c k  

Finally, we examine  the operat ions performed when  an error is 
detected and our  rol lback mechan i sm is activated. Figure 7 shows 
a t ime-l ine of recovery in the worst  scenario,  in which  a node is 
permanent ly  lost  jus t  before a new checkpoin t  is created I. W h e n  
the error is detected, the Phase 1 of  recovery involves test ing the 
hardware  and re-ini t ial izing it. This  includes resetting the pro- 
cessors, invalidat ing the caches and directory entr ies  and, in case 
of  pe rmanen t  errors, routing around the failed component .  These  

steps are outside the scope of  this paper. Phase  2 involves using 
the distr ibuted parity to rebuild the contents  of  the lost  node ' s  log. 
This  is needed only if  the main memory  contents  of  a node have 
been damaged  or lost. Phase  3 involves using the logs to restore the 
main  memory  into a checkpoin t  state (rollback). Pages to which  
checkpoint  data is restored are rebuil t  on demand,  using the dis- 
t r ibuted parity. At  the end of  Phase  3, parity groups affected by 

losing a node are marked  as inaccessible  and the program execu- 
t ion can continue.  Figure 7 also shows barriers  at the end of phases 

2 and 3. 
Recovery  is not  complete  when  the program execut ion contin~ 

ues. Because memory  content  has been lost, unavai lable  parity 
groups must  be repaired. This  is done by background  processes,  
as Phase  4 of  the recovery. The processes rebuild the miss ing pages 
of  inaccessible  parity groups. In addit ion,  if  p rogram execut ion at- 
tempts  to access an inaccessible  page, the resul t ing page fault is 

handled  by immediate ly  rebuilding the group ' s  miss ing  page. 
If  an ent ire  node has been lost, a large amount  of  memory  can 

be inaccessible.  Specifically, wi th  N + 1 parity and M megabytes  

1 In reality, this particular error will be detected when the missing node 
fails to arrive to the barrier when establishing the checkpoint. To con- 
servatively determine the worst-case timing, we ignore this and allow the 
remaining processors to establish a faulty checkpoint and continue. 

per  node,  M x N megabytes  of  data and M megabytes  of  parity 
are inaccessible 2 due to ei ther  be ing  lost or be longing  to a par- 
ity group where  another  page has  been lost. This  means that the 
performance of  the machine  after the recovery can be degraded for 
two reasons: the machine  has one less processor  and the remain ing  
processors are devoting some of  their  t ime to rebuilding the dam- 
aged parity groups. However, the machine  is available dur ing this 
time, performing useful computa t ion  and responding to external  
events,  a l though with reduced computa t ional  capabili t ies.  

The t imes shown in Figure 7 are worst -case  unavai lable  t imes 
for the applicat ion that required the longest  recovery t ime in our  
evaluation (Section 6.3). The unavai lable  t ime due to a node loss 
in the average case (error half-way into a checkpoint  interval) and 
on average across the applicat ions we study is only about  350 ms. 
We also note that there are many t ransient  and even permanent  
errors that do not  result  in the loss of  a node ' s  memory.  For ex- 
ample,  errors in the processor  core or caches of  a node may leave 
the memory  of that node fully operat ional  and accessible. In such 
cases, no reconstruct ion of  any lost pages is needed. Consequent ly,  
Phases  2 and 4 in Figure 7 are complete ly  e l iminated  and Phase  3 

is significantly faster. In such cases, the unavai lable  t ime in the 
average case and on average across the appl icat ions is only about 
250 ms, using the same parameters  as in Figure 7. 

3 . 3  O v e r h e a d s  

3.3.1 E r r o r - F r e e  E x e c u t i o n  

Logg ing  a n d  P a r i t y  M a i n t e n a n c e .  These  operat ions  overlap with 
useful computa t ion  on the processors.  They cause performance 
overhead only through increased content ion  for memory  and the 

2Minus those pages already rebuilt because they contained the logs or 
the data accessed during the rollback phase. 
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network. In general, the overhead of logging is proportional to 
the number of lines written between two checkpoints, while the 
overhead of parity maintenance is proportional to the number of 
dirty lines displaced from the caches. Consequently, the parity 
maintenance overhead depends on whether or not the working set 
of the application fits in the L2 cache: if it does not fit, the re- 
sulting frequent write-backs can cause a high overhead of parity 
maintenance. Finally, note that logging and parity maintenance 
are performed by the directory controllers and do not significantly 
affect scalability of the system: adding more nodes to the system 
results in more logging and parity maintenance, but also adds more 
directory controllers to perform these operations. 

Establishing Global Checkpoints. When it is time to create a 
new checkpoint, a cross-processor interrupt is delivered to all the 
processors. This interrupt can be delivered in under 5 #s [24]. Sav- 
ing the processor's execution context takes little time. Most of the 
overhead in establishing a new checkpoint comes from writing the 
dirty cached data back to memory 3. The time this takes depends on 
the cache size. Our simulation experiments show this to be on the 
order of 100 #s for small (128 Kbyte) caches, and l ms for larger 
(2 Mbyte) caches. In Figure 6 we assume 2 Mbyte caches. In the 
two-phase commit, most of the overhead comes from two global 
barrier synchronizations, which take up to 10 #s each [10]. Re- 
claiming the log space only involves moving the log head pointer 
and a few bookkeeping operations locally performed by each pro- 
cessor, which have negligible overheads. To keep checkpointing 
overheads small (about 1% of the execution time), the checkpoints 
in Figure 6 are created once every 100 ms. 

