
1

Wednesday, June 8, 2005Wednesday, June 8, 2005Wednesday, June 8, 2005

Virtualizing Transactional Memory

Ravi Rajwar† Maurice Herlihy§ Konrad Lai†

†Intel Labs
§Brown University/Microsoft Research

ISCA-32

2

Problem
• Transactional memory

– A promising concurrency abstraction
• Current hardware well suited

1. Buffering (cache)
2. Conflict detection (coherence)
3. Atomic commit (in cache)

• Resource limitations fundamental
– Space: cache, page faults
– Time: context switches

Place significant roadblocks to acceptability of
hardware transactional memory

2

3

Why are these limitations serious?
• Affects functionality, not just performance

– Some transactions will never commit
• A fundamental limitation of space and time

– More hardware only delays the inevitable
• Non-scalable in a multi-programmed world
• There will always be an n+1 case…

– Time slice
• Programmers have no control over time
• Cannot determine when this would occur

Implementation artifacts must be functionally
hidden from the user

4

Solution: Virtual TM
Seamless hardware/software integration

VTM

limited buffers…

timer interrupts,
context switches,
exceptions…processor core

cache hierarchy

program address space

overflow space

• Local state machine
• Overflow to app. virtual memory

– programmer transparent
• Performance isolation

– requestor driven
• Suspendable/swappable
• Local implementation

1. Common-case performance unaffected
2. No radical changes to the architecture

3

5

Outline
• Introduction
• Motivation for Transactional Memory
• Transactional Memory
• Virtualizing Transactional Memory
• Summary

6

Moore’s law: not about clock
Transistor
count still

rising

Clock speed
flattening
sharply

Use transistors for concurrency through multi/many core

http://www.gotw.ca/publications/concurrency-ddj.htm

4

7

Concurrency models and locks
• Time no longer cures software

– Cannot just wait 6 months for a faster processor
– Must exploit increasing hardware concurrency

• Lock based concurrency popular
– Common
– Fundamentally limited

• Performance
• Software engineering

8

Locks rely on conventions
• Which locks protect which data

– Software convention
– 15% of Linux comments concern locking protocols

• Usage rules embedded in comments
/*
* When a locked buffer is visible to the I/O layer BH_Launder
* is set. This means before unlocking we must clear BH_Launder,
* mb() on alpha and then clear BH_Lock, so no reader can see

* BH_Launder set on an unlocked buffer and then risk to deadlock.
*/

(ack: Brad Kuszmaul)

Expensive & dangerous to maintain code

5

9

Locks do not compose

lock T1

lock T1 lock T2

add(T1, item)

remove(T1, item)
add(T2, item) item item

Consider thread-safe hash table modules

Exposing lock internals breaks abstraction

Move from T1 to T2

Must lock T2
before deleting
from T1

lock T2lock T1

lock T1

item

10

Locks are plain difficult

• Double ended queue (Herlihy’s sadistic homework)
– Concurrent updates to both ends when far apart
– Interference ok if close but must not deadlock

• Appears very easy…

Enq? Enq?

Enq? Enq?

6

11

Locks are plain difficult
• Solution was publishable

– Michael & Scott PODC 1996

Solving simple, easy-to-state synchronization
problems should not be a publishable result

Need a working concurrency model

12

Outline
• Introduction
• Motivation for Transactional Memory
• Transactional Memory
• Virtualizing Transactional Memory
• Summary

7

13

What is Transactional Memory?
• Atomic sequence of reads, writes, computation

1. All-or-nothing (failure atomicity)
2. One-at-a-time order
– Simpler than a database transaction (No durability)

start_transaction
remove(T1, item)
add(T2, item)

end_transaction

Atomic

• Perfect abstraction
– Simple interface hiding a complex/subtle machinery
– Usage model focused on “use”

• Programmer declares intent, unconcerned with “how”

14

Benefits of Transactional Memory
• Eases writing correct concurrent programs

– Composability and modularity
– Non-blocking behavior

• Gracefully deal with thread failures
– Eliminates deadlocks, priority inversion, data races
– Allows for sequential reasoning of programs

• Extracts high performance
– Removes tension between lock granularity/concurrency

• Automatically extract fine-grain locking behavior
– Eliminates serialization limitations of locks

8

15

Implementing Transactional Memory
• All schemes basically

1. Buffer updates within transaction
2. Ensure no conflicts occur with other transactions
3. Commit all updates instantaneously

• Hardware accelerations
– Current hardware very well suited

• Buffer: in cache
• Conflicts: coherence
• Commits: in cache

16

Fundamental hardware limitations
• Space

– Cache evictions, collisions

• Time
– pre-emption

Place significant roadblocks to acceptability of
hardware transactional memory

9

17

Why is this serious?
• Impacts functional correctness

– Today: limited resources performance degrades
– With transactions

• Some transactions will never commit…
• Throw more hardware at it

– More caches, buffers,…
– Non-scalable in a multi-programmed world

• What about time?

1. Always an n+1
2. De-scheduling happens

18

How about…
• Making the hardware limitation explicit?

– Unrealistic for high-level languages
– Don’t know what a library call may do…

• Dual path coding?
– Try in hardware, fall back to software
– Unacceptable to write two versions

• Worsens software engineering
• Open question: can this be hidden in libraries?

