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Motivation

e Performance of many commercial apps bound by
cost of memory accesses — in today's database
workloads, 2/3 execution time spent in memory
accesses

* Instruction-level parallelism ineffective in hiding
latency of memory accesses — this latency
continues to grow

* Promising alternative is to exploit memory-level
parallelism (MLP) and overlap memory accesses
with each other
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add r1,4->r2
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load [r1]->r2 off-chip access
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load [r7]->r8 off-chip access
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What is MLP?

Example:
15 load [r4]->r6 off-chip access
16 (add r2,256->r7
i/ load [r7]->r8 off-chip access
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What is MLP?

Example:
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What is MLP?

Some notion of off-chip accesses being serviced

in parallel ...
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What is MLP?

More precisely:

MLP = average number of useful long-latency off-
chip accesses outstanding when there 1s at least one
such access outstanding
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What is MLP?

More precisely:

MLP = average number of useful long-latency off-
chip accesses outstanding when there 1s at least one
such access outstanding

MLP = [(10+10+100)*1 + (90)*2] / 210 = 1.43
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MLP and Overall Performance

MissRate x MissPenalty
= +
CPI = CP[ f(l Ovu!apCM) VILP
: :
on-chip CPI off-chip CPI
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CPl = CP[pefjf( | - Over‘[apCM)Jr

A
on-chip CPI

Example:

MLP =1
off-chip CPI = 2
on-chip CPI = 1
CPI=3

MissRate x MissPenalty
MLP

*
off-chip CPI
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MLP and Overall Performance

MissRate x MissPenalty

CPIl = CP[ f( | - Ovu[apCM)Jr

MLP
; ;
on-chip CPI off-chip CPI
Example:
MLP =1 MLP =2
off-chip CPI = 2 off-chip CPI =1
on-chip CPI = 1 on-chip CPI = 1

CPI=3 CPl =2
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Off-Chip Access Clusterlng _

L2$ Miss Rate Inter-Miss Dist (insts)
(per 100 insts) Avg <32 <64 <128

Database 0.84 119  50% 70% 82%
SPECjbb  0.19 526  50% 64% 70%
SPECweb 0.09 1111 34% 53% 69%
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L2$ Miss Rate Inter-Miss Dist (insts)
(per 100 insts) Avg <32 <64 <128

Database 0.84 119 50% 70% 82%
SPECjbb  0.19 526 50% 64% 70%
SPECweb 0.09 1111 34% 53% 69%

Off-chip access clustering suggests exploiting MLP feasible
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MLP Limiters

Important microarchitecture limiters:

1. Issue window and reorder buffer (ROB) size
2. Serializing instructions

3. Instruction fetch off-chip accesses

4. Unresolvable mispredicted branches

5. Load and branch instruction issue restrictions
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Issue Window and ROB Slzes

* Load requiring off-chip access blocks instruction
retirement

* |ssue window and ROB fills up, stalling processor

Example:

i1 load [r1]->r2 off-chip access

12 add r1,r3->r4 Assume:

K load [r4]->rS off-chip access Issue window size = 4
i4  addr1,r5->r6 ROB size = 4

15 load [r6]->r7 off-chip access
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Serializing Instructions

* Most ISAs provide instructions for implementing

synchronization primitives and for memory ordering
e.g. CASA, LDSTUB and MEMBAR in SPARC ISA

» Straightforward implementation requires pipeline drain

e Can be fairly prevalent e.g. 0.6% CASA instructions in
SPECjbb2000; used for Java object locking

Example:

i1 load O(r1)->r2 off-chip access
12 membar

K load 0(r3)->r4 off-chip access
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Instruction Fetch Misses

* No subsequent off-chip accesses can be overlapped
since they cannot be fetched

 |nstruction fetch misses that are the first off-chip
accesses are most expensive

Example:
11 add r1,r3->r4 off-chip instruction access
12 load [r4]->r5 off-chip access
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Unresolvable Mispredicted
Branches

* Mispredicted branches dependent on off-chip access
cannot resolve until off-chip access completes

* Unless control independent and data independent,
subsequent off-chip accesses cannot be overlapped

Example:

i1 (Ioad O(r1)->r2 off-chip access
12 beq r2,0,tgt mispredicted
K load 0(r5)->r6 off-chip access
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Load Issue Policy

e |ssue in-order or out-of-order w.r.t. other loads

 Loads wait for earlier store addresses to resolve or

speculate past earlier stores

Example:
i1 ,load 0(r1)->r2 off-chip access
12 Eload 0(r2)->r3 off-chip access

K load 0(r4)->r5 off-chip access
14 store r6->0(r3)
15 load O(r6)->r7 off-chip access