Table 2 summarizes the overheads in the error-free execution. 

Characteristics of the 
application's working set 
Does not fit in L2 
Fits in L2, mostly dirty 
Fits in L2, mostly clean 

High Checkpoint 
Frequency 

Low Checkpoint 
Frequency 

High Overhead High Overhead 
High Overhead Low Overhead 

Medium Overhead Low Overhead 

Table 2. Effect of application behavior and checkpoint frequency 
on error-free performance. 

3.3.2 Recovery 

Recovery. The first phase of recovery is to check the system com- 
ponents to determine what happened and, in case of permanent 
faults, route around the faulty component. While the implemen- 
tation of this phase is outside the scope of this paper, its duration 
has to be taken into account. It has been reported in [29] that the 
hardware recovery time for Hive/FLASH are about 50 ms for a 
16-processor system. This time includes diagnosis, reconfigura- 
tion and a reset of the coherence protocol. We assume that a sim- 
ilar hardware recovery can be performed in our system in 50 ms. 
Phase 2, rebuilding the log pages of the failed node, takes the time 
proportional to the size of the log, but can be done in parallel by 
the remaining processors. Our experimental results indicate that in 
the scenario of Figure 7 this phase takes up to 100 ms, assuming 
checkpoint frequency of once every 100 ms. In Phase 3 each pro- 
cessor uses the local log to roll back the memory content of its own 

3Note that these operations trigger the parity updates and possibly even 
logging. 

node. If the log entry is to be restored into a page that is unavail- 
able, that page's parity group is rebuilt first. The time to perform 
the rollback is proportional to the size of the logs, but also depends 
on how many lost data pages have to be rebuilt while rolling back. 
Rebuilding the parity groups of these pages, if it is needed, takes 
more time than the actual copying of data from the log into these 
pages. Our experiments indicate that this phase takes up to 490 ms 
in the scenario presented in Figure 7. 

Redoing the Work. When an error occurs, rollback recovery re- 
stores the system to the checkpoint state that precedes the error. 
All work performed between that checkpoint and the activation of 
the rollback has to be re-done. On the average, the lost work per- 
formed before the error occurs is half of the checkpoint interval's. 
Also lost is the work performed until the error is actually detected. 
If we assume a checkpointing frequency of once every 100 ms and 
error detection latency of 80 ms, the resulting lost work is 130 ms. 
The worst case is if the error occurs just before the system estab- 
lishes a new checkpoint, in which case 180 ms of work is lost. 

Overall, assuming the parameters explained above, the ma- 
chine is unavailable for about 820ms in the worst case. The avail- 
ability of the machine is A = (TE -- T u ) / T E ,  where TE is mean 
time between errors and Tu is the mean time the machine is not 
available due to an error. Even assuming TE = 1 day, the resulting 
availability with ReVive is A = 99.999%. If most errors do not 
result in losing memory contents, the average unavailable time is 
only 250 ms, which results in A = 99.9997% availability. 

Rebuilding Lost Memory Pages. Our experiments indicate that, 
if the lost node had 2GB of memory and 7 + 1 parity was used, 
a 16-processor machine requires about 20 seconds to fully rebuild 
all affected parity groups, if it devotes half of its computation to 
rebuilding the damaged parity groups and the other half to useful 
computation. Note that this step is not needed if the error does not 
result in losing memory contents. 

4 ReVive Implementation Issues 

ReVive does not require processor or cache modifications. All 
hardware modifications are confined to the directory controller. 
Now we discuss these modifications, as well as the possible races. 

4.1 Extensions to the Directory Controller 

The additional supports required by ReVive are protocol exten- 
sions and, optionally, the L bit for each directory entry as described 
in Section 3.2.2. 

4.1.1 Protocol Extensions 

ReVive requires protocol extensions to perform the parity and 
log operations described in Sections 3.2.1 and 3.2.2, respectively. 
These extensions need new transient states in the directory con- 
troller entries and new types of messages. The new transient states 
implement the protocols in Figures 4 and Figure 5. The new mes- 
sages are the parity update message and its acknowledgment. Only 
the directory controller is affected by these changes - the new mes- 
sages are communicated between directory controllers and need 
not be observed by the caches. 
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4.1.2 Hardware Modifications 

Recall that the L bit indicates if the line has already been logged 
in this checkpoint interval. Using this bit improves performance, 
but is not needed for the correctness of ReVive. Indeed, without it 
we simply have to log the previous content of a memory line every 
time it the line is written back. However, recovery is still possible 
by restoring the log entries back into memory lines in the reverse 

order of their insertion into the log. 

