
Microarchitecture Optimizations for
Exploiting Memory-Level Parallelism

Yuan Chou, Brian Fahs, Santosh Abraham
Architecture and Advanced Development
Scalable Systems Group
Sun Microsystems

2

Motivation
● Performance of many commercial apps bound by

cost of memory accesses – in today's database
workloads, 2/3 execution time spent in memory
accesses

● Instruction-level parallelism ineffective in hiding
latency of memory accesses – this latency
continues to grow

● Promising alternative is to exploit memory-level
parallelism (MLP) and overlap memory accesses
with each other

3

What is MLP?
Example:
i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

4

What is MLP?
Example:
i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

Time
Compute
Memory

5

What is MLP?
Example:
i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

Time
Compute
Memory

6

What is MLP?
Example:
i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

Time
Compute
Memory

7

What is MLP?
Example:
i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

Time
Compute
Memory

8

What is MLP?
Example:
i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

Time
Compute
Memory

9

What is MLP?
Example:
i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

Time
Compute
Memory

10

What is MLP?
Example:
i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

Time
Compute
Memory

11

What is MLP?

i1 add r1,4->r2
i2 load [r2]->r3
i3 load [r1]->r2 off-chip access
i4 add r1,8->r4
i5 load [r4]->r6 off-chip access
i6 add r2,256->r7
i7 load [r7]->r8 off-chip access

Time
Compute
Memory

Some notion of off-chip accesses being serviced
in parallel ...

12

More precisely:
MLP = average number of useful long-latency off-

chip accesses outstanding when there is at least one
such access outstanding

What is MLP?

13

More precisely:
MLP = average number of useful long-latency off-

chip accesses outstanding when there is at least one
such access outstanding

What is MLP?

1 2 1 1

14

More precisely:
MLP = average number of useful long-latency off-

chip accesses outstanding when there is at least one
such access outstanding

MLP = [(10+10+100)*1 + (90)*2] / 210 = 1.43

What is MLP?

1 2 1 1

15

MLP and Overall Performance

on-chip CPI off-chip CPI

16

MLP and Overall Performance

on-chip CPI off-chip CPI

Example:
MLP = 1
off-chip CPI = 2
on-chip CPI = 1
CPI = 3

17

MLP and Overall Performance

on-chip CPI off-chip CPI

Example:
MLP = 1 MLP = 2
off-chip CPI = 2 off-chip CPI = 1
on-chip CPI = 1 on-chip CPI = 1
CPI = 3 CPI = 2

18

2MB L2$

0

1
2

3

4

5
6

7

8

200 1000 200 1000 200 1000

Miss Penalty

C
PI off-chip

on-chip

Measured CPI Components

SPECjbb SPECwebDatabase
Off-chip miss rate
(per 100 insts)

Database 0.84
SPECjbb 0.19
SPECweb 0.09

19

L2$ Miss Rate Inter-Miss Dist (insts)
(per 100 insts) Avg <32 <64 <128

Database 0.84 119 50% 70% 82%

SPECjbb 0.19 526 50% 64% 70%

SPECweb 0.09 1111 34% 53% 69%

Off-Chip Access Clustering

20

L2$ Miss Rate Inter-Miss Dist (insts)
(per 100 insts) Avg <32 <64 <128

Database 0.84 119 50% 70% 82%

SPECjbb 0.19 526 50% 64% 70%

SPECweb 0.09 1111 34% 53% 69%

Off-Chip Access Clustering

Off-chip access clustering suggests exploiting MLP feasible

21

MLP Limiters
Important microarchitecture limiters:

1. Issue window and reorder buffer (ROB) size

2. Serializing instructions

3. Instruction fetch off-chip accesses

4. Unresolvable mispredicted branches

5. Load and branch instruction issue restrictions

22

Issue Window and ROB Sizes
● Load requiring off-chip access blocks instruction

retirement
● Issue window and ROB fills up, stalling processor

Example:
i1 load [r1]->r2 off-chip access
i2 add r1,r3->r4
i3 load [r4]->r5 off-chip access
i4 add r1,r5->r6
i5 load [r6]->r7 off-chip access

