
Microarchitecture Optimizations for
Exploiting Memory-Level Parallelism

Yuan Chou, Brian Fahs and Santosh Abraham
Architecture and Advanced Development

Processor and Network Products
Sun Microsystems

Sunnyvale, CA 94086
{yuan.chou,brian.fahs,santosh.abraham}@sun.com

Abstract

The performance of memory-bound commercial applications
such as databases is limited by increasing memory latencies. In
this paper, we show that exploiting memory-level parallelism
(MLP) is an effective approach for improving the performance of
these applications and that microarchitecture has a profound im-
pact on achievable MLP. Using the epoch model of MLP, we rea-
son how traditional microarchitecture features such as out-of-
order issue and state-of-the-art microarchitecture techniques such
as runahead execution affect MLP. Simulation results show that a
moderately aggressive out-of-order issue processor improves
MLP over an in-order issue processor by 12-30%, and that ag-
gressive handling of loads, branches and serializing instructions
is needed to attain the full benefits of large out-of-order instruction
windows. The results also show that a processor’s issue window
and reorder buffer should be decoupled to exploit MLP more effi-
ciently. In addition, we demonstrate that runahead execution is
highly effective in enhancing MLP, potentially improving the MLP
of the database workload by 82% and its overall performance by
60%. Finally, our limit study shows that there is considerable
headroom in improving MLP and overall performance by imple-
menting effective instruction prefetching, more accurate branch
prediction and better value prediction in addition to runahead ex-
ecution.

1 Introduction
Over the past two decades, instruction-level parallelism

(ILP) has been a primary focus of computer architecture research
and a variety of microarchitecture techniques to exploit ILP such
as pipelining, VLIW and superscalar issue have been developed
and refined. Further, many speculation techniques to enhance ILP
such as branch prediction and data speculation have been studied
in academia and adopted in commercial microprocessors. These
advances enable current microprocessors to effectively utilize
deep multiple-issue pipelines in some classes of applications,
such as media processing and scientific floating-point intensive
applications.

On the other hand, the performance of commercial applica-
tions such as databases are dominated by the frequency and cost
of memory accesses. These applications typically have large
instruction and data footprints that do not fit in a processor’s on-

chip caches, thereby requiring frequent accesses to off-chip
caches or memory [1, 2]. Further, in contrast to many media and
scientific applications, these applications exhibit control- and
data-dependent irregular patterns in their memory accesses that
are not amenable to conventional hardware or software prefetch-
ing.

In today’s database workloads, almost two-thirds of execu-
tion time is spent in off-chip accesses [3]. As numerous papers
have pointed out, the latency for these off-chip accesses in pro-
cessor cycles continues to grow because the rapid improvements
in processor clock frequencies have outpaced the improvements
in memory and interconnect speeds. Some have termed this trend
the impending “memory wall” problem [4]. For memory-bound
workloads, an inordinate amount of ILP must be uncovered and
exploited in order to hide the high latency of their off-chip
accesses. Even if this much ILP exists in these applications,
exploiting them using conventional techniques such as out-of-
order execution requires extremely large instruction windows that
are very difficult to implement. For these applications, a promis-
ing alternative is to exploit memory-level parallelism (MLP) by
overlapping multiple off-chip accesses. To illustrate the potential
of MLP as a performance lever, if a memory-bound application
spends two-thirds of its execution time in off-chip accesses, dou-
bling the MLP can halve the time spent in these accesses and
potentially improve performance by 50%.

In this paper, we examine the impact of high-level microar-
chitecture choices on MLP, and identify and evaluate promising
approaches for exploiting MLP. We perform our study using three
commercial workloads that collectively represent all three tiers of
the corporate datacenter. Since the term MLP has hitherto been
used informally in the literature [5, 6, 7], we define MLP formally
and relate it to overall performance. To assist our study, we use
the epoch model, which is a simple but powerful model to reason
about MLP and how microarchitecture features impact MLP. This
epoch model is implemented in MLPsim, our MLP simulator that
has been thoroughly validated against a cycle-accurate simulator.
Using MLPsim, we show that serializing instructions (e.g. CASA
in the SPARC ISA) have a significant impact on achievable MLP
in conventional out-of-order processors. We then study the impact
of state-of-the-art microarchitecture features such as runahead
execution [8, 9] and value prediction [10, 11, 12, 18] on MLP and

1063-6897/04 $20.00 (c) 2004 IEEE

demonstrate that runahead execution can significantly improve
MLP. Lastly, we perform a limit study on achievable MLP to reveal
profitable research directions for improving MLP. Beyond merely
presenting performance numbers, our foremost objective is to
reveal insights into the key microarchitecture factors inhibiting
MLP.

The rest of this paper is organized as follows. Section 2
defines MLP, relates it to overall processor performance and
describes how it can be measured. Section 3 presents the epoch
model of MLP and uses this model to explain how microarchitec-
ture features affect MLP. Section 4 describes our experimental
methodology, including our MLPsim tool, while Section 5 presents
our experimental results. Section 6 describes related work and Sec-
tion 7 summarizes the contributions and conclusions of this paper.

2 MLP and Overall Performance

2.1 Definition
We define instantaneous MLP, MLP(t) as the number of useful

long-latency off-chip accesses outstanding at cycle t. We define
average MLP, MLP as the average number of useful long-latency
off-chip accesses outstanding when there is at least one such access
outstanding. MLP can also be derived by averaging MLP(t) over all
the cycles when there is at least one access outstanding.

In our definition, off-chip accesses include instruction fetches,
loads and hardware/software prefetches. We use the qualifier ‘long-
latency’ for off-chip accesses because some current processors have
off-chip level-two (L2) caches that have relatively low latency. We
believe that as on-chip L2 and level-three (L3) caches become more
common due to increasing transistor density, future off-chip caches
will be large and have high latencies, so the qualifier ‘long latency’
will be eventually unnecessary. For the rest of this paper, we refer to
long latency off-chip accesses simply as off-chip accesses. We also
use the qualifier ‘useful’ so that we do not count useless accesses
that would otherwise inflate MLP without presenting any benefit.
More specifically, useful accesses refer to those made non-specula-
tively as well as to those made speculatively that bring in data that
is accessed by subsequent non-speculative instructions. Note that
hardware/software prefetches contribute to MLP only if they bring

in data that is used by either a subsequent non-speculative load or a
subsequent non-speculative instruction fetch.

In order to measure MLP in a cycle-accurate processor simula-
tor, we first measure MLP(t) every cycle by counting the number of
useful off-chip accesses outstanding that cycle. We then derive
MLP by averaging the MLP(t) of those cycles where MLP(t) is
non-zero.

2.2 Relating MLP to Overall Performance
Assuming a constant off-chip access latency, we can relate

MLP to overall execution time using the following equation:

where Cycles is total execution cycles, Cyclesperf is number of

execution cycles if the furthest on-chip cache is perfect, OverlapCM

is the fractional overlap of compute cycles with off-chip cycles,
NumMisses is the number of off-chip accesses, MissPenalty is the
latency of each off-chip access, and MLP is the average memory-
level parallelism.