Since the L bits are optional, we can design the controller so 
that they are supported inexpensively. For example, if the system 
has a directory cache, then only the entries in that cache need to 
have the L bit. When the entry of a line is displaced from the di- 
rectory cache, its L bit is lost. As a new entry is allocated, the L 

bit is reset to zero. With this approach, a memory line is occa- 
sionally logged multiple times between two checkpoints, but the 
correctness of ReVive is unaffected. 

During the operations on the parity and the log for a line, the 
line remains in a new transient state in the directory. Once the 
operations are complete, the line reverts to one of the normal co- 
herence states. Overall, this support requires only some additional 
storage (at most a few additional bits per directory entry) and does 
not interfere with the overall design of the directory controller. 

4.2 R a c e  Condit ions  

Most race conditions in our extended protocol can be han- 
dled in the same way other similar race conditions are handled 
in the baseline protocol without ReVive - by serializing accesses 
to the same memory line and sending negative acknowledgments 
to avoid deadlocks and livelocks. However, some race conditions 
are related to error recovery and need to be carefully considered. 
We identify five classes of  race conditions. Four are specific to our 
protocol, while the fifth one is common to all checkpointing proto- 
cols. In the following we assume that D is the checkpoint content 
of a data line and that D '  is the modified content of that data line. 
Before D is overwritten with D ' ,  it is logged into a log entry L'. 
Creation of L '  overwrites some previous memory content L. The 
parities of D,  D j, L, and L'  are Dp, D~, Lp, and L~, respectively. 
Note that if D is lost but D v is still in memory, memory rebuild- 
ing using parity groups will restore D,  and vice versa. A similar 

J ! property holds for D '  and D v, L and Lr,, and L'  and L v. 

Log-Data Update Race. We do not allow any update to data (or 
its parity) before the log (and its parity) are fully updated. In this 

I way, if an error occurs before L '  and L v are safely stored, D and 
Dp are still in memory. If, on the other hand, an error occurs while 
D'  or D~ are written to memory, L'  and L~ are safely stored and 
can be used to roll back to D and Dp. 

Atomic Log Update Race. Consider an error that results in a par- 
tial update of a log entry. It would be a mistake to use such an entry 
to "restore" the data content. Thus, the log entry is created in the 
following manner: the log entry is written, followed by a Marker 
that validates it. Incomplete entries have no valid Markers and are 
not used for recovery. Similarly, the parity update for the log entry 
is written before the parity update for the Marker. This prevents an 
incomplete parity update from being used in a recovery. 

Log-Pari ty Update Race, Consider an error that occurs after log 
entry L '  has been written, but before its parity L~ is updated. If 

the L'  becomes inaccessible, then the memory where it was writ- 
ten will be rebuilt using Lp into the L state. Because L does not 
contain a valid Marker for the current checkpoint, it will not be 
used for recovery. The original checkpoint data D is still unmodi- 
fied in memory, so no recovery is needed to restore it. Similarly, if 
the node where Lp is stored becomes inaccessible, L '  will be used 

t to restore its memory to the Lp state. Then the log entry L '  will 
be used to restore D. This operation is unnecessary because the 
data memory still contains the checkpoint data D. However, it is 
correct. 
Data-Par i ty  Update  Race. An error that occurs after the log and 
its parity have been correctly updated does not compromise recov- 
ery, even if the write of D ' ,  D~, or both is incomplete or not per- 
formed at all. This is because the checkpoint content D is found 
in the log and restored into data memory. 
Checkpoint  Commit  Race. To make sure that checkpoint data 
from different checkpoints is cleanly separated, we use a variant of 
the two-phase commit protocol [23]. It is implemented with two 
barrier synchronizations. Passing the first barrier indicates that all 
processors have flushed their caches and all resulting memory up- 
dates are complete. After the first barrier, each processor marks in 
the local log that the new checkpoint is established. Then, pass- 
ing the second barrier means that all processors have marked the 
checkpoint as established. Without the second barrier, it would be 
possible for a processor X to continue executing before proces- 
sor Y has marked its checkpoint as established. As a result, data 
stored in Y ' s  local memory and modified by X would be logged 
as part of the old checkpoint instead of the new one. After creating 
the new checkpoint, the log space that is no longer needed can be 
reclaimed. For example, assume that the error detection latency is 
such that two checkpoints must be kept. After creating checkpoint 
N,  checkpoint N - 2 is no longer needed. Therefore, log entries 
created between checkpoints N - 2 and N - 1 can be reclaimed. 

