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The Need for Parallelism

•Uniprocessor system scaling is hitting limits
—Power consumption increasing dramatically
—Wire delays becoming a limiting factor
—Design and verification complexity is now overwhelming
—Exploits limited instruction-level parallelism (ILP)

•So we need support for multiprocessors
—Inherently avoid many of the design problems

Replicate small cores, don’t design big ones
—Exploit thread-level parallelism (TLP)

But can still use ILP within cores
—But now we have new problems . . .

Motivation
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Parallel Software Problems

•Parallel systems are often programmed with:
—Synchronization through barriers
—Shared variable access control through locks . . .

•Lock granularity and organization must balance 
performance and correctness
—Coarse-grain locking: Lock contention
—Fine-grain locking: Extra overhead
—Must be careful to avoid deadlocks or races
—Must be careful not to leave anything unprotected for correctness

•Performance tuning is not intuitive
—Performance bottlenecks are related to low level events

Such as: false sharing, coherence misses, … 
—Feedback is often indirect (cache lines, not variables) 

Motivation
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Parallel Hardware Complexity

•Cache coherence protocols are complex
—Must track ownership of cache lines
—Difficult to implement and verify all corner cases

•Consistency protocols are complex
—Must provide rules to correctly order individual loads/stores
—Difficult for both hardware and software 

•Current protocols rely on low latency, not bandwidth
—Critical short control messages on ownership transfers (2-3 hops)
—Latency of short messages unlikely to scale well in the future
—Bandwidth likely to scale much better

High-speed inter-chip connections
Chip multiprocessors = on-chip bandwidth!

Motivation
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The Key Question

•Is there a shared memory model with:
—A simple programming model?
—A simple hardware implementation?
—Good performance?

Motivation
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TCC: Using Transactions

•Yes! Provide generalized transactions
—Programmer-defined groups of instructions within a program

Begin Transaction        Start Buffering Results
Instruction #1
Instruction #2
. . .

End Transaction          Commit Results Now

—Can only commit machine state at the end of each transaction
Each must update machine state atomically, all at once
To other processors, all instructions within a transaction “appear” to execute only when the 

transaction commits
These “commits” impose an order on how processors may modify machine state

•Just requires:
—Register checkpointing mechanism
—Transactional memory support . . .

Overview
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Transactional Memory I

•Transactions “appear” to execute in the commit order
—RAW dependence errors cause transaction violation & restart

Overview
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Transactional Memory II

•Antidependencies are automatically handled
—WAW are handled by writing buffers only in commit order
—WAR are handled by keeping all writes private until commit

Overview
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TCC’s Difference

•So what?  Transactional memory is old news . . . .
—Herlihy, et.al., proposed to replace locks a decade ago
—Rajwar and Goodman / Martinez and Torrellas proposed more automated 
versions of the same thing recently
—Thread-level speculation (TLS) uses transactional memory

•TCC’s New Idea: Leave transactions on all of the time
—Provides MANY new benefits
—Completely eliminates conventional cache coherence and consistency 
models

Overview
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The TCC Cycle

•Transactions now run in a cycle
—Continues for all execution

•Speculatively execute code and buffer

•Wait for commit permission
—“Phase” provides synchronization, if necessary
—Arbitrate with other CPUs

•Commit stores together, as a block
—Provides a well-defined write ordering
—Can invalidate or update other caches 
—Large block utilizes bandwidth effectively

•And repeat!

Overview
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Advantages of TCC

•Trades bandwidth for simplicity & latency tolerance
—Easier to build
—Not dependent on timing/latency of loads/stores

•Transactions eliminate locks
—Transactions are inherently atomic
—Catches most common parallel programming errors

•Shared memory consistency is simplified
—Conventional model sequences individual loads and stores
—Now only have hardware sequence transaction commits

•Shared memory coherence is simplified
—Processors may have copies of cache lines in any state (no MESI)
—Commit order implies an “ownership” sequence 

Overview
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How to Use TCC I

•Divide code into potentially parallel tasks
—Usually loop iterations, after function calls, etc.
—For initial division, tasks = transactions

But can be subdivided up or grouped to match hardware limits (buffering)
—Similar to threading in conventional parallel programming, but:

We do not have to verify parallelism in advance
“Locking” is handled automatically
Therefore, much easier to get a parallel program running correctly!

•Programmer then orders transactions as necessary
—Ordering techniques implemented using phase numbers

Assign an “age number” to each transaction
Deadlock-free (at least one transaction is always “oldest”)
Livelock-free (watchdog hardware can easily insert barriers anywhere)

—Three common scenarios . . .

Overview
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How to Use TCC II

—Unordered for purely parallel code
—Fully ordered to specify “sequential” tasks
—Partially ordered to insert synchronization like barriers
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Sample TCC Hardware

—Write buffers and some L1 cache bits (TLS-like)
Write buffer in processor, before broadcast

—A broadcast bus or network to distribute commit packets
All processors see the commits in a single order
Snooping on broadcasts triggers violations, if necessary

—Commit arbitration/sequencing logic

Overview
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Evaluation Methodology

•We simulated a wide range of applications:
—SPLASH-2, SPEC, Java, SpecJBB
—Divided into transactions using a preliminary TCC API

•Trace-based analysis
—Generated execution traces from sequential execution
—Then analyzed the traces while varying:

Number of processors
Interconnect bandwidth
Communication overheads

—Simplifications
Results shown assume infinite caches and write-buffers
But we track the amount of state stored in them… 
Fixed one cycle/instruction
Would require a reasonable superscalar processor for this rate

Results
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Speedups with TCC

•TCC speedups are similar to conventional ones
—And sometimes better: SPECjbb eliminates locking overhead within
“warehouses”

Explicitly Parallel Applications TLS-Java Applications

Results
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Write Buffering Needs

—Only a few KB of write buffering needed
Set by the “natural” transaction sizes in applications
Occasional overflow can be handled by “committing” early
Reasonable for on-chip buffers

Results
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Broadcast Bandwidth

•Another issue is broadcast bandwidth
—If data is sent with commit, to avoid broadcast saturation:

Needs about 16 bytes/cycle/IPC @ 32p with whole modified lines
Needs only about 8 bytes/cycle/IPC @ 32p with dirty data only

—High, but feasible on-chip

Results
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Bandwidth Sensitivity

•Most parallel applications are tolerant of limited BW
—SPECjbb shows some server-code “noise” speedup variation

Results

8 procs
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Snoop Bandwidth

•Snooping requirements are quite reasonable
—Significantly less than 1 address/cycle on most systems

•Address-only commits could reduce BW requirements
—Only broadcast addresses for an invalidation-based protocol
—Send full packets only to memory
—Needs only about 1–2 bytes/cycle/IPC @ 32p

Results
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•TCC simplifies shared memory control hardware
—Trades higher interconnect  bandwidth for simpler protocols
—Eliminates traditional MESI coherence protocols
—Most communication in large, less latency-sensitive packets
—Scaling trends favor these trade-offs in the future

•TCC eases parallel programming
—Transactions provide error tolerance and free locking
—Allows all-manual to nearly automated parallelization
—More on this at ASPLOS-XI in October

Conclusions
Conclusions

TCC
“all transactions, all the time”

More info at: http://tcc.stanford.edu
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BACKUP SLIDES
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Optimizing Code

•Optimizing TCC code is easy!
—Hardware can provide violation feedback statistics
—Guides programmers directly to problem variables

Not something indirect like cache lines or messages
—Useful techniques are similar to conventional:

Loop adjustments (mostly loop & transaction “fusion”)
Transaction fission
Variable privatization
Parallel reduction optimization

Results