In-order load issue
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Load Issue Policy

e |ssue in-order or out-of-order w.r.t. other loads

 Loads wait for earlier store addresses to resolve or
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Example:
i1 ,load 0(r1)->r2 off-chip access
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Load Issue Policy

e |ssue in-order or out-of-order w.r.t. other loads

 Loads wait for earlier store addresses to resolve or
speculate past earlier stores

Example:
i1 ,load 0(r1)->r2 off-chip access
12 Eload 0(r2)->r3 off-chip access

K load 0(r4)->r5 off-chip access
14 store r6->0(r3)
15 load O(r6)->r7 off-chip access

Out-of-order load issue, speculate past earlier stores
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Branch Issue Policy

e |ssue in-order or out-of-order w.r.t. other branches

* Makes difference when branch dependent on off-chip
access prevents subsequent mispredicted branch
from resolving

Example:

i1 ,load O(r1)->r2 off-chip access
2 'beq r2,0,tgt1

13 beq r1,0,tgt2 mispredicted
14 load 0(r3)->r4 off-chip access
In-order branch issue
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Branch Issue Policy

e |ssue in-order or out-of-order w.r.t. other branches

* Makes difference when branch dependent on off-chip
access prevents subsequent mispredicted branch
from resolving

Example:

i1 ,load O(r1)->r2 off-chip access
2 'beq r2,0,tgt1

13 beq r3,tgt2 mispredicted
14 load 0(r4)->r5 off-chip access
Out-of-order branch issue
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Experimental Methodology
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MLPsim

e Tool for measuring MLP

* Implements epoch MLP model (see paper)
 No need to model any on-chip computation

* No need to model timing of off-chip accesses

* Only need to determine which off-chip accesses can
be overlapped

 Simple, small and easy to verify

* Results validated against cycle-accurate processor
simulator
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Benchmarks

Collectively, represent 3-tiered datacenter:
« Database workload

« SPEC|bb2000 - server side Java, emphasizes
business logic and object manipulation

e SPECweb99 — web server performance
Highly optimized binaries
Carefully validated traces

Simulation runs: warm 50M, collect statistics 100M
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Default Processor Model

32KB 4-way 64B 1$ and D$
2MB 4-way 64B L2$, no L3$
2K entry shared TLB

64K entry gshare, 16K entry BTB, 16 entry RAS
32 entry fetch buffer

64 entry issue window, 64 entry ROB
Infinite load and store buffers

3-wide OOQO instruction issue: OOOQO loads allowed to
speculate past earlier stores, in-order branches

I.e. moderately aggressive out-of-order issue processor
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Results
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Experiments

1. Out-of-order issue policy, issue window / ROB sizes
2. Decoupled issue window / ROB

3. Cache size

4. Runahead execution

5. Limit study
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Out-of-Order Issue Policy

Load Issue Branch Issue  Serializing Insts
out-of-order store speculation out-of-order  non-serializing

A no no no no
B yes no no no
C yes yes no no
D yes yes yes no
E yes yes yes yes
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Out-of-Order Issue
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Decoupled Issue Window/ROB
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Cache Size Impact

MLP

1.5
1.45
1.4
1.35
1.3
1.25
1.2
1.15
1.1
1.05

—e— SPECweb99
—m Database
—aA— SPECjbb2000

™ 2M 4M 8M
L2 Cache Size

40



Runahead Execution (HW Scout)

 When load requiring off-chip access reaches head of
ROB, transition to runahead execution (RAE) mode

* In RAE mode:

- stores do not modify architected state

- loads requiring off-chip accesses convert to prefetches;
dependent insts dropped

- speculate past serializing instructions
* When load data returns, terminate RAE mode

Improves MLP by removing MLP limiters:
1. ROB / issue window size and issue policy constraints
2. serializing instructions
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Runahead Execution
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Limit Study
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Overall Performance

microsystems

Performance Improvement
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Results Summary

Out-of-order execution moderately effective in
exploiting MLP

Instruction issue constraints must be relaxed to achieve
benefits of large issue windows

Serializing instructions major impediment to MLP
Decoupling ROB from issue window improves MLP
Runahead execution (HW scout) greatly improves MLP
Limit study shows very significant MLP headroom

For database and SPECjbb, MLP improvements
translate into impressive performance gains
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Conclusions

* Microarchitecture has profound impact on MLP

 For memory bound workloads, exploiting MLP is
powerful technique for improving performance
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