5 Evaluat ion Environment  

Architecture.  To evaluate ReVive, we use execution-driven sim- 
ulation. Our simulator is based on an extension to MINT that can 
model dynamic superscalar processors in detail [9]. The architec- 
ture modeled is a CC-NUMA multiprocessor with 16 nodes. Each 
node contains a processor, two levels of cache, a directory con- 
troller, a network interface, and a portion of the main memory of 
the system (Figure 2). The processor is a 6-issue dynamic super- 
scalar. The caches are non-blocking and write-back. The system 
uses a full-map directory and a cache coherence protocol similar 

to that used in DASH [12]. The directory controller is extended to 
support logging and distributed parity needed for ReVive, as de- 
scribed in Section 3.2. Contention is accurately modeled in the en- 
tire system, including the busses, the network and the main mem- 
ory. Table 3 lists the main characteristics of the architecture. 
Applications. We evaluate our scheme using all 12 applications 
from the Splash-2 suite [31]. These applications are representa- 
tive of parallel scientific workloads and exhibit a wide variety of 
sharing and memory access patterns. Table 4 shows the applica- 
tion names and the input sets we used. The data are allocated on 
the nodes of the machine according to the first-touch policy. This 
results in local allocation of  private data, while shared data are al- 
located in the memory of the first node that accesses them. Cache 
sizes of 16kB for L1 and 128kB for L2 are chosen following [31], 
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Processor I 
6-issue dynamic IGHz Int,fp,ld/st FU: 5,3,2 
lnst. window: 96 Pending ld,st: 16,16 

Memory System 
LI: 16KB, 2ns hit, 4-way assoc, 64-B line, write back 
L2: 128KB, 12ns hit, 4-way assoc, 64-B line, write back 
Bus: 100MHz 64-bit quad-data-rate (Like Pentium 4 system bus) 
Memory: 100MHz 16-bank DDR, 128 bits wide, 60ns row miss 
(Essentially, two PCI600 DDR SDRAM modules in parallel) 
Dir controller latency: 2Ins (pipelined at 333MHz) 
Network: 2-D toms, virtual cut-through routing 
Message transfer time 30ns + 8ns * # hops 
No-contention latency (ns): 
2 (LI hit), 14 (L2 hit), 105 (Local Mem), 191 (Neighbor Mem) 

Table 3. Architectural characteristics of the system we model. 

to produce representative behavior given the relatively small in- 
put sets of  Splash-2. The working sets of  most Splash-2 applica- 
tions fit even in relatively small caches [31]. The only exception 
is Radix, where about 256kB are needed to accommodate  the first 
working set. Only FFT, Ocean, and Radix have important second 
working sets large enough to overflow our L2 caches. In Radix, we 
use 4 million keys instead of  the default 256 thousand. In FFT, we 
use 1 million complex numbers instead o f  the default 64 thousand. 
These inputs are needed to get a long enough running time, but 
result in larger working sets for these applications. Because both 
the first and the second working sets of  Radix are larger than our 
L2 cache, we expect ReVive to exhibit close to worst-case perfor- 
mance on this applicat{on. 

Total # of Global 
Application Problem Size Instructions L2 Miss Rate 
Barnes 16K particles 1230M 0.05% 
Cholesky tk29.0 1224M 0.26% 
P I-,I 1M points 468M 1.78% 
FMM 16K particles 1002M 0.24% 
LU 512x512 matrix, 336M 0.07% 

16x16 block 
Ocean 258x258 grid 270M 2.02% 
Radiosity -test 744M 0.15% 
Radix 4M keys, 186M 2.51% 

radix 1024 
Raytrace car 612M 0.26% 
Volrend head 984M 0.29% 
Water-N2 1000 molecules 1074M 0.02% 
Water-Sp 1728 molecules 870M 0.02% 

Table 4. Characteristics of the applications. 

Overheads in Error-Free Execution. The applications simulated 
have smaller problem sizes and run for shorter periods than real- 
life workloads. We need to consider how these issues affect the 
way we model  ReVive error-free overheads, namely maintaining 
logs and parities, and establishing checkpoints. 

The overhead of  keeping logs and parities is dominated by par- 
ity updates, which are both more expensive and more frequent. 
Parity overhead depends on the rate of  write-backs which, to a 
large extent, is proportional to the cache miss rate. In our simu- 
lations with the small problem sizes of  Splash-2, we reduced the 
cache sizes to preserve the cache miss rates. Therefore,  the logging 
and parity overheads that we measure in the simulations should 
match those that would be observed in a real system. 

As for the overhead of  establishing checkpoints,  most of  it is 
due to writing back all the dirty lines in the caches. This over- 
head is largely proportional to the size of  the L2 cache. Since 
we use small caches, we can model  the overhead in a real sys- 
tem by checkpointing proportionally more often. In Section 3.3.2, 
we estimated that a real system needs to checkpoint once every 
lOOms to achieve 99.999% availability when error frequency is 
once a day. This estimate assumes 2MB L2 caches. According to 
Section 3.3.1, the time to establish a checkpoint in a system with 
128KB L2 caches is an order o f  magnitude smaller than with 2MB 
L2 caches. Consequently,  our simulated system checkpoints one 
order of  magnitude more frequently - once every 10ms. 

To help isolate the overheads of  parity updates and log main- 
tenance, we also perform simulations with an infinite checkpoint  
interval. 

Comparison to Corumercial Workloads ,  While ReVive targets 
commercial ,  technical, and scientific workloads, the evaluation in 
this paper does not include commercial  loads. We have focused 
on recovering the computational part o f  the state o f  an application. 
Further work is required to fully flesh out the details when ReVive 
has to recover  in the presence of  external network communicat ion 
and disk activity. These issues have to be addressed to present 
a fair evaluation of  ReVive on commercial  workloads. We leave 
these issues for future work. 

