Microarchitecture Optimizations for

Exploiting Memory-Level Parallelism

Yuan Chou, Brian Fahs, Santosh Abraham
Architecture and Advanced Development
Scalable Systems Group

Sun Microsystems

Motivation

e Performance of many commercial apps bound by
cost of memory accesses — in today's database
workloads, 2/3 execution time spent in memory
accesses

* Instruction-level parallelism ineffective in hiding
latency of memory accesses — this latency
continues to grow

* Promising alternative is to exploit memory-level
parallelism (MLP) and overlap memory accesses
with each other

What is MLP?

Example:

11
12
13
14
15
16
I/

{

add r1,4->r2

load [r2]->r3

load [r1]->r2 off-chip access
add r1,8->r4

load [r4]->r6 off-chip access
add r2,256->r7

load [r7]->r8 off-chip access

What is MLP?

Example:

11 add r1,4->r2

12 load [r2]->r3

13 load [r1]->r2

14 add r1,8->r4

15 (Ioad [r4]->r6

16 add r2,256->r7
¥4 load [r7]->r8

off-chip access

off-chip access

off-chip access

p Time

Compute ===

Memory

What is MLP?

Example:

12 load [r2]->r3

K load [r1]->r2 off-chip access
14 add r1,8->r4

15 (Ioad [r4]->r6 off-chip access
16 add r2,256->r7

i/ load [r7]->r8 off-chip access

p Time

Compute I

Memory

What is MLP?

Example:

I3 load [r1]->r2 off-chip access
14 add r1,8->r4

15 (Ioad [r4]->r6 off-chip access
16 add r2,256->r7

i/ load [r7]->r8 off-chip access

p Time

Compute [
1
Memory

What is MLP?

Example:

I3 load [r1]->r2 off-chip access
14 add r1,8->r4

15 (Ioad [r4]->r6 off-chip access
16 add r2,256->r7

i/ load [r7]->r8 off-chip access

p Time

Compute I

|
Memory

What is MLP?

Example:

I3 load [r1]->r2 off-chip access
15 load [r4]->r6 off-chip access
16 add r2,256->r7

i/ load [r7]->r8 off-chip access

p Time

Compute I
[
Memory]

What is MLP?

Example:
15 load [r4]->r6 off-chip access
16 (add r2,256->r7
i/ load [r7]->r8 off-chip access
p Time
Compute = —— —

]
Memory]

What is MLP?

Example:

1/ load [r7]->r8

off-chip access

p Time

Compute

Memory

10

What is MLP?

Some notion of off-chip accesses being serviced

in parallel ...

p Time
Compute =mmm— —

1 1
Memory]

11

What is MLP?

More precisely:

MLP = average number of useful long-latency off-
chip accesses outstanding when there 1s at least one
such access outstanding

12

What is MLP?

More precisely:

MLP = average number of useful long-latency off-
chip accesses outstanding when there 1s at least one
such access outstanding

100
150
200
2501
o0
350
400
450
500

Compute

—
Memory

550 B

13

600 —-

What is MLP?

More precisely:

MLP = average number of useful long-latency off-
chip accesses outstanding when there 1s at least one
such access outstanding

MLP = [(10+10+100)*1 + (90)*2] / 210 = 1.43

100
150
200
250
o0
350
400
450
500

550 B

14

600 —-

MLP and Overall Performance

MissRate x MissPenalty
= +
CPI = CP[f(l Ovu!apCM) VILP
: :
on-chip CPI off-chip CPI

15

CPl = CP[pefjf(| - Over‘[apCM)Jr

A
on-chip CPI

Example:

MLP =1
off-chip CPI = 2
on-chip CPI = 1
CPI=3

MissRate x MissPenalty
MLP

*
off-chip CPI

16

MLP and Overall Performance

MissRate x MissPenalty

CPIl = CP[f(| - Ovu[apCM)Jr

MLP
; ;
on-chip CPI off-chip CPI
Example:
MLP =1 MLP =2
off-chip CPI = 2 off-chip CPI =1
on-chip CPI = 1 on-chip CPI = 1

CPI=3 CPl =2

CPI
©O -~ N W A OO N ®

2MB L2$

Database

SPECjbb SPECweb

ﬁ

200 1000 200 1000 200

Miss Penalty

1000

M off-chip
@ on-chip

Off-chip miss rate
(per 100 insts)

