Virtualizing Transactional Memory

Ravi Rajwar? Maurice Herlihy® Konrad Lai®

TIntel Labs
$Brown University/Microsoft Research

ISCA-32

Wednesday, June 8, 2005

Problem

» Transactional memory
— A promising concurrency abstraction
* Current hardware well suited
1. Buffering (cache)
2. Conflict detection (coherence)
3. Atomic commit (in cache)
» Resource limitations fundamental
— Space: cache, page faults
— Time: context switches

Place significant roadblocks to acceptability of
hardware transactional memory

Why are these limitations serious?

» Affects functionality, not just performance
— Some transactions will never commit

» A fundamental limitation of space and time
— More hardware only delays the inevitable
* Non-scalable in a multi-programmed world
» There will always be an n+1 case...
— Time slice
* Programmers have no control over time
» Cannot determine when this would occur

Implementation artifacts must be functionally
hidden from the user

Solution: Virtual TM

Seamless hardware/software integration

timer interrupts,

context switches, | Local state machine

processor core exceptions... Overflow to app. virtual memory

— programmer transparent
l I - ». performance isolation

— requestor driven
« Suspendable/swappable
 Local implementation

. limited buffers...
cache hierarchy

l I program address space
TEOW space

1. Common-case performance unaffected
2. No radical changes to the architecture .

Outline

Introduction

Motivation for Transactional Memory
Transactional Memory

Virtualizing Transactional Memory
Summary

Moore’s law: not about clock

1000000

Transistor
L count still
52 A rising

100000

| b

10000

[o
1000 i o = / +

Clock speed

00 = Pad .
e flattening
rgan
FEEn gt sharply
0
115 = Clock Speed [MHz) [~
= Transistors [000)
01 [[[I
1871 1876 1873 1983 1887 1381 1895 1933 2003 2007

http://www.gotw.ca/publications/concurrency-ddj.htm

Use transistors for concurrency through multi/many core

Concurrency models and locks

» Time no longer cures software
— Cannot just wait 6 months for a faster processor
— Must exploit increasing hardware concurrency
» Lock based concurrency popular
— Common
— Fundamentally limited
» Performance

» Software engineering -

Locks rely on conventions

* Which locks protect which data
— Software convention
— 15% of Linux comments concern locking protocols

» Usage rules embedded in comments
/*
* When a locked buffer is visible to the I/0 layer BH_Launder
* is set. This means before unlocking we must clear BH_Launder,
* mb() on alpha and then clear BH_Lock, so no reader can see
* BH_Launder set on an unlocked buffer and then risk to deadlock.
*/
(ack: Brad Kuszmaul)

Expensive & dangerous to maintain code

Locks do not compose

Consider thread-safe hash table modules

lock T1

add(T1, item) o

Exposing lock internals breaks abstraction

Locks are plain difficult

[
Eng? a \ Eng?

e Double ended queue (Herlihy’s sadistic homework)
— Concurrent updates to both ends when far apart
— Interference ok if close but must not deadlock

* Appears very easy...

Eng? Enqg?

10

Locks are plain difficult

» Solution was publishable
— Michael & Scott PODC 1996

Solving simple, easy-to-state synchronization
problems should not be a publishable result

Need a working concurrency model

11

Outline

Introduction

Motivation for Transactional Memory
Transactional Memory

Virtualizing Transactional Memory
Summary

12

What is Transactional Memory?

» Atomic sequence of reads, writes, computation
1. All-or-nothing (failure atomicity)

2. One-at-a-time order
— Simpler than a database transaction (No durability)

start_transaction
remove(T1, item) Atomic
add(T2, item)

end_transaction

» Perfect abstraction
— Simple interface hiding a complex/subtle machinery
— Usage model focused on “use”
* Programmer declares intent, unconcerned with “how”

Benefits of Transactional Memory

» Eases writing correct concurrent programs
— Composability and modularity
— Non-blocking behavior
» Gracefully deal with thread failures
— Eliminates deadlocks, priority inversion, data races
— Allows for sequential reasoning of programs
» Extracts high performance
— Removes tension between lock granularity/concurrency
» Automatically extract fine-grain locking behavior
— Eliminates serialization limitations of locks

14

Implementing Transactional Memory

o All schemes basically
1. Buffer updates within transaction
2. Ensure no conflicts occur with other transactions
3. Commit all updates instantaneously

 Hardware accelerations
— Current hardware very well suited
« Buffer: in cache
* Conflicts: coherence
» Commits: in cache

Fundamental hardware limitations

e Space
— Cache evictions, collisions

 Time
— pre-emption

Place significant roadblocks to acceptability of
hardware transactional memory

Why is this serious?

» Impacts functional correctness
— Today: limited resources = performance degrades
— With transactions
» Some transactions will never commit...
e Throw more hardware at it
— More caches, buffers,...
— Non-scalable in a multi-programmed world

 What about time?