In Figure 1, we show the timing of an out-of-order processor
with a memory latency of 200 cycles. The light bars show periods
of active instruction issue while the dark bars show three off-chip
accesses. The first term in the equation captures the compute-only
cycles, i.e. cycles with only a light bar and the second term captures
the cycles covered by at least one off-chip access, i.e. a dark bar. In
this example, the first term covers cycles 0-80 and cycles 290-370
while the second term covers cycles 80-290 and cycles 370-570.
The equation parameters are: Cycles = 570, Cyclesperf = 200, Num-

Miss = 3, MissPenalty = 200, OverlapCM is (20 +10 + 10)/200 =

0.2, and MLP = 1.463.
 Alternately, we can express the equation in terms of CPI:

where CPI is the overall CPI and CPIperf is the perfect on-chip

cache CPI and MissRate is the miss rate per instruction of the fur-
thest on-chip cache. The first term of this equation is CPIon-chip and

Cycles Cyclesperf 1 - OverlapCM() NumMisses MissPenalty×
MLP

--+=

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

Compute

Memory

OverlapCM

Figure 1: Example of Compute-Memory and Memory-Memory Overlap.

Benchmark
Off-Chip
Latency

CPI CPIon-chip CPIoff-chip
L2 Miss Rate
(per 100 insts)

MLP OverlapCM

Database 200 2.44 1.47 0.97 0.84 1.33 0.20

Database 1000 7.28 1.47 5.81 0.84 1.38 0.18

SPECjbb2000 200 1.45 1.16 0.29 0.19 1.13 0.04

SPECjbb2000 1000 2.80 1.16 1.64 0.19 1.14 0.04

SPECweb99 200 1.73 1.62 0.11 0.09 1.25 0.02

SPECweb99 1000 2.30 1.62 0.68 0.09 1.29 0.00

Table 1: Measurements of On-Chip and Off-Chip Components of CPI.

CPI CPIperf 1 - OverlapCM() MissRate MissPenalty×
MLP

--+=

1063-6897/04 $20.00 (c) 2004 IEEE

the second term is CPIoff-chip.

We can use a cycle-accurate simulator to measure CPIperf and

CPI. In the first run, we measure CPIperf by running the simulator

using a perfect on-chip L2 cache (assuming the L2 cache is the fur-
thest on-chip cache). In the second run using a realistic L2 cache,
we measure overall CPI and MLP. OverlapCM is then derived from

Eq. (2) by substituting for the other known parameters. Table 1
shows the values of CPI, CPIon-chip, CPIoff-chip, OverlapCM and

MLP for three commercial applications as off-chip access latency is
increased from 200 cycles to 1000 cycles. The out-of-order proces-
sor configuration simulated corresponds to that described in Section
5.1.

At the off-chip latency of 1000 cycles, CPIoff-chip is more than

3x CPIon-chip for the database workload and about 1.5x CPIon-chip

for SPECjbb2000. For SPECweb99, the CPIoff-chip is not that large

relative to CPIon-chip but is still substantial. A memory latency of

1000 cycles may appear to be excessively large, but is consistent
with a reasonable future system with multiple processor chips oper-
ating at 5 GHz and a 200 ns off-chip latency. Conventional out-of-
order techniques are not effective in overlapping memory cycles
and compute cycles as indicated by the modest OverlapCM, though

they are somewhat effective at issuing multiple off-chip accesses in
parallel as indicated by the measured MLP that ranges from 1.14
through 1.38. For these workloads, exploiting ILP in a manner that
address only CPIon-chip is not going to improve overall CPI substan-

tially. In contrast, increasing MLP is a powerful performance lever
that can lead to significant improvements in off-chip CPI as well as
overall CPI.

2.3 Clustering of Off-Chip Accesses
With the default processor configuration described in Section

5.1, the miss rate (per 100 instructions) for the database workload,
SPECjbb2000 and SPECweb99 is 0.84, 0.19 and 0.09 respectively.
Thus, the average distance between two consecutive off-chip
accesses is 119, 526, 1111 instructions respectively. With such large
inter-miss distances, particularly in the case of SPECjbb2000 and
SPECweb99, one might expect that an instruction issue window of
size 64 is unlikely to capture two or more misses and therefore
MLP will be close to 1. On the contrary, Table 1 shows that the
MLP for SPECweb99 is almost 1.3. In order to understand this
apparent inconsistency, we plot the cumulative probability of
encountering another off-chip access within a certain number of
dynamic instructions. In Figure 2, the three thinner curves assume
an uniform distribution of inter-miss distances and are derived from
the average inter-miss distances observed for these workloads. The
three thicker curves are the observed distribution of cumulative
probability versus inter-miss distances. As indicated by the diver-
gence between the observed and uniform distribution curves, the

observed inter-miss distributions are extremely clustered for
SPECweb99 and SpecJBB2000. These clustered inter-miss distri-
butions suggest that exploiting MLP is indeed a viable proposition.

3 Microarchitecture Impact on MLP
In this section, we present our epoch model and use this model

to reason how microarchitecture features impact achievable MLP.
To aid our explanation, we define the following terms: a missing
load (Dmiss) is a load that requires an off-chip access, a missing
prefetch (Pmiss) is a useful read prefetch that requires an off-chip
access, and a missing instruction fetch (Imiss) is an instruction fetch
that requires an off-chip access. Also, when we say that two off-
chip accesses can be overlapped, we imply that there are no true
data dependences between them.

In this section and for the rest of this paper, we assume that the
processor’s load and store buffers are large enough so that instruc-
tion decode/dispatch is never stalled because of insufficient load or
store buffer entries.

3.1 Epoch Model
As off-chip access latencies increase, on-chip computation

latencies separating overlappable off-chip accesses become increas-
ingly insignificant relative to off-chip access latencies. By on-chip
computation, we refer to data computations, address computations,
as well as instruction fetches and loads that hit in the on-chip

caches. In such a situation, illustrated in Figure 3, overlappable off-
chip accesses appear to issue and complete at the same time, and
instruction execution tends to separate itself into recurring periods
of on-chip computations and off-chip accesses.

We call each such period of on-chip computations followed by
off-chip access(es) an epoch. More precisely, an epoch is a time
slice of program execution starting from the end of the previous
epoch through the first off-chip access and extending to the cycle
when this first access has completed. We define the epoch trigger as
the instruction that is responsible for the first off-chip access of an
epoch. Within an epoch, all overlappable off-chip accesses are

Figure 2: Clustering of Misses.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 32 64 96 128 160 192 224 256 288 320 352 384

Inter-Miss Distance

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Database-actual

Database-uniform

SPECweb-actual

SPECweb-uniform

SPECjbb-actual

SPECjbb-uniform

0

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

Compute

Memory

Figure 3. Example where Off-Chip Latency is Much Greater than On-Chip Latencies.

1063-6897/04 $20.00 (c) 2004 IEEE

assumed to issue and complete at the same time.
To understand how microarchitecture constrains MLP, it is

necessary to understand how it affects which off-chip accesses can
be issued in an epoch. This in turn requires us to understand which
instructions in the processor’s dynamic instruction stream (DIS)
can be issued in a given epoch. For this purpose, we define an
epoch set as the set of instructions from the DIS that can be exe-
cuted in an epoch. We can then partition the DIS into epoch sets
such that all the instructions in epoch set i execute in the ith epoch.
MLP is then simply the ratio of the total number of off-chip
accesses to the number of epoch sets.

3.2 Primary Limiters of MLP in Out-of-Order Is-
sue Processors

Out-of-order processors issue independent instructions from a
window of dynamic instructions. A window termination condition
is a condition that prevents the processor from executing any subse-
quent instructions in the DIS till all earlier off-chip accesses are
resolved. Thus, an epoch set shall not include any more instructions
after a window termination. Specifically, an epoch set is a subset of
the instructions in the DIS before a window termination condition,
comprising those instructions that are not dependent on other off-
chip accesses in this epoch and that are not already part of earlier
epoch sets. A set of microarchitecture choices imposes an associ-
ated set of window termination conditions. In the absence of win-
dow termination conditions, the number of epoch sets and
consequently MLP is determined solely by data dependencies
between missing loads.