Database 0.84

SPECjbb 0.19
SPECweb 0.09

18

Off-Chip Access Clusterlng _

L2$ Miss Rate Inter-Miss Dist (insts)
(per 100 insts) Avg <32 <64 <128

Database 0.84 119 50% 70% 82%
SPECjbb 0.19 526 50% 64% 70%
SPECweb 0.09 1111 34% 53% 69%

19

L2$ Miss Rate Inter-Miss Dist (insts)
(per 100 insts) Avg <32 <64 <128

Database 0.84 119 50% 70% 82%
SPECjbb 0.19 526 50% 64% 70%
SPECweb 0.09 1111 34% 53% 69%

Off-chip access clustering suggests exploiting MLP feasible

20

MLP Limiters

Important microarchitecture limiters:

1. Issue window and reorder buffer (ROB) size
2. Serializing instructions

3. Instruction fetch off-chip accesses

4. Unresolvable mispredicted branches

5. Load and branch instruction issue restrictions

21

Issue Window and ROB Slzes

* Load requiring off-chip access blocks instruction
retirement

* |ssue window and ROB fills up, stalling processor

Example:

i1 load [r1]->r2 off-chip access

12 add r1,r3->r4 Assume:

K load [r4]->rS off-chip access Issue window size = 4
i4 addr1,r5->r6 ROB size = 4

15 load [r6]->r7 off-chip access

22

Serializing Instructions

* Most ISAs provide instructions for implementing

synchronization primitives and for memory ordering
e.g. CASA, LDSTUB and MEMBAR in SPARC ISA

» Straightforward implementation requires pipeline drain

e Can be fairly prevalent e.g. 0.6% CASA instructions in
SPECjbb2000; used for Java object locking

Example:

i1 load O(r1)->r2 off-chip access
12 membar

K load 0(r3)->r4 off-chip access

23

Instruction Fetch Misses

* No subsequent off-chip accesses can be overlapped
since they cannot be fetched

 |nstruction fetch misses that are the first off-chip
accesses are most expensive

Example:
11 add r1,r3->r4 off-chip instruction access
12 load [r4]->r5 off-chip access

24

microsystems

Unresolvable Mispredicted
Branches

* Mispredicted branches dependent on off-chip access
cannot resolve until off-chip access completes

* Unless control independent and data independent,
subsequent off-chip accesses cannot be overlapped

Example:

i1 (Ioad O(r1)->r2 off-chip access
12 beq r2,0,tgt mispredicted
K load 0(r5)->r6 off-chip access

25

Load Issue Policy

e |ssue in-order or out-of-order w.r.t. other loads

 Loads wait for earlier store addresses to resolve or

speculate past earlier stores

Example:
i1 ,load 0(r1)->r2 off-chip access
12 Eload 0(r2)->r3 off-chip access

K load 0(r4)->r5 off-chip access
14 store r6->0(r3)
15 load O(r6)->r7 off-chip access

In-order load issue

26

Load Issue Policy

e |ssue in-order or out-of-order w.r.t. other loads

 Loads wait for earlier store addresses to resolve or
speculate past earlier stores

Example:
i1 ,load 0(r1)->r2 off-chip access
12 Zload 0(r2)->r3 off-chip access

K load 0(r4)->r5 off-chip access
14 store r6->0(r3)
15 load O(r6)->r7 off-chip access

Out-of-order load issue, wait for earlier stores

27

Load Issue Policy

e |ssue in-order or out-of-order w.r.t. other loads

 Loads wait for earlier store addresses to resolve or
speculate past earlier stores

Example:
i1 ,load 0(r1)->r2 off-chip access
12 Eload 0(r2)->r3 off-chip access

K load 0(r4)->r5 off-chip access
14 store r6->0(r3)
15 load O(r6)->r7 off-chip access

Out-of-order load issue, speculate past earlier stores

28

Branch Issue Policy

e |ssue in-order or out-of-order w.r.t. other branches

* Makes difference when branch dependent on off-chip
access prevents subsequent mispredicted branch
from resolving

Example:

i1 ,load O(r1)->r2 off-chip access
2 'beq r2,0,tgt1

13 beq r1,0,tgt2 mispredicted
14 load 0(r3)->r4 off-chip access
In-order branch issue

29

Branch Issue Policy

e |ssue in-order or out-of-order w.r.t. other branches

* Makes difference when branch dependent on off-chip
access prevents subsequent mispredicted branch
from resolving

Example:

i1 ,load O(r1)->r2 off-chip access
2 'beq r2,0,tgt1

13 beq r3,tgt2 mispredicted
14 load 0(r4)->r5 off-chip access
Out-of-order branch issue