Another  characteristic of  commercial  workloads is that they 
tend to have high miss rates. As a result, ReVive could induce 
high overheads in error-free execution. In practice, the set of  ap- 
plications used in our evaluation covers a range o f  miss rates that 
includes those typically found in commercial  workloads. Specif- 
ically, the number  o f  L2 misses per 1,000 instructions in our ap- 
plications ranges from 0.06 in Water-Sp to 6.4 in Ocean and 9.3 
in Radix. This range covers typical miss rates in OLTP and other 
commercial  applications. As one example, several web server and 
OLTP applications have been reported to have around 3 misses 
per 1,000 instructions [2]. Consequently,  ReVive overheads with 
commercial  workloads should not be higher than those we report 
here. 

6 E v a l u a t i o n  

To evaluate ReVive,  we examine three issues: overhead in 
error-free execution, storage requirements,  and recovery overhead. 

6.1 Overhead in Error-Free Execut ion 

To evaluate the impact of  ReVive on error-free execution, we 
compare ReVive to a baseline system that includes no recovery 
support. As explained in Section 3.3.1, the sources o f  performance 
overhead in error-free execution with ReVive are parity and log up- 
dates, and checkpoint  generation. For given cache sizes and other 
machine parameters, the overhead of  parity and log updates mainly 
depends on the characteristics of  the application being executed. 
The overhead of  checkpoint  generation depends on the frequency 
of  checkpointing. To better understand these overheads, Figure 8 
shows the performance overhead of  our mechanism using 7 + 1 
parity and with checkpoints performed every 10ms ( C p l 0 m s )  and 
with an infinite checkpoint  interval ( C p I n f ) .  For comparison, we 
also show the results of  our scheme when mirroring is used instead 
of  parity (as described in Section 3.2.1), for the same checkpoint 
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Figure 8, Performance overhead of ReVive in error-free execution. 

frequencies: once every 10ms (Cpl0msM) and with an infinite 
checkpoint interval (CpInfM). The Cplnf and CplnfM bars reveal 
the overheads of logging and parity maintenance with 7+1 parity 
and mirroring, respectively. The difference between Cpl0ms and 
Cplnf, and between Cpl0msM and CplntM, represents the over- 
head of establishing checkpoints every 10ms, using 7 + 1 parity 
and mirroring, respectively. 

The average overhead of logging and parity maintenance is 
low, 2.7% for 7+1 parity (Cplnf) and 1% for mirroring (CplnfM). 
In applications with important working sets that do not fit in the 
L2 cache (FFP, Ocean, and Radix), this overhead can be high. It 
reaches 11% in Radix. 

The overhead of establishing checkpoints every 10ms is usually 
small, but it can be relatively high, as in FFT and Ocean. When the 
checkpoint is established in these applications, almost all lines in 
their caches are dirty, so the checkpoint takes close to worst case 
time. In FFI', this effect combines with the high logging and parity 
maintenance overheads for an overall overhead of 22%, the highest 
overhead we observe in any of the twelve applications. It is impor- 
tant to note that a checkpoint interval of 10ms is the least favorable 
end of the spectrum for our scheme. Increasing the checkpoint in- 
terval or simply using mirroring instead of parity can reduce the 
overhead to 10% in FFT. When mirroring is used and the check- 
points are infrequent, the overhead is reduced to 5% on FFT and 
1% on the average. 

L -7 
s /  ~ ~1 " nCkpWB ~ [ 

= 4 /  ~ p ~  ~ • j m Exe WB J ~  

"~ I | ...... ~ 0 - -  ~ I=mm - -  , , r ~  t ~  r-'m , , 

Figure 9. Breakdown of network traffic in cp'm 0ms. 
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ReVive can be designed to be configured at boot time to support 
parity or mirroring. If the machine is mostly going to run appli- 
cations that exhibit good caching behavior, the performance over- 
heads are small and parity should be used to reduce the memory 
space overhead (Section 6.2). For applications with poorer caching 
behavior, a tradeoff exists between memory space overheads and 
performance: mirroring is faster but uses more memory. In real- 
ity, parity and mirroring need not be used in a mutually exclusive 
fashion. For example, a small part of the memory can be protected 
by mirroring, while the rest is protected by parity. Careful alloca- 
tion of frequently used pages into the mirrored region should result 
in low overheads, as most of the memory modifications result in 
mirroring updates, while reducing the memory space overheads, 
as most of the memory space is uses the efficient parity approach. 

To help understand the overheads observed, Figures 9 and 10 
show the network and memory traffic in the machine with the 
CplOms configuration. The breakdown of the traffic is as fol- 
lows: RD/RDX represents the traffic due to supplying the data on 
cache misses; Exe WB is the traffic due to writing back dirty lines 
to memory in regular execution; Ckp WB is the traffic due to writ- 
ing back dirty lines when checkpoints are established; LOG is the 
traffic of writing data to the logs; PAR is the traffic due to parity 
updates (for both data and logs). Traffic shown as RD/RDX and 
Exe WE is the same as in the baseline system. Traffic shown as 
Ckp WB, LOG, and PAR is caused by ReVive. If mirroring was 
used instead of parity, the network traffic would stay the same as 
in Figure 9; the memory traffic would change only in that PAR 
would shrink to one-third of its size. 