For out-of-order processors, we identify four key window ter-
mination conditions: 1) issue window size and reorder buffer size
limitations, 2) serializing instructions, 3) instruction fetch misses
and 4) unresolvable branch mispredictions.

We use Examples 1-3 to illustrate the effects of these window
termination conditions. In these examples, Dmiss indicates that the
instruction is a missing load and Mispred indicates that it is a
mispredicted branch. In each case, we list the instructions in each
epoch set, where instructions in bold resulted in a useful off-chip
access and instructions in italics (e.g. i2 in Example 3) were fetched
but not executed in that epoch.

3.2.1 Issue Window Size and ROB Size
Processors that implement out-of-order instruction issue typi-

cally have a hardware structure that remembers the fetch order of
the instructions in order to provide in-order retirement. This struc-
ture is usually named the reorder buffer (ROB). They also typically
have a hardware structure that stores the instructions that have been

renamed but not yet issued. We call this structure the issue window
although there are other commonly used names for it (e.g. reserva-
tion station). When a missing load epoch trigger becomes the oldest
entry in the ROB, it will hold up further instruction retirement until
its data returns. As a result, the ROB and/or the issue window soon
becomes full and no more missing loads or missing prefetches can
be overlapped. Therefore, both the ROB size and the issue window
size have a potentially large impact on MLP.

In Example 1, we assume that the issue window/ROB size of
the processor is four. In the first case, the window begins at i1, a
missing load, and terminates at instruction i4 because of the win-
dow size constraint of four. Instruction i1 leaves the ROB only after
the miss is processed. Therefore, i5 cannot enter the ROB until i1 is
retired. Data dependencies prevent instructions i2 and i3 from being
issued in parallel with i1. Thus, the first epoch set contains i1 and i4
and the second epoch set contains the remaining instructions.

3.2.2 Serializing Instructions
Most instruction set architectures (ISAs) provide instructions

for implementing synchronizing primitives used for concurrency
control as well as instructions for explicitly enforcing memory
ordering. In the SPARC ISA [13], examples of the former include
the CASA and LDSTUB instructions, and an example of the latter
is the MEMBAR instruction. For this paper, we call these instruc-
tions serializing instructions because a straightforward implementa-
tion usually requires the processor pipeline to drain before these
instructions can be issued. Draining the pipeline in turn requires all
the instructions older than the serializing instruction to be architec-
turally committed. Therefore, missing loads and missing prefetches
after the serializing instruction cannot overlap with missing loads
and missing prefetches before it and consequently MLP is reduced.

In Example 2, we illustrate the effects of a MEMBAR serializ-
ing instruction. The window starts at i1 and terminates at the serial-
izing instruction i2. The first epoch set only includes these
instructions and the next epoch contains the remaining instructions.

 Although it is beyond the scope of this paper, we note that
very aggressive and speculative implementations of these serializ-
ing instructions are possible that eliminate the need for draining the
pipeline except in rare cases of misspeculations. We also note that
these serializing instructions can be fairly prevalent. For example,
CASA instructions are used for Java object locking and make up
more than 0.6% of the total dynamic instruction count in
SPECjbb2000.

3.2.3 Instruction Fetch Misses
An instruction fetch that misses the on-chip caches terminates

Inst# Instruction Type Inst# Instruction Type Inst# Instruction Type
i1 load 0(r1)->r2 Dmiss i1 load (r1)->r2 Dmiss i1 load (r1)->r2 Dmiss
i2 add r2,r3->r4 i2 membar i2 add r2,r3->r4 Imiss
i3 load (r4)->r5 Dmiss i3 add r2,r3->r4 i3 load (r4)->r5 Dmiss
i4 add r0,r1->r2 i4 load (r4)->r5 Dmiss i4 beq r5,0, tgt Mispred
i5 load (r7)->r8 Dmiss i5 load (r7)->r8 Dmiss i5 load (r7)->r8 Dmiss

Epoch Sets = Epoch Sets = Epoch Sets =
{i1, i4}, {i2, i3, i5} {i1, i2}, {i3, i4, i5} {i1, i2}, {i2, i3}, {i4, i5}
MLP = (1+2)/2 = 1.5 MLP = (1+2)/2 = 1.5 MLP = (2+1+1)/3 = 1.33

Example 1 Example 2 Example 3

1063-6897/04 $20.00 (c) 2004 IEEE

a window because it prevents any further instructions in the DIS
from entering the processor’s issue window. In Example 3, i2 is an
instruction miss and terminates the window begun by i1. Only the
instruction fetch part of i2 is completed in the first epoch. In the
next epoch, i2 is executed along with other instructions.

3.2.4 Unresolvable Branch Mispredictions
Following a branch misprediction, the processor fetches and

executes instruction along the wrong path until the branch is
resolved. In general, the wrong-path instructions are not present
along the correct path and any off-chip accesses initiated along the
wrong-path are not useful and do not contribute to MLP. Of course,
if the wrong-path converges with the correct path, off-chip accesses
uncovered by the wrong path may be useful (if their addresses are
the same on both paths). Branches that are dependent on on-chip
computations quickly resolve themselves. However, mispredicted
branches that are dependent on a missing load in the current epoch
are unresolvable and cause the processor to continue along the
wrong path until the end of the epoch. In Example 3, i3 is a missing
load and the mispredicted branch i4 is unresolvable because it is
dependent on i3. Thus, i5 cannot be fetched until after i3 and i4
complete. In effect, i4 terminated the window.

Since the accuracy of the branch predictor has a significant
impact on window terminations and MLP, it may be desirable to
design special branch predictors for unresolvable branches. Since
the resolution latency is proportional to off-chip latency, these
branch predictors can be very effective even if they are slow.

3.3 In-order Processors
In-order processors have very limited capabilities for overlap-

ping multiple off-chip accesses. The window termination condi-
tions such as those for serializing instructions, instruction fetch
misses, and unresolvable branch mispredictions apply to in-order
processors as well. In-order processors may generally be classified
as stall-on-miss or stall-on-use. In a stall-on-miss in-order proces-
sor, the processor stalls instruction issue when a load misses the
data cache. Thus, a missing load starts and terminates a window.
However missing useful hardware/software prefetches and missing
instruction fetches may be overlapped among themselves or with a
missing load. The MLP is therefore usually somewhat higher than
unity. In a stall-on-use processor, the processor stalls instruction
issue when the data of a missing load is used by a subsequent
instruction. Thus, the missing load starts a window and its first
dependent instruction terminates the window. In contrast to a stall-
on-miss processor, additional load misses between a missing load
and its use may be overlapped. Therefore, the MLP of a stall-on-use

processor is slightly higher than that of a stall-on-miss processor.

3.4 Issue policies and MLP
Out-of-order issue processors usually allow instructions from

different instruction classes to be issued out-of-order freely with
respect to each other but may place specific constraints on the issue
of instructions within the same instruction class.

3.4.1 Load Issue Policy
In the case of loads, processors typically implement one of the

following three issue policies:
1. Loads are issued in-order w.r.t. other loads and stores. This

allows a straightforward implementation of the processor consis-
tency memory model.