Bottom line: Must virtualize limitation artifacts
Just like Virtual Memory virtualized Physical Memory

10

19

Minimum entry level for solution…
• High-performance hardware-only mode

– Virtualization should not affect common case
• Performance isolation

– Conflict detection, commits and unrelated threads
• Program isolation

– Multi-programmed world, security, denial-of-service
• Transactional/Non-transactional interactions

– Maintain atomicity at all times
• Must be transparent

– Like virtual memory
• Must be implementable!

20

Outline
• Introduction
• Motivation for Transactional Memory
• Transactional Memory
• Virtualizing Transactional Memory

– Key idea
– Components
– Working details

• Summary

11

21

VTM: key idea

VTM

processor core

cache hierarchy

program address space

When hardware resources exhausted:
Local state machine overflows to software space
Ownership “transfers” to shared software structure (XADT)

-- XADT controls access to this block
-- All accesses (all threads) to block gated through XADT

overflow space/ownership table

Overflow to virtual memory
program isolation
virtualization

Make the common case fast (hardware)
Make the fast case common (Moore’s law)

22

VTM: key components
1. Transaction Status Word (XSW)
2. Transaction Address/Data Table (XADT)
3. XADT Filter (XF)

XSW
Per-thread software structure
Determines transaction state
Compare&Swap operations

running committed
running aborted

XADT
Shared
Lives in virtual memory

Persistent across switches
Logical ownership/data table

Pointers to owning XSW
Stores overflowed data
Final arbiter of overflowed blocks

XF is a Bloom filter summarizing the XADT

12

23

VTM: overflows
processor core

cache hierarchy

program address space

XADT

VTM machinery intercepts:
Gets free entry in XADT
Install pointer to XSW
Move data and information to XADT
XADT now owns these blocks
Single XSW ties all blocks together

vtm

xsw

24

VTM: context switches
processor core

cache hierarchy

program address space

XADT

vtm

xsw

processor core

cache hierarchy

program address space

XADT

vtm

xsw

xsw

misc.

Persistent across time-slices
XADT guards access to all overflow data

13

25

VTM: conflict detection
• Conflict with cached blocks

– Coherence protocol
– Snooping processor detects conflicts immediately

• Conflict with overflowed blocks
– Requires accessing the ownership table

• Hardware no longer controls this block
– Requestor detects this conflict before making request

• Performance isolation
• Design simplification

26

VTM: conflict detection
processor core

cache hierarchy

program address space

XADT

Requestor’s VTM machinery:
Intercepts request if any overflow

Transparently…
Determines if conflicting
Resolves appropriately out-of-band

vtm

xsw

processor core

cache hierarchy

vtm

xsw

Thread from same application

Overflow?

check table

14

27

VTM: conflict detection

Overflows are rare by design
Conflict check must be done on every cache miss
Must ensure doesn’t slow down hardware TM

28

VTM: conflict detection
processor core

cache hierarchy

program address space

XADT

Multi-level check:
Overflow count (oc)
Bloom filter
When all else fails… walk XADT

vtm

xsw

processor core

cache hierarchy

vtm

xsw

Thread from same application

oc

oc

A
B

C
D

E CF
A(OC == 0)

15

29

VTM: conflict detection
• Overflow count

– Move along, nothing to see
– Typically

• Zero, Locally-cached
• Normal case unaffected

• Filter
– Summarizes ownership table
– Fast testing, possible false positives
– Mostly clean and shared
– Various implementations: arrays/hash/hybrids…

• Table Walker
– When all else fails…

30

VTM: logical commits

To commit:
Set XSW running committed (CAS)
This transaction now cannot abort
Commit hardware state
Update memory (incrementally)

Access protected at all times
processor core

cache hierarchy

vtm

xsw

Thread from same application

processor core

cache hierarchy

program address space

vtm

xsw

guarded at table

XADTxsw

16

31

VTM: logical aborts

To abort:
Aborter accesses XADT on possible conflict
Detect conflict, resolves in its favor
Set losing xaction XSW aborted (CAS)
Losing transaction:
If active: detects abort right away
If swapped: detects abort on rescheduling

32

Did we meet the requirements? (1)
• High performance

Virtualization doesn’t impact hardware only mode…
Overflow count, XF

• Program isolation
Virtual memory

• Performance isolation
Requestor does everything for overflows/conflicts
No asynchronous events from outside

• paper talks about an optional design, but bottom line:
VTM allows requestor to make all overflow conflict detection
decisions for both, transactional and non-transactional requests

17

33

Did we meet the requirements? (2)
• Transactional & non-transactional interactions

Transactional data always guarded!
• Should be implementable

All changes localized on processor…
Requestor initiated actions simplify overall design

34

Summary
• Demonstrated transactional memory virtualization

– Without radical changes to architecture
– Without hurting common-case performance

• Ensure isolation
– Performance
– Program

• Open challenges
– Many software usage model challenges
– Software semantics
– Operating systems interactions

18

35

BACKUP

36

Hardware/Software communication
• Transfer of ownership needs coordination
• After XADT gains ownership

– Send coherence invalidations
– Informs all hardware transactional modes
– Any cached copies invalidated
– Remote processors, if required, re-access block

• local VTM machinery intercepts this re-execution

19

37

Hardware only modeSwaps/AbortsSwaps/Aborts

Lifecycle of a transaction XSW
NonT

RAL

RAO

RSO

BSO

CAO BAO

Overflows/AbortsOverflows/Commits

HW

SW

Transactions access other XSWs via the XADT

critical loop

running
committed
aborted

active
swapped

local-only
overflowed