Figures 9 and 10 show that, for most of the applications, both 
the network and the memory traffic are low, without or with Re- 
Vive. The exceptions are FFT, Ocean, and Radix, where traffic is 
already high in the baseline system. For these three applications, 
the additional traffic, mostly resulting from parity maintenance, 
further degrades the already poor performance. 

6.2 Storage Requirements 

ReVive requires additional memory space to store distributed 
parity and logs. 

Parity Storage Requirements. To keep the hardware simple, the 
number of nodes should be a multiple of the parity group size. In 
addition, the latter should be a power of two, so that to determine 
which node has the parity page for a given group, we can use a 
trivial implementation of the mod operation. With 7 + 1 parity, 
88% of the main memory is used for data, while 12% is used for 
parity. We can reduce this requirement by employing larger parity 
groups. However, doing so slows down recovery and increases 
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the risk of  contention in the home of a parity page belonging to a 
particularly popular parity group. If mirroring is used instead of  
parity, the overhead is 50% of the memory. 
Log storage requirements. Figure 11 shows the maximum log 
size for different applications for the Cpl0ms configuration, as- 
suming that logs for two most recent checkpoints are kept. As 
we can see, the largest log is about 2.5MB. With the conservative 
assumption of a log growing proportionally to the checkpoint in- 
terval, that yields 25MB for a checkpoint interval of lOOms. In 
reality, we expect the actual size to be significantly less, as longer 
intervals allow more filtering out of redundant log entries (Sec- 
tion 3.2.2). 
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Figure 11. Maximum log size in the CplOms configuration. 

Overall, if we assume 2GB of DRAM memory per node and a 
checkpoint interval of lOOms, each node needs 256MB for parity 
and 25MB for logs, bringing the total memory overhead of ReVive 
to 14%. Increasing the checkpoint interval to one second would 
result in up to 25% memory overhead. In comparison, using mir- 
roring instead of parity could result in as much as 62% of memory 
overhead. 

6.3 R e c o v e r y  O v e r h e a d  

To estimate the unavailability due to an error, we trigger the 
error recovery mechanism in each benchmark 8 ms after the sec- 
ond checkpoint in CplOms is committed. With a checkpoint inter- 
val of 100 ms this corresponds to an error that occurs just before 
the second checkpoint is established, and is detected 80 ms later. 
As discussed in Section 3.3.2, this results in maximum lost work 
and maximum ReVive recovery time. Figure 12 shows the result- 
ing ReVive recovery time during which the machine is unavailable 
(Phases 2 and 3 in Figure 7). The longest such time is 59ms (in 
Radix), while the average is 17ms. This corresponds to 590ms and 
170ms with a lOOms checkpoint interval. After adding 180 ms for 
lost work and 50 ms for hardware recovery, the resulting unavail- 
able time is 820 ms for Radix and 400 ms on average. If errors 
occur one per day and all arc worst-case node losses, this results 
in 99.999% availability for Radix and 99.9995% on average. 
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Figure 12. Breakdown of the unavailable time due to an error 
in the CplOms configuration. 

7 Related Work 

The work most related to our distributed parity mechanism is 
[20], which implements a software-only checkpointing mechanism 
where special nodes store parity information. Our work differs 
from [20] in several important aspects. First, we use hardware to 
maintain the parity, which significantly reduces the performance 
overhead. Second, we overlap parity maintenance with useful ex- 
ecution, while [20] performs all parity maintenance while estab- 
lishing a checkpoint. As a result, the time needed to establish a 
checkpoint in [20] is a few seconds, instead of a few milliseconds 
with ReVive. Third, we distribute our parity across the system, 
rather than keeping it on a few dedicated nodes that can become 
potential bottlenecks in [20]. Fourth, our parity is updated at a 
memory line granularity, as opposed to the page granularity used 
in [20]. Finally, we protect the entire main memory with our par- 
ity, rather than just the checkpoint data as in [20]. Protecting the 
entire memory could make it easier to prevent loss of information 
about recent external I/O operations when an error occurs. 

The work most related to our log-based rollback mechanism 
is [13], where a snooping device is attached to the bus to inter- 
cept write-back and write-miss operations and log previous values 
of  modified memory lines. Our mechanism differs from the one 
proposed in [13] in several important ways. First, ReVive allows 
recovery from errors that occur anywhere in the system, while the 
design in [13] recovers from errors in the processor and cache, 
as well as from some operating system errors. Second, we use 
main memory to store the logs, whereas the logs in [13] are stored 
on their dedicated bus-snooping device. Our approach results in 
higher flexibility in choosing how much memory is dedicated to 
logging, while allowing us to store the logs in the cost-effective 
high-capacity memory modules together with other data. Finally, 
using hardware-maintained distributed parity with a logging de- 
vice like that in [ 13] would be difficult. 