2. Loads are issued out-of-order w.r.t. other loads but wait for
address resolution of all earlier stores.

3. Loads are issued out-of-order w.r.t. other loads and do not
wait for address resolution of earlier stores.

Example 4 illustrates how the choice of load issue policy
affects MLP and lists the epoch sets for each of the three cases. If
the first policy is implemented, no other missing loads can be over-
lapped with i1 because i2, which has a dependence on i1, prevents
subsequent loads from being executed. If the second policy is
implemented, i3 can be overlapped with i1 while i5 cannot do so
because it has to wait for the address of store i4 to be resolved.
Unfortunately, store i4 in turn has a dependence on i2. If the third
policy is implemented, both i3 and i5 can be overlapped with i1.

3.4.2 Branch Issue Policy
Out-of-order issue processors typically allow branches to exe-

cute out-of-order with respect to other instruction types but may
constrain the issue ordering among branches. Two policies are pos-
sible:

1. Branches are issued in-order w.r.t. other branches.
2. Branches are issued out-of-order w.r.t. to other branches.
Example 5 illustrates how the choice of branch issue policy

affects MLP. If the first policy is implemented, i4 cannot be over-
lapped with i1. Since i2 has a dependence on i1, it cannot be exe-
cuted in the same epoch. As a result, branch i3, which must be
issued in-order, cannot resolve and the processor continues execut-
ing on the wrong path until the end of the epoch. In contrast, if the
second policy is implemented, i4 can be overlapped with i1.

3.5 Runahead Execution
After the missing load epoch trigger becomes the oldest entry

in the ROB, no more instructions can be retired until the missing
load’s data returns. In the meantime, the ROB and the issue window

Inst# Instruction Type Inst# Instruction Type
i1 load 8(r1)->r2 Dmiss i1 load 8(r1)->r2 Dmiss
i2 load 0(r2)->r3 Dmiss i2 beq r2, 1, 0x1100
i3 load 108(r1)->r4 Dmiss i3 beq r1, 1, 0x11ff Mispred
i4 store r5->0(r3) i4 load 108(r1)->r4 Dmiss
i5 load 388(r1)->r6 Dmiss

1. Epoch Sets = {i1}, {i2, i3}, {i4, i5} 1. Epoch Sets = {i1}, {i2, i3, i4}
2. Epoch Sets = {i1, i3}, {i2}, {i4, i5} 2. Epoch Sets = {i1, i3, i4}, {i2}
3. Epoch Sets = {i1, i3, i5}, {i2}, {i4}

Example 4 Example 5

1063-6897/04 $20.00 (c) 2004 IEEE

fills up quickly, effectively stalling the processor. In runahead exe-
cution [8, 9], when the missing load epoch trigger becomes the old-
est entry in the ROB, the processor checkpoints the register files
and enters runahead execution mode. In this mode, all missing
loads (including the epoch trigger) are converted to prefetches and
therefore do not stall retirement. Any subsequent instructions that
are dependent on these missing loads are simply skipped. Also,
stores do not update architected state. When the data of the missing
load epoch trigger returns, the processor flushes its pipeline,
restores the register checkpoint and re-enters normal execution
mode.

Because runahead execution is purely speculative, it does not
have to obey the serialization constraints of serializing instructions.
Therefore, runahead execution increases MLP because it removes
all window termination conditions except instruction fetch misses
and unresolvable branch mispredictions.

3.6 Value Prediction
Value prediction [10, 11, 12, 18] increases MLP because the

correct prediction of a missing load’s value allows subsequent
dependent missing loads to issue in the same epoch. To improve
MLP, we only need to predict the values of missing loads instead of
the values of all loads or all result-producing instructions. This can
drastically reduce the size of the value predictor.

4 Experimental Methodology
In this section, we describe MLPsim, the tool we developed

for our MLP study, as well as the benchmarks we used for our
experiments.

4.1 MLPsim
MLPsim is our MLP simulator that implements the epoch

MLP model. It reads in an instruction trace and a set of microarchi-
tecture parameters, and outputs MLP and epoch statistics by parti-
tioning the instruction trace into epoch sets. It does so by tracking
register and memory dependences between instructions, modeling
the sizes of three key hardware structures: fetch buffer, issue win-
dow and reorder buffer, and applying the window termination con-
ditions associated with the microarchitecture parameters specified.

MLPsim does not need to model any on-chip computations
such as cache misses that do not require an off-chip access or
branch mispredictions that are not dependent on a missing load.
Neither does it need to model the timing of these computations
(which means that it does not need to model instruction latencies,
fetch bandwidth, issue bandwidth, number and types of function
units etc.). In fact, it does not even need to model the timing of off-
chip accesses since the epoch model assumes that off-chip accesses
that are overlappable in an epoch issue and complete at the same
time. By taking advantages of the simplifications enabled by the
epoch model, MLPsim is simple, small and easy to verify. As the
results in Section 5.2 demonstrate, the MLP results from MLPsim
and our cycle-accurate simulator match extremely closely, espe-
cially as off-chip access latency reaches 500 cycles and beyond.
Because of its simplicity and accuracy, MLPsim is a convenient
tool for exploring and prototyping new microarchitecture features
for enhancing MLP. MLPsim can also be used as a simple processor
model that accurately estimates the clustering of off-chip accesses
in simulation-based queueing models of memory and system inter-
connects.

4.2 Benchmarks
We used three commercial workloads in our study: a database

workload, SPECjbb2000 [14] and SPECweb99 [14]. Collectively,
they cover all three tiers of a corporate datacenter. Due to disclosure
agreements, we are not able to elaborate on the details of our data-
base workload. SPECjbb2000 is a server-side Java benchmark that
emphasizes business logic and object manipulation, the middle tier
of a 3-tier system, while SPECweb99 evaluates the performance of
web servers.

The binaries used to generate our traces are highly optimized
ones that are used by our company for reporting benchmark results.
The traces were collected when the workloads were warmed and
running in steady state and they were meticulously validated
against hardware counter statistics.

For all our simulations, we used the first 50M instructions in
the trace to warm the caches and the next 100M instructions to col-
lect statistics. All three workloads we used are transaction-oriented
and do not exhibit phase changes. We have carefully validated that
50M instructions are sufficient for warming the L2 cache and 100M
instructions are sufficient for collecting a representative transaction
mix that enables accurate statistics collection.

5 Experimental Results
In this section, we first compare the results of MLPsim with

our cycle-accurate simulator and then show the results of using
MLPsim to quantify the impact of different microarchitecture
parameters and features on MLP.

5.1 Default Processor Configuration
Unless stated otherwise, our experiments assume the follow-

ing default processor configuration:
- 32KB 4-way set-associative, 64B line size L1 instruction and

data caches
- 2MB 4-way set associative, 64B line size shared L2 cache
- no L3 cache
- 2K entry shared TLB
- 64K entry gshare branch predictor, 16K entry branch target

buffer, 16 entry return address stack
- 32 entry fetch buffer, 64 entry instruction issue window, 64

entry reorder buffer
- infinite load buffer and store buffer
- out-of-order instructions issue; loads issue out-of-order with

respect to other loads and stores and speculate past earlier stores
with unresolved addresses, branches issue in-order with respect to
other branches (i.e. issue configuration C in Table 2)

5.2 MLPsim Validation
We first validate the MLP results produced by MLPsim

against those produced by our cycle-accurate simulator, a simulator
that was designed to explore microarchitecture ideas for future
SPARC processors for our company.