Assume:
Issue window size = 4
ROB size = 4

23

Serializing Instructions
● Most ISAs provide instructions for implementing

synchronization primitives and for memory ordering
e.g. CASA, LDSTUB and MEMBAR in SPARC ISA

● Straightforward implementation requires pipeline drain
● Can be fairly prevalent e.g. 0.6% CASA instructions in

SPECjbb2000; used for Java object locking

Example:
i1 load 0(r1)->r2 off-chip access
i2 membar
i3 load 0(r3)->r4 off-chip access

24

Instruction Fetch Misses
● No subsequent off-chip accesses can be overlapped

since they cannot be fetched
● Instruction fetch misses that are the first off-chip

accesses are most expensive

Example:
i1 add r1,r3->r4 off-chip instruction access
i2 load [r4]->r5 off-chip access

25

Unresolvable Mispredicted
Branches
● Mispredicted branches dependent on off-chip access

cannot resolve until off-chip access completes
● Unless control independent and data independent,

subsequent off-chip accesses cannot be overlapped

Example:
i1 load 0(r1)->r2 off-chip access
i2 beq r2,0,tgt mispredicted
i3 load 0(r5)->r6 off-chip access

26

Load Issue Policy
● Issue in-order or out-of-order w.r.t. other loads
● Loads wait for earlier store addresses to resolve or

speculate past earlier stores

Example:
i1 load 0(r1)->r2 off-chip access
i2 load 0(r2)->r3 off-chip access
i3 load 0(r4)->r5 off-chip access
i4 store r6->0(r3)
i5 load 0(r6)->r7 off-chip access
In-order load issue

27

Load Issue Policy
● Issue in-order or out-of-order w.r.t. other loads
● Loads wait for earlier store addresses to resolve or

speculate past earlier stores

Example:
i1 load 0(r1)->r2 off-chip access
i2 load 0(r2)->r3 off-chip access
i3 load 0(r4)->r5 off-chip access
i4 store r6->0(r3)
i5 load 0(r6)->r7 off-chip access
Out-of-order load issue, wait for earlier stores

28

Load Issue Policy
● Issue in-order or out-of-order w.r.t. other loads
● Loads wait for earlier store addresses to resolve or

speculate past earlier stores

Example:
i1 load 0(r1)->r2 off-chip access
i2 load 0(r2)->r3 off-chip access
i3 load 0(r4)->r5 off-chip access
i4 store r6->0(r3)
i5 load 0(r6)->r7 off-chip access
Out-of-order load issue, speculate past earlier stores

29

Branch Issue Policy
● Issue in-order or out-of-order w.r.t. other branches
● Makes difference when branch dependent on off-chip

access prevents subsequent mispredicted branch
from resolving

Example:
i1 load 0(r1)->r2 off-chip access
i2 beq r2,0,tgt1
i3 beq r1,0,tgt2 mispredicted
i4 load 0(r3)->r4 off-chip access
In-order branch issue

30

Branch Issue Policy
● Issue in-order or out-of-order w.r.t. other branches
● Makes difference when branch dependent on off-chip

access prevents subsequent mispredicted branch
from resolving

Example:
i1 load 0(r1)->r2 off-chip access
i2 beq r2,0,tgt1
i3 beq r3,tgt2 mispredicted
i4 load 0(r4)->r5 off-chip access
Out-of-order branch issue

31

Experimental Methodology

32

MLPsim
● Tool for measuring MLP
● Implements epoch MLP model (see paper)
● No need to model any on-chip computation
● No need to model timing of off-chip accesses
● Only need to determine which off-chip accesses can

be overlapped
● Simple, small and easy to verify
● Results validated against cycle-accurate processor

simulator

33

Benchmarks
Collectively, represent 3-tiered datacenter:
● Database workload
● SPECjbb2000 - server side Java, emphasizes