Concurrently to our work, a system called SafetyNet that tar- 
gets some classes of system-wide transient faults has been pro- 
posed in [25]. While both ReVive and SafetyNet use log-based 
rollback mechanisms, Revive differs from SafetyNet in several 
important ways. First, ReVive enables recovery from permanent 
faults such as losing a node, in addition to the transient faults that 
can be tolerated by SafetyNet. Second, ReVive does not require 
any changes to the processor's caches. In SafetNet, each line in 
the cache is augmented with a checkpoint number, which is then 
checked whenever the line is modified by the processor. Further- 
more, SafetyNet adds a 256-512KB checkpoint log buffer to the 
cache. Third, the error detection latency that SafetyNet can toler- 
ate is largely determined by the size of  the checkpoint log buffers. 
In contrast, ReVive uses the main memory to store its logs and, as 
a result, can tolerate longer detection latencies. Finally, because 
of  ReVive's more general fault model, ReVive causes more net- 
work and memory traffic, which may result in larger performance 
overheads than with SafetyNet. 

While we target errors whose effect modifies the system-wide 
state, other work has targeted errors that can be contained within 
a single device such as a processor [3, 16, 28, 30]. Our scheme is 
fully compatible with such mechanisms. The lightweight recovery 
of  a device-specific mechanism would be used for such device- 
specific errors. Errors whose effect escapes the device and errors 
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not covered by device-specific mechan i sms  would  be recovered 
using ReVive. 

8 Conclusions 

This  paper  presented ReVive, a new cost-effective rol lback re- 

covery mechan i sm for shared-memory  mult iprocessors .  ReVive 
performs memory-based  checkpoint ing,  logging,  and distr ibuted 
parity maintenance  wi thout  requir ing any hardware  modif icat ion 
to the processors  or caches. ReVive enables  recovery from a wide 

range of  system-level  errors, including total loss of  a node. Re- 
Vive 's  average execution t ime overhead is only 6.3%, even when  

establ ishing checkpoints  as often as once every lOOms. Assuming  
an error detect ion latency of  80 ms, an error results in up to 820ms 

unavai lable  time, including lost work. The resul t ing availabil i ty is 
bet ter  than 99.999% even if  errors occur  as frequently as once per 
day. Finally, the main  memory  space overhead is only 14% of  the 

main  memory,  and external storage is not used. 

The  work is be ing  extended in three ways. First, we are ex- 
amining  mirror ing support  for the most  f requent ly accessed pages 
and N+I parity for all other pages in memory,  as suggested in 
Section 6.1. Second,  we are evaluat ing ReVive with commerc ia l  
workloads and with longer run t imes to use realistic checkpoin t ing  
frequencies.  Third,  we are further  developing details of  ReVive to 
support  recovery in the presence of  I /O activity such as network 
or disk access. In general,  our distr ibuted parity mechan i sm is a 
powerful  bui lding block that can be used to protect the I/O buffers. 
In the long term, we plan to combine  ReVive with error detect ion 
schemes to fully evaluate error recovery. 

Acknowledgments 

This work is partially based on the ideas from [33]. The authors would 
like to thank Manohar Prabhu for proposing log updates on read-exclusive 

and upgrade requests. 

References 
[1] R. E. Ahmed, R. C. Frazier, and P. N. Marinos. Cache-Aided 

Rollback Error Recovery (CARER) Algorithms for Shared-Memory 
Multiprocessor Systems. In Proc. 20th Intl. Syrup. on Fault-Tolerant 
Computing Systems, pages 82-88, June 1990. 

[2] A. R. Alameldeen et al. Evaluating Non-deterministic Multi- 
threaded Commercial Workloads. In 5th Workshop on computer Ar- 
chitecture Evaluation using Commercial Workloads, pages 30-38, 
Feb. 2002. 

[3] T. M. Austin. DIVA: A Reliable Substrate for Deep Submicron Mi- 
croarchitecture Design. In Proc. 32rid Annual Intl. Syrup. on Mi- 
croarchitecture, pages 196-207, Nov. 1999. 

[4] M. Banatre et al. An Architecture for Tolerating Processor Fail- 
ures in Shared-Memory Multiprocessors. IEEE Trans. Computers, 
45(t0): 1101-1115, Oct. 1996. 

[5] M. Banatre and P. Joubert. Cache Management in a Tightly Coupled 
Fault Tolerant Multiprocessor. in Proc. 20th Intl. Symp. on Fault- 
Tolerant Computing, pages 89-96, June 1990. 

[6] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent 
Rollback-Recovery with Low Overhead, Limited Rollback, and Fast 
Output Commit. 1EEE Trans. Computers, 41(5):526 -531, May 
1992. 

[7] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey 
of Rollback-Recovery Protocols in Message-Passing Systems. Tech. 
Rep. CMU-CS-99-148, Carnegie Mellon University, June 1999. 

[8] A.-M. Kermarrec et al. A Recoverable Distributed Shared Memory 
Integrating Coherence and Recoverability. In Proc. 25th Intl. Symp. 
on Fault-Tolerant Computing, pages 289-298, June 1995. 