For our validation, we modeled three different instruction win-
dow/ROB sizes and three different issue constraints configurations.
For this experiment, we set the instruction window size to be equal
to the ROB size. The issue constraints configurations correspond to
the first three configurations shown in Table 2. We did not use con-
figurations D and E because our cycle-accurate simulator cannot

1063-6897/04 $20.00 (c) 2004 IEEE

simulate out-of-order branch execution.
 Table 3 compares the MLP results from MLPsim and our

cycle-accurate simulator. The results show that despite MLPsim’s
simplicity, its results match very well with the much more complex
cycle-accurate simulator. In fact, when memory latency is 1000
clocks, their results are almost identical. These results give us con-
fidence not only in the correctness and robustness of MLPsim but
also in the validity of the epoch model and the completeness of the
“rules” described in Section 3.

We now validate the second equation of Section 2.3. We use
this equation to estimate the CPI of a configuration by substituting
its MLP and MissRate measured by MLPsim and its CPIperf and

OverlapCM measured by the cycle-accurate simulator (shown in

bold in Table 4), and compare this to its CPI measured by the cycle-
accurate simulator (shown in italics in Table 4).

We also examine the accuracy of using MLPsim and this equa-
tion to estimate the CPI of a configuration which may not be imple-
mented in a cycle-accurate simulator. For this, we estimate the CPI
of a configuration by substituting its MLP and MissRate measured
by MLPsim and its CPIperf and OverlapCM measured by the cycle-

accurate simulator for another configuration (shown in normal font
in Table 4), and we compare this to its CPI measured by the cycle-

accurate simulator (shown in italics in Table 4).
The experiments were performed with Issue Window and

ROB size = 64 and MissPenalty = 1000 cycles. The results show
that in all cases, the estimated CPI using MLPsim is within 2% of
the CPI measured using the cycle simulator.

5.3 Traditional Microarchitecture Features
In this section, we quantify the impact of traditional microar-

chitecture features such as instruction issue constraints, branch pre-
diction and L2 cache size on achievable MLP.

5.3.1 Impact of Out-of-Order Instruction Issue
To study the impact of ROB size and out-of-order instruction

issue constraints on MLP, we varied the ROB size from 16 to 256,
and modeled five configurations of progressively aggressive issue
constraints, as shown in Table 2. In this experiment, we set the issue
window size to be equal to the ROB size.

The results of the experiment are shown in Figures 4 and 5.
The graphs in Figure 4 plot MLP as a function of ROB/issue win-
dow size and issue constraints. Each curve on these graphs repre-
sents an issue configuration. The graphs in Figure 5 show the
relative frequency of the different conditions that prevent more
MLP from being achieved in an epoch. These frequencies are aver-

Issue Configuration Load Issue (w.r.t other loads)
Branch Issue (w.r.t.

other branches)
Serializing
Instructions

A in-order in-order serializing
B out-of-order, wait for earlier store addresses to resolve in-order serializing
C out-of-order, speculate past earlier stores in-order serializing
D out-of-order, speculate past earlier stores out-of-order serializing
E out-of-order, speculate past earlier stores out-of-order non-serializing

Table 2: Configurations of Issue Constraints.

ROB/Issue
Window

Size

Issue
Config

Database SPECjbb2000 SPECweb99

CycleSim
200

CycleSim
500

CycleSim
1000

MLPsim
CycleSim

200
CycleSim

500
CycleSim

1000
MLPsim

CycleSim
200

CycleSim
500

CycleSim
1000

MLPsim

32 A 1.19 1.20 1.20 1.21 1.10 1.10 1.10 1.10 1.19 1.20 1.21 1.20

B 1.20 1.22 1.22 1.23 1.11 1.11 1.11 1.10 1.19 1.20 1.21 1.20

C 1.25 1.26 1.27 1.27 1.11 1.12 1.12 1.11 1.21 1.23 1.23 1.22

64 A 1.22 1.22 1.24 1.25 1.10 1.10 1.10 1.10 1.22 1.24 1.24 1.23

B 1.24 1.27 1.28 1.28 1.13 1.13 1.13 1.13 1.22 1.24 1.25 1.24

C 1.33 1.37 1.38 1.38 1.13 1.14 1.14 1.13 1.25 1.28 1.29 1.28

128 A 1.24 1.26 1.27 1.28 1.13 1.14 1.15 1.15 1.23 1.25 1.26 1.25

B 1.27 1.30 1.31 1.32 1.16 1.18 1.19 1.19 1.23 1.25 1.26 1.25

C 1.39 1.44 1.46 1.47 1.17 1.19 1.20 1.19 1.27 1.30 1.31 1.31

Table 3: Comparison of MLP numbers by MLPsim and Cycle-Accurate Simulator.

ROB/Issue
Window

Size

Issue
Config

Database SPECjbb2000 SPECweb99

Estimated
using

Config A

Estimated
using

Config B

Estimated
using

Config C
Measured

Estimated
using

Config A

Estimated
using

Config B

Estimated
using

Config C
Measured

Estimated
using

Config A

Estimated
using

Config B

Estimated
using

Config C
Measured

64 A 7.97 7.99 7.91 8.02 2.91 2.90 2.86 2.91 2.38 2.37 2.33 2.37

B 7.81 7.83 7.75 7.83 2.86 2.85 2.81 2.85 2.37 2.37 2.33 2.36

C 7.33 7.36 7.28 7.28 2.86 2.85 2.81 2.80 2.35 2.34 2.31 2.30

Table 4: Comparison Between Estimated and Measured CPI.

1063-6897/04 $20.00 (c) 2004 IEEE

aged from all epochs.
As a basis for comparison, the MLP achieved by in-order

instruction issue is shown in Table 5. The MLP achieved by in-
order issue is somewhat higher in SPECweb99 because this bench-
mark contains a significant number of useful software prefetches.
In general, stall-on-use only achieves marginally more MLP than
stall-on-miss. Comparing the MLP achieved by our default proces-
sor configuration (i.e. “64C”) to that achieved by an in-order stall-
on-use processor, our moderately aggressive out-of-order processor
achieves an MLP increase of 30% for the database workload, 12%
for SPECjbb2000 and 13% for SPECweb99.

Examining Figure 4, we notice two major trends. Firstly, the
database workload achieves the highest MLP among the three
workloads as expected given that it has the highest L2 miss rate.
Surprisingly though, SPECweb99, which has a miss rate equal to
one tenth that of the database workload, also achieves good MLP,
due to the strong clustering of misses in this benchmark, as dis-
cussed in Section 2.5, and the lack of dependencies between these
misses. Secondly, as the sizes of the instruction issue window and
ROB are increased, relaxing issue constraints becomes critical to
achieving higher MLP. Most notably, at larger instruction issue
window and ROB sizes, the serializing constraints of serializing
instructions are a very serious impediment to exploiting MLP, espe-
cially for SPECjbb2000. Executing loads out-of-order benefits
SPECjbb2000 when the ROB size exceeds 32, but it does not bene-
fit the database workload and SPECweb99 unless loads are also
allowed to speculate past earlier stores. For all three workloads,
allowing branches to execute out-of-order becomes important when
ROB size reaches 128 and beyond.

Benchmark Stall-on-Miss Stall-on-Use

Database 1.02 1.06
SPECjbb2000 1.00 1.01
SPECweb99 1.10 1.13

Table 5: MLP of In-Order Issue.

Figure 4: Impact of ROB Size and Issuing Constraints.

Database

1

1.2

1.4

1.6

1.8

2

2.2

16 32 64 128 256

Issue Window/ROB Size

M
L

P

E

D

C

B

A

SPECjbb2000

1

1.1

1.2

1.3

1.4

1.5

1.6

16 32 64 128 256

Issue Window/ROB Size

M
L

P

E

D

C

B

A

Figure 5: Factors Inhibiting Further MLP.