30

Experimental Methodology

31

MLPsim

e Tool for measuring MLP

* Implements epoch MLP model (see paper)
 No need to model any on-chip computation

* No need to model timing of off-chip accesses

* Only need to determine which off-chip accesses can
be overlapped

 Simple, small and easy to verify

* Results validated against cycle-accurate processor
simulator

32

Benchmarks

Collectively, represent 3-tiered datacenter:
« Database workload

« SPEC|bb2000 - server side Java, emphasizes
business logic and object manipulation

e SPECweb99 — web server performance
Highly optimized binaries
Carefully validated traces

Simulation runs: warm 50M, collect statistics 100M

33

Default Processor Model

32KB 4-way 64B 1$ and D$
2MB 4-way 64B L2$, no L3$
2K entry shared TLB

64K entry gshare, 16K entry BTB, 16 entry RAS
32 entry fetch buffer

64 entry issue window, 64 entry ROB
Infinite load and store buffers

3-wide OOQO instruction issue: OOOQO loads allowed to
speculate past earlier stores, in-order branches

I.e. moderately aggressive out-of-order issue processor

34

Results

35

Experiments

1. Out-of-order issue policy, issue window / ROB sizes
2. Decoupled issue window / ROB

3. Cache size

4. Runahead execution

5. Limit study

36

Out-of-Order Issue Policy

Load Issue Branch Issue Serializing Insts
out-of-order store speculation out-of-order non-serializing

A no no no no
B yes no no no
C yes yes no no
D yes yes yes no
E yes yes yes yes

37

Out-of-Order Issue

Database
2.2

2
e el =
. / -m-D
~A C
5) /. -® B
] A
T b
1.4 @
Q? 2
1.2
der stall on u
L U Jer stall on is

" . o4 128 256

Issue Window/ROB Size

1

2 Sun

microsystems

Decoupled Issue Window/ROB

Database
2.6
2.4
2.2
2 m 2048
2 m8X
= 1.8 4x
= O
m2X
1.6 m1X
1.4 ||
1 .2 ﬂ_ﬂ_ﬂ_F i
1 T T T T T T T T
& o0 P (13’% R R I ,{13’0 & o (13’((/ q/gbié(/
Issue Window Size and Issue Constraints

39

Cache Size Impact

MLP

1.5
1.45
1.4
1.35
1.3
1.25
1.2
1.15
1.1
1.05

—e— SPECweb99
—m Database
—aA— SPECjbb2000

™ 2M 4M 8M
L2 Cache Size

40

Runahead Execution (HW Scout)

 When load requiring off-chip access reaches head of
ROB, transition to runahead execution (RAE) mode

* In RAE mode:

- stores do not modify architected state

- loads requiring off-chip accesses convert to prefetches;
dependent insts dropped

- speculate past serializing instructions
* When load data returns, terminate RAE mode

Improves MLP by removing MLP limiters:
1. ROB / issue window size and issue policy constraints
2. serializing instructions

41

Runahead Execution

2.8

Database
2.6

SPECjbb

SPECweb

2.4

2.2

2

MLP

1.8

>

>

1.6
1.4 1
B 1l 1k
17 T T T . T T T T T
© © ©
F o P P P

>

42

microsystems

Limit Study

MLP

With RAE
j Database SPECjbb SPECweb
6

5

4

3

5 |

1.

FEFLEE S LSS LS ES

F e EGST e
((/.Q ((/.Q ((/.Q
& & &

43

Overall Performance

microsystems

Performance Improvement

200%
180%% Database SPEC)bb SPECweb
160%
140%
120%
100% =B -
80% —
60% N
40% —— .
20% —— .
e, ANNEN WW alnnll
Qi:@(ﬁ@ QY?;/'Q@{Z0§QQ®{8§2Q®{8)Q biotﬁbb Q%QQ{:0§QQ®§§2Q® Qg ‘biO(‘ﬁD@ QYQ;,QQ{ZQ{\AQQQ{@Z@ Q)Q
T o TS T
& & &

44

Results Summary

Out-of-order execution moderately effective in
exploiting MLP

Instruction issue constraints must be relaxed to achieve
benefits of large issue windows

Serializing instructions major impediment to MLP
Decoupling ROB from issue window improves MLP
Runahead execution (HW scout) greatly improves MLP
Limit study shows very significant MLP headroom

For database and SPECjbb, MLP improvements
translate into impressive performance gains

45

Conclusions

* Microarchitecture has profound impact on MLP

 For memory bound workloads, exploiting MLP is
powerful technique for improving performance

46