[9] V. Krishnan and J. Torrellas. An Execution-Driven Framework for 
Fast and Accurate Simulation of Superscalar Processors. In Proc. 
1998 Intl. ConJ~ on Parallel Architectures and Compilation Tech- 
niques, pages 286 -293, Oct. 1998. 

[10] R. Kufrin. Barrier Synchronization on the Origin 2000. 
hnp:llwww.ncsa.uiuc.edul~rkufrin/projects/CompScilBarriersl, 
July 1999. 

[11] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly 
Scalable Server. In Proc. 24th Intl. Symp. on Computer Architecture, 
pages 241-251, June 1997. 

[12] D. Lenoski et al. The Stanford Dash Multiprocessor. IEEE Com- 
puter, pages 63-79, Mar. 1992. It is Dash, not DASH. 

[13] Y. Masubuchi et al. Fault Recovery Mechanism for Multiproces- 
sor Servers. In Proc. 27th Intl. Symp. on Fault-Tolerant Computing, 
pages 184-193, June 1997. 

[14] C. Morin, A. Gefflaut, M. Banatre, and A.-M. Kermarrec. COMA: 
an Opportunity for Building Fanit-tolerant Scalable Shared Memory 
Multiprocessors. In Proc. 23rd Intl. Symp. on Computer Architec- 
ture, pages 56--65, May 1996. 

[15] C. Morin, A.-M. Kermarrec, M. Banatre, and A. Geffiaut. An Effi- 
cient and Scalable Approach for Implementing Fault-Tolerant DSM 
Architectures. IEEE Trans. Computers, 49(5):414-430, May 2000. 

[16] S.S.  Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design 
and Evaluation of Redundant Multithreading Alternatives. In Proc. 
29th Intl. Symp. on Computer Architecture, May 2002. 

[17] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant 
Arrays of Inexpensive Disks (RAID). In Proc. ACM SIGMOD Intl. 
Con S on the Management of  Data, pages 109-116, June 1988. 

[18] J. S. Plank et al. Memory Exclusion: Optimizing the Performance 
of Checkpointing Systems. Software - Practice and Experience, 
29(2):125-142, Feb. 1999. 

[ 19] J.S. Plank and W. R. Elwasif. Experimental Assessment of Worksta- 
tion Failures and Their Impact on Checkpointing Systems. In Proc. 
28th Intl. Syrup. on Fault-Tolerant Computing, pages 48-57, June 
1998. 

[20] J. S. Plank and K. Li. Faster Checkpointing with N + 1 Parity. In 
Proc. 24th Intl. Syrup. on Fault-Tolerant Computing, pages 288-297, 
June 1994. 

[21] J.S. Plank, K. Li, and M. A. Puening. Diskless Checkpointing. IEEE 
Trans. Parallel and Distributed Systems, 9( 10):972-986, Oct. 1998. 

[22] B. Randell. System Structure for Software Fault Tolerance. IEEE 
Trans. Soft. Eng., SE-1(2):220-232, June 1975. 

[23] A. Silberschatz, H. E Korth, and S. Sudarshan. Database System 
Concepts, 3rd edition. McGraw-Hill, 1999. 

[24] Silicon Graphics, Inc. REAcTTMin IRIXTM6.4 Technical Report. 
http://www.sgi .corn/software/react/react_t r. pd f, 1997. 

[25] D.J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. SafetyNet: 
Improving the Availability of Shared Memory Multiprocessors with 
Global Checkpoint/Recovery. In Proc. 29th Intl. Symp. on Computer 
Architecture, May 2002. 

[26] F. Sultan, T. D. Nguyen, and L. lftode. Scalable Fault-Tolerant Dis- 
tributed Shared Memory. In Proc. Supercomputing 2000, Nov. 2000. 

[27] D, Sunada, D. Glasco, and M. Flynn. Multiprocessor Architecture 
Using an Audit Trail for Fault Tolerance. In Proc. 29th Intl. Syrup. 
on Fault-Tolerant Computing, pages 40--47, June 1999. 

[28] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Pro- 
cessors: Improving both Performance and Fault Tolerance. In Proc. 
9th Intl. Conf. on Arch. Support for Prog. Lang. and OS, Nov. 2000. 

[29] D. Teodosiu et at. Hardware Fault Containment in Scalable Shared- 
Memory Multiprocessors. In Proc, 24th Intl. Symp, on Computer 
Arehitecture, pages 73-84, June 1997. 

[30] T.N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-Fault Re- 
covery Using Simultaneous Multithreading. In Proc. 29th Intl. Syrup. 
on Computer Architecture, May 2002. 

[31] S. C. Woo et al. The SPLASH-2 Programs: Characterization and 
Methodological Considerations. In Proc. 22nd Intl. Symp. on Com- 
puter Architecture, pages 24-38, June 1995. 

[32] K.-L. Wu, W. K. Fuchs, and J. H. Patel. Error Recovery in Shared 
Memory Multiprocessors Using Private Caches. IEEE Trans. Paral- 
lel and Distributed Systems, 1(2):231-240, Apr. 1990. 

[33] Z. Zhang. Single system high-availability solutions. Tech. Rep. 
HPL-2001-81, Hewlett-Packard Laboratories, Apr. 200 !. 

122 