Database

0%

20%

40%

60%

80%

100%

16
A
16

B
16

C
16

D
16

E
32

A
32

B
32

C
32

D
32

E
64

A
64

B
64

C
64

D
64

E
12

8A
12

8B
12

8C
12

8D
12

8E
25

6A
25

6B
25

6C
25

6D
25

6E

serialize

dep
store
missing
load
Imiss
end
mispred
br
max win

Imiss
start

SPECjbb2000

0%

20%

40%

60%

80%

100%

16
A
16

B
16

C
16

D
16

E
32

A
32

B
32

C
32

D
32

E
64

A
64

B
64

C
64

D
64

E
12

8A
12

8B
12

8C
12

8D
12

8E
25

6A
25

6B
25

6C
25

6D
25

6E

serialize

dep
store
missing
load
Imiss
end
mispred
br
max win

Imiss
start

SPECweb99

0%

20%

40%

60%

80%

100%

16
A
16

B
16

C
16

D
16

E
32

A
32

B
32

C
32

D
32

E
64

A
64

B
64

C
64

D
64

E
12

8A
12

8B
12

8C
12

8D
12

8E
25

6A
25

6B
25

6C
25

6D
25

6E

serialize

dep
store
missing
load
Imiss
end
mispred
br
max win

Imiss
start

\

SPECweb99

1

1.1

1.2

1.3

1.4

1.5

1.6

16 32 64 128 256

Issue Window/ROB Size

M
L

P

E

D

C

B

A

1063-6897/04 $20.00 (c) 2004 IEEE

In Figure 5, each segment of a bar represents a condition that
prevents more MLP from being uncovered in an epoch. Imiss start
occurs when the epoch trigger is a missing instruction fetch. Since
instruction fetch is blocking, no other off-chip accesses can be over-
lapped. Maxwin occurs when the issue window or the ROB is full.
Mispred br occurs when a mispredicted branch that is dependent on
a missing load is encountered. Imiss end occurs when the epoch
trigger is a missing load or a missing prefetch and a missing instruc-
tion fetch prevented subsequent off-chip accesses from being over-
lapped. Missing load occurs when a missing load prevented
subsequent missing loads or missing prefetches from being over-
lapped. This constraint is only valid under issue configuration A.
Dep store occurs when a store that was unable to execute because
of its address dependence on a missing load prevents subsequent
missing loads or missing prefetches from being overlapped. This
constraint is only valid for configurations A and B. Serialize occurs
when a serializing instruction prevents subsequent missing loads
and missing prefetches from being overlapped. The X-axis label in
each graph refers to the issue window/ROB size and the issue con-
figuration.

The results in Figure 5 show that missing instruction fetches
(Imiss start) account for approximately 12-18% of all epoch trig-
gers for the database workload and 10-13% of all epoch triggers for
SPECweb99. We note that the latencies of these missing instruction
fetches are fully exposed and highly detrimental to MLP and over-
all performance. Therefore, effective instruction prefetching for
SPECweb99 and the database workload can improve MLP and
overall performance significantly.

The results also show that for issue configurations A to D,
beyond a window size of 32 instructions, Maxwin only accounts for
50% or less of the MLP inhibiting conditions. Therefore, issue win-
dow/ROB size limitation itself is only one of several impediments
to achieving higher MLP. As noted above, for large issue win-
dow/ROB sizes, the serializing constraint of serializing instructions
is actually the most serious impediment.

5.3.2 Decoupling Issue Window and ROB Size
In the previous section, we set the ROB size and the issue win-

dow size to be equal. In reality, the ROB is much easier to expand
than the issue window because it is a FIFO buffer while the latter is
a content addressable memory (CAM) structure. Making the issue
window very large is unrealistic because it impacts the processor’s
cycle time. In this section, we study the MLP impact of making the
ROB several times larger than the issue window. In Figure 6, each
bar on a graph represents an issue window size and issue constraints
configuration. For example, “16D” refers to an issue window size
of 16 and issue configuration D. Each segment on a bar (except the
segment labelled “INF”) represents a ROB size that is some multi-
ple of the issue window size. For example the “4X” segment on the
“16D” bar refers to a ROB size of 64. The “2048” segment on the
bar refers to a constant ROB size of 2048. The rightmost bar on
each graph, labelled “INF” refers to a processor configuration with
issue window size = 2048, ROB size = 2048 and issue configura-
tion = E.

The results show that enlarging the ROB greatly improves
MLP for the SPECjbb2000 and the database workload. The
improvement increases with the more aggressive issue configura-
tions and is dramatic for issue configuration E. For SPECweb99,
enlarging the ROB does not show much improvement for issue con-

figurations A to D but shows great improvement for issue configu-
ration E.

As an example of the MLP improvements attainable by an
enlarged ROB, when the ROB for the “64D” processor configura-
tion is enlarged from 64 to 256 entries, MLP improves by 16% for
the database workload, by 12% for SPECjbb2000 and by 2% for
SPECweb99. When the ROB for the “64E” configuration is
enlarged from 64 to 1024 entries, the MLP improvement is 51% for
the database workload, 49% for SPECjbb2000 and 22% for
SPECweb99.

Overall, the results show that decoupling reorder buffer size
from issue window size allows much more effective and efficient
exploitation of MLP. The benefits of this decoupling has also been
discovered by other researchers [19, 20].

5.3.3 Impact of Cache Sizes
Figure 7 shows the impact of L2 cache size on MLP. We

Figure 6: Impact of Decoupling Issue Window and
ROB Sizes.

SPECjbb2000

1

1.2

1.4

1.6

1.8

2

2.2

2.4

16
B

32
B

64
B

12
8B 16

C
32

C
64

C
12

8C 16
D

32
D

64
D

12
8D 16

E
32

E
64

E
12

8E IN
F

Issue Window Size and Issue Constraints

M
L

P

2048

8X

4X

2X

1X

SPECweb99

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

16
B

32
B

64
B

12
8B 16

C
32

C
64

C
12

8C 16
D

32
D

64
D

12
8D 16

E
32

E
64

E
12

8E IN
F

Issue Window Size and Issue Constraints

M
L

P

2048

8X

4X

2X

1X

Database

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

16
B

32
B

64
B

12
8B 16

C
32

C
64

C
12

8C 16
D

32
D

64
D

12
8D 16

E
32

E
64

E
12

8E IN
F

Issue Window Size and Issue Constraints

M
L

P

2048

8X

4X

2X

1X

1063-6897/04 $20.00 (c) 2004 IEEE

assume that misses to the L2 cache result in long-latency off-chip
accesses. As cache size is increased, the intuitive expectation is that
MLP will be reduced because the reduction in cache misses will
likely result in increased distances between off-chip accesses, mak-
ing the exploitation of MLP more difficult. This expectation holds
for the database workload and SPECjbb2000 but not for
SPECweb99. For SPECweb99, the misses that are eliminated occur
mostly in epochs with low MLP. In such a situation, the reduction in
the number of epochs tracks the reduction in the number of misses,
and MLP (which is equal to ratio of the number of misses to the
number of epochs) increases.

5.4 New Microarchitecture Features
In this section, we quantify the MLP impact of two recently

proposed microarchitecture features: runahead execution[8, 9] and
value prediction[10, 11, 12, 18].

5.4.1 Runahead Execution
As described in Section 3.5, runahead execution (RAE)

increases MLP because it removes the issue window and reorder
buffer size constraints of the processor as well as the serialization
constraints of serializing instructions. Figure 8 compares the MLP

achieved by runahead execution against two conventional out-of-
order issue processor configurations. Both of these configurations
have 64-entry issue windows and issue configuration D. They differ
in that the first configuration has a 64-entry ROB while the second
has a 256-entry ROB. In this experiment, we assume that the RAE
processor can runahead up to at most 2048 instructions in RAE
mode. In reality, the maximum runahead distance is dependent on
the off-chip access latency.