business logic and object manipulation
● SPECweb99 – web server performance

Highly optimized binaries

Carefully validated traces

Simulation runs: warm 50M, collect statistics 100M

34

Default Processor Model
● 32KB 4-way 64B I$ and D$
● 2MB 4-way 64B L2$, no L3$
● 2K entry shared TLB
● 64K entry gshare, 16K entry BTB, 16 entry RAS
● 32 entry fetch buffer
● 64 entry issue window, 64 entry ROB
● Infinite load and store buffers
● 3-wide OOO instruction issue: OOO loads allowed to

speculate past earlier stores, in-order branches

i.e. moderately aggressive out-of-order issue processor

35

Results

36

Experiments
1. Out-of-order issue policy, issue window / ROB sizes

2. Decoupled issue window / ROB

3. Cache size

4. Runahead execution

5. Limit study

37

Out-of-Order Issue Policy
Load Issue Branch Issue Serializing Insts

out-of-order store speculation out-of-order non-serializing
A no no no no

B yes no no no

C yes yes no no

D yes yes yes no

E yes yes yes yes

38

Out-of-Order Issue
Database

1

1.2

1.4

1.6

1.8

2

2.2

16 32 64 128 256
Issue Window/ROB Size

M
LP

E
D
C
B
A

In-order stall on use
In-order stall on issue

39

Decoupled Issue Window/ROB
Database

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

16B 32
B

64
B

128
B

16C 32
C

64C
12

8C
16D 32

D
64D

12
8D

16E 32E 64E
128

E
204

8E

Issue Window Size and Issue Constraints

M
LP

2048
8X
4X
2X
1X

40

Cache Size Impact

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1M 2M 4M 8M

L2 Cache Size

M
LP

SPECweb99
Database
SPECjbb2000

41

Runahead Execution (HW Scout)
● When load requiring off-chip access reaches head of

ROB, transition to runahead execution (RAE) mode
● In RAE mode:

- stores do not modify architected state
- loads requiring off-chip accesses convert to prefetches;

dependent insts dropped
- speculate past serializing instructions

● When load data returns, terminate RAE mode
Improves MLP by removing MLP limiters:
1. ROB / issue window size and issue policy constraints
2. serializing instructions

42

Runahead Execution

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

64
D

64
D.25

6
RAE

64
D

64
D.25

6
RAE

64
D

64
D.25

6
RAE

M
LP

Database SPECjbb SPECweb

43

Limit Study
With RAE

1

2

3

4

5

6

7

8

RAE

RAE.pe
rfI

RAE.pe
rfV

P

RAE.pe
rfB

P

RAE.pe
rfV

P.pe
rfB

P
RAE

RAE.pe
rfI

RAE.pe
rfV

P

RAE.pe
rfB

P

RAE.pe
rfV

P.pe
rfB

P
RAE

RAE.pe
rfI

RAE.pe
rfV

P

RAE.pe
rfB

P

RAE.pe
rfV

P.pe
rfB

P

M
LP

Database SPECjbb SPECweb

44

Overall Performance

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

64
D

64
D.25

6
RAE

RAE.pe
rfI

RAE.pe
rfV

P

RAE.pe
rfB

P

RAE.pe
rfV

P.pe
rfB

P
64

D

64
D.25

6
RAE

RAE.pe
rfI

RAE.pe
rfV

P

RAE.pe
rfB

P

RAE.pe
rfV

P.pe
rfB

P
64

D

64
D.25

6
RAE

RAE.pe
rfI

RAE.pe
rfV

P

RAE.pe
rfB

P

RAE.pe
rfV

P.pe
rfB

P

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Database SPECjbb SPECweb

45

Results Summary
● Out-of-order execution moderately effective in

exploiting MLP
● Instruction issue constraints must be relaxed to achieve

benefits of large issue windows
● Serializing instructions major impediment to MLP
● Decoupling ROB from issue window improves MLP
● Runahead execution (HW scout) greatly improves MLP
● Limit study shows very significant MLP headroom
● For database and SPECjbb, MLP improvements

translate into impressive performance gains

46

Conclusions
● Microarchitecture has profound impact on MLP
● For memory bound workloads, exploiting MLP is

powerful technique for improving performance