The results show that runahead execution demonstrates

impressive improvements in MLP over the two conventional out-
of-order issue processor configurations. These improvements are
82% and 56% for the database workload, 102% and 81% for
SPECjbb2000, and 49% and 46% for SPECweb99.

The observant reader will notice that the RAE results are iden-
tical to the “INF” (rightmost) bars in Figure 6. In effect, RAE is an
alternative and much more realistic means of achieving the effects
of a very large issue window and a very large ROB, and of remov-
ing the serializing constraints of serializing instructions. We also
note that there are other microarchitecture ideas such as speculative
precomputation [15], preexecution [16, 17] and others [21, 22, 23]
that share the MLP-enhancing properties of runahead execution.

5.5 Value Prediction
Figure 9 shows the performance improvement obtained by

adding value prediction to the same processor configurations shown
in Figure 8. The value predictor used is a last-value predictor with
16K entries and is used to predict only the values of missing loads.
Its accuracy and coverage are shown in Table 6.

The results show that value prediction improves MLP of the
database workload by 4%-9%, with the RAE configuration show-
ing the most gain. For SPECjbb2000 and SPECweb99, the perfor-
mance gain for the two conventional out-of-order processor
configurations is negligible. The performance gain for RAE is 2%
for SPECjbb2000 and 5% for SPECweb99. Arguably, missing load
value prediction is only worthwhile when combined with RAE.
Value prediction in RAE is also easier to implement since it does
not require a recovery mechanism [7].

5.6 Limit Study
In this section, we attempt to find profitable research direc-

tions for improving MLP by performing a limit study assuming in
turn perfect instruction prefetching, perfect value prediction, per-
fect branch prediction and the combination of perfect value predic-
tion and perfect branch prediction.

The upper graph in Figure 10 assumes a baseline processor
that implements RAE. It shows that for the database workload and
SPECweb99, perfect instruction prefetching (RAE.perfI), perfect

Figure 7: Impact of L2 Cache Size.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1M 2M 4M 8M

L2 Cache Size

M
L

P SPECweb99

Database

SPECjbb2000

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

64
D

64
D.2

56
RAE

64
D

64
D.2

56
RAE

64
D

64
D.2

56
RAE

M
L

P

Figure 8: Impact of Runahead Execution.

Database SPECjbb SPECweb

Benchmark Correct Wrong No Predict

Database 42% 7% 51%
SPECjbb2000 20% 3% 77%
SPECweb99 25% 5% 70%

Table 6: Value Predictor Statistics.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

64
D

64
D.2

56
RAE

64
D

64
D.2

56
RAE

64
D

64
D.2

56
RAE

M
LP With VP

No VP

Figure 9: Impact of Value Prediction.

Database SPECjbb SPECweb

1063-6897/04 $20.00 (c) 2004 IEEE

value prediction (RAE.perfVP) and perfect branch prediction
(RAE.perfBP) all show similarly good MLP gains. The gains are
39%-48% for the database workload and 21%-23% for
SPECweb99. For SPECjbb2000, perfect instruction prefetching
does not show any MLP gain (because missing instruction fetches
are not a problem) but perfect value prediction and perfect branch
prediction improves MLP by 56% and 45% respectively. When per-
fect value prediction is combined with perfect branch prediction
(RAE.perfVP.perfBP), the MLP gain is 134% for the database
workload, 215% for SPECjbb2000 and 57% for SPECweb99.

The lower graph in Figure 10 assumes a baseline processor
without RAE. This processor has a 64-entry issue window, 256-
entry reorder buffer and implements issue configuration D. Com-
pared to the processor with RAE, the MLP gains are modest.

These results shown that there is still considerable headroom
in improving MLP beyond that attainable by RAE. In our opinion,
improving instruction prefetching is probably easier than improving
branch prediction and value prediction and is therefore the most
promising avenue for further improving MLP for SPECweb99 and
the database workload.

5.7 MLP and Overall Performance
So far, we have presented all our results in terms of MLP. We

now relate these gains in MLP back to gains in overall perfor-
mance. Figure 11 shows the percentage performance improvement
of a sample of processor configurations studied in Sections 5.3-5.6
relative to the “64D” processor configuration. The CPI estimates
for each configuration are obtained by substituting their MLP from
MLPsim and other metrics from Table 1 into the second equation of
Section 2.3. The off-chip access latency used is 1000 cycles.

The results show that RAE improves overall performance by
60% for the database workload, by 44% for SPECjbb2000 and by
11% for SPECweb99. These are impressive performance gains. In
the limit when runahead execution is combined with perfect branch
prediction and perfect value prediction, the maximum performance
improvement is 174% for the database workload, 103% for
SPECjbb2000 and 21% for SPECweb99.

6 Related Work
As far as we know, the term MLP was first used by Glew [5],

who qualitatively argued why microarchitects should focus on it
rather than on ILP. Pai and Adve [6] proposed a software approach
of using compiler code transformations to increase MLP in scien-
tific applications. Zhou and Conte [7] recently proposed using
value prediction to enhance MLP instead of ILP. In their study, they
consider all cache misses as contributing to MLP, including those
that hit in the L2 cache.

Sorin et al’s [24] fM parameter appears to be similar to our
definition of MLP but their parameter counts all memory accesses
(both useful and useless) while our MLP metric counts only useful
accesses. Our MLPsim simulator is similar to their FastILP simula-
tors in some ways. For example, the notion of epochs in MLPsim is
identical to the notion of eras in FastILP. However, unlike FastILP,
MLPsim is completely timing-unaware and does not need to model
the cycle behavior of on-chip computation. Pai et al’s [25] and Ran-
ganathan et al’s [26] L2 MSHR occupancy are similar to Sorin’s fM
parameter in that they are simply counts of the number of outstand-
ing memory accesses. The main focus of these three papers was on
the modeling and performance evaluation of multiprocessor sys-
tems with ILP processors. In contrast, the focus of this paper is a
detailed and systematic study of how microarchitecture affects
achievable MLP.

7 Conclusion and Future Work
In summary, this paper makes the following contributions:
• We define MLP formally, show how it can be measured, and

relate it to overall processor performance.
• We show that off-chip accesses are clustered in the commer-

cial applications we studied, making the exploitation of MLP feasi-
ble.

• We use the epoch model to reason about MLP and how
microarchitecture features qualitatively impact MLP.

• We show that out-of-order execution is moderately effective
in exploiting MLP and quantify the impact of microarchitecture

With RAE

1

2

3

4

5

6

7

8

RAE

RAE.p
er

fI

RAE.p
er

fV
P

RAE.p
er

fB
P

RAE.p
erfV

P.p
er

fB
P

RAE

RAE.p
erfI

RAE.p
erfV

P

RAE.p
erfB

P

RAE.p
er

fV
P.p

er
fB

P
RAE

RAE.p
er

fI

RAE.p
er

fV
P

RAE.p
er

fB
P

RAE.p
erfV

P.p
er

fB
P

M
L

P

Figure 10: Impact of Perfect Instruction Fetch,

Database SPECweb

Branch Prediction and Value Prediction.

No RAE

0

0.5

1

1.5

2

2.5

64D
.2

56

64D
.2

56
.p

er
fI

64
D.2

56
.p

er
fV

P

64
D.2

56
.p

er
fB

P

64
D.2

56
.p

er
fV

P.p
erfB

P

64D
.2

56

64D
.2

56
.p

er
fI

64D
.2

56
.p

er
fV

P

64D
.2

56
.p

er
fB

P

64D
.2

56
.p

er
fV

P.p
er

fB
P

64
D.2

56

64
D.2

56.
pe

rfI

64D
.2

56
.p

erfV
P

64D
.2

56
.p

erfB
P

64D
.2

56
.p

er
fV

P.p
er

fB
P

M
L

P

Database SPECjbb SPECweb

SPECjbb

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

64
D

64
D.2

56
RAE

RAE.p
er

fI

RAE.p
er

fV
P

RAE.p
er

fB
P

RAE.pe
rfV

P.p
er

fB
P

64
D

64
D.2

56
RAE

RAE.p
er

fI

RAE.p
er

fV
P

RAE.p
er

fB
P

RAE.pe
rfV

P.p
er

fB
P

64
D

64
D.2

56
RAE

RAE.p
er

fI

RAE.p
er

fV
P

RAE.p
er

fB
P

RAE.pe
rfV

P.p
er

fB
P

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Database SPECjbb SPECweb

Figure 11: Overall Performance Improvement.

1063-6897/04 $20.00 (c) 2004 IEEE

parameters such as issue window size, reorder buffer size and on-
chip cache sizes on MLP. We demonstrate that instruction issuing
constraints have to be relaxed in order to attain the benefits of large
issue windows and that serializing instructions are a major impedi-
ment to MLP.

• We show that decoupling the reorder buffer from the issue
window and enlarging it increases MLP significantly.

• We demonstrate that runahead execution is highly effective
in exploiting MLP because it removes the issue window and reorder
buffer size constraints of the processor and because it removes the
serialization constraints of serializing instructions.

• We show that missing load value prediction is somewhat
effective in improving MLP when combined with runahead execu-
tion.

• Our limit study shows that there is very significant head-
room in improving MLP via instruction prefetching, more accurate
branch prediction and better value prediction.

• We show that for the database workload and SPECjbb2000,
these improvements in MLP translate into impressive overall per-
formance gains.

In conclusion, this study shows that microarchitecture features
and parameters have a profound impact on achievable MLP and
that exploiting MLP is an effective approach for improving the per-
formance of memory bound applications. Our future work includes
studying MLP for multithreaded processors as well as studying
store MLP for applications where a finite store buffer limits perfor-
mance. Based on the insights of this study, we also plan to study
new microarchitecture ideas for further improving MLP.

Acknowledgment
We would like to thank Hui-May Chang, Peter Lawrence,

Harit Modi, Khoa Nguyen, Tien-Pao Shih and Jhy-Chun Wang for
their infrastructure contributions. We would also like to thank Craig
Anderson, Sorin Iacobovici, Gurindar Sohi, Rabin Sugumar, Marc
Tremblay and Stevan Vlaovic for reviewing early drafts of this
paper.

References
[1] A. Maynard, C. Donelly and B. Olszewski, “Contrasting

Characteristics and Cache Performance of Technical and
Multi-User Commercial Workloads,” in ASPLOS-VI, 1998.

[2] L. Barroso, K. Gharachorloo, E. Bugnion, “Memory System
Characterization of Commercial Workloads,” in 25th
International Symposium on Computer Architecture, 1998.

[3] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eric, H.
Nueckel and J. Shen, “Scaling and Characterizing Database
Workloads: Bridging the Gap between Research and Practice,”
in 36th International Symposium on Microarchitecture,
December 2003.

[4] W. Wulf, and S. McKee, “Hitting the Memory Wall: Implica-
tions of the Obvious,” in Computer Architecture News, Vol.
23, No. 4, September 1995.

[5] A. Glew, “MLP yes! ILP no!,” in ASPLOS Wild and Crazy
Idea Session ‘98, October 1998.

[6] V. Pai and S. Adve, “Code Transformations to Improve Mem-
ory Parallelism,” in 32nd International Symposium on
Microarchitecture, November 1999.

[7] H. Zhou and T. Conte, “Enhancing Memory Level Parallelism
via Recovery-Free Value Prediction,” in International Confer-
ence on Supercomputing, June 2003.

[8] J. Dundas and T. Mudge, “Improving Data Cache Performance
by Pre-Executing Instructions Under a Cache Miss,” in Inter-
national Conference on Supercomputing, July 1997.

[9] O. Mutlu, J. Stark, C. Wilkerson and Y. Patt, “Runahead Exe-
cution: An Alternative to Very Large Instruction Windows for
Out-of-order Processors,” in 9th International Sysmposium on
High Performance Computer Architecture, February 2003.

[10] M. Lipasti and J. Shen, “Value Locality and Load Value Pre-
diction,” in ASPLOS-VII, October 1996.

[11] F. Gabbay and A. Mendelson, “Speculative Execution Based
on Value Prediction,” in EE Department Tech Report 1080,
Technion - Israel Institute of Technology, November 1996.

[12] Y. Sazeides and J. Smith, “The Predictability of Data Values,”
in 30th International Symposium on Microarchitecture, 1997.

[13] D. Weaver and T. Germond, “The SPARC Architecture Man-
ual,” PTR Prentice Hall, 1994.

[14] www.spec.org
[15] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery

and J. Shen, “Speculative Precomputation: Long-Range
Prefetching of Delinquent Loads,” in 28th International Sym-
posium on Computer Architecture, 2001.

[16] C. Luk, “Tolerating Memory Latency Through Software-Con-
trolled Pre-Execution in Simultaneous Multithreading Proces-
sors,” in 28th International Symposium on Computer
Architecture, 2001.

[17] D. Kim and D. Yeung, “Design and Evaluation of Compiler
Algorithms for Pre-Execution,” in ASPLOS-X, October 2002.

[18] K. Wang and M. Franklin, “Highly Accurate Data Value Pre-
diction Using Hybrid Predictors,” in 30th International Sym-
posium on Microarchitecture, November 1997.

[19] T. Karkhanis and J. Smith, “A Day in the Life of a Data Cache
Miss,” in Workshop on Memory Performance Issues, May
2002.

[20] H. Akkary, R. Rajwar and S. Srinivasan, “Checkpoint Process-
ing and Recovery: Towards Scalable Large Instruction Win-
dow Processors,” in 36th International Symposium on
Microarchitecture, December 2003.

[21] A. Roth and G. Sohi, “Speculative Data-Driven Multithread-
ing,” in 7th International Symposium on High-Performance
Computer Architecture, January 2001.

[22] A. Moshovos, D. Pnevmatikatos and A. Baniasadi, “Slice-Pro-
cessors: An Implementation of Operation-Based Prediction,”
in International Conference on Supercomputing, June 2001.

[23] M. Dubois and Y. Song, “Assisted Execution,” University of
Southern California CENG Technical Report 98-25, 1998.

[24] D. Sorin et al, “Analytic Evaluation of Shared-Memory Sys-
tems with ILP Processors,” in 25th International Symposium
on Computer Architecture, 1998.

[25] V. Pai, P. Ranganathan and S. Adve, “The Impact of Instruc-
tion-Level Parallelism on Multiprocessor Performance and
Simulation Methodology,” in International Symposium on
High Performance Computer Architecture, February 1997.

[26] P. Ranganathan, K. Gharachorloo, S. Adve and L. Barroso,
“Performance of Database Workloads on Shared-Memory
Systems with Out-of-Order Processors,” in ASPLOS-VIII,
1998.

1063-6897/04 $20.00 (c) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