1. Always an n+1
2. De-scheduling happens

17

How about...

* Making the hardware limitation explicit?
— Unrealistic for high-level languages
— Don’'t know what a library call may do...
e Dual path coding?
— Try in hardware, fall back to software
— Unacceptable to write two versions
* Worsens software engineering
* Open question: can this be hidden in libraries?

Bottom line: Must virtualize limitation artifacts
Just like Virtual Memory virtualized Physical Memory

18

Minimum entry level for solution...

High-performance hardware-only mode

— Virtualization should not affect common case
Performance isolation

— Conflict detection, commits and unrelated threads
Program isolation

— Multi-programmed world, security, denial-of-service
Transactional/Non-transactional interactions

— Maintain atomicity at all times

Must be transparent

— Like virtual memory

Must be implementable!
19

Outline

Introduction
Motivation for Transactional Memory
Transactional Memory

Virtualizing Transactional Memory
— Key idea

— Components

— Working details

Summary

20

10

VTM: key idea

program address space

Eow space/ownership table —‘

processor core 1

|

J

Overflow to virtual memory
program isolation
virtualization

cache hierarchy

| I

When hardware resources exhausted:
Local state machine overflows to software space
Ownership "transfers” to shared software structure (XADT)
-- XADT controls access to this block
-- All accesses (all threads) to block gated through XADT

Make the common case fast (hardware)

Make the fast case common (Moore’s law) ”

VTM: key components

1. Transaction Status Word (XSW)
2. Transaction Address/Data Table (XADT)
3. XADT Filter (XF)

XADT

Shared

Lives in virtual memory
Persistent across switches

Logical ownership/data table
Pointers to owning XSW

XSW

Per-thread software structure

Determines transaction state

Compare&Swap operations
running > committed
running - aborted

Stores overflowed data

Final arbiter of overflowed blocks

XF is a Bloom filter summarizing the XADT

22

11

VTM: overflows

processor core

program address space

l ' r ":.:”" XADT
!

cache hierarchy

i1 1

VTM machinery intercepts:

Gets free entry in XADT

Install pointer to XSW

Move data and information to XADT
XADT now owns these blocks

Single XSW ties all blocks together -

VTM: context switches

processor core

11 e

program address space

XADT

cache hierarchy

processor core

11

——— ___program address space

cache hierarchy

|_|
NS
vtm
L]
XADT

mISC

Persistent across time-slices

L B)

XADT quards access to all overflow data

12

VTM: conflict detection

» Conflict with cached blocks
— Coherence protocol
— Snooping processor detects conflicts immediately

» Conflict with overflowed blocks
— Requires accessing the ownership table
» Hardware no longer controls this block
— Requestor detects this conflict before making request
» Performance isolation
» Design simplification

25

VTM: conflict detection

program address space

processor core

vtm

l’ ' r XADT

cache hierarchy \

T check table |
L |
cache hierarchy
Requestor's VTM machinery: 2
Intercepts request if any overflow ° <2:I l ﬁ
Transparently... vtm
Determines if conflicting processor core
Resolves appropriately out-of-band Thread from same application

13

VTM: conflict detection

Overflows are rare by design
Conflict check must be done on every cache miss
Must ensure doesn't slow down hardware TM

27

VTM: conflict detection

processor core

w >

cache hierarchy ’J

41 T2

program address space = —

C
D

I et

S

[T T T TTTTTT]
N

(OC==0) A

Multi-level check:
Overflow count (oc)
Bloom filter

When all else fails... walk XADT

4 1T _

cache hierarchy

19

r
mY 11

vtm

processor core

Thread from same appifcation

14

VTM: conflict detection

» Overflow count
— Move along, nothing to see
— Typically
« Zero, Locally-cached
* Normal case unaffected

* Filter

Summarizes ownership table

Fast testing, possible false positives

Mostly clean and shared

Various implementations: arrays/hash/hybrids...

» Table Walker

— When all else fails...

29

VTM: logical commits

program address space

processor core

vtm L

11 r .

gudrded at table

cache hierarchy

4 1

\]

4 1T _

To commit:
Set XSW running > committed (CAS)
This transaction now cannot abort J l '
Commit hardware state
Update memory (incrementally) vim
Access protected at all times

cache hierarchy

processor core

Thread from same appilifcation

VTM: logical aborts

To abort:
Aborter accesses XADT on possible conflict
Detect conflict, resolves in its favor
Set losing xaction XSW aborted (CAS)
Losing transaction:
If active: detects abort right away
If swapped: detects abort on rescheduling

31

Did we meet the requirements? (1)

* High performance
-> Virtualization doesn’t impact hardware only mode...
- Overflow count, XF

* Program isolation
- Virtual memory
» Performance isolation

- Requestor does everything for overflows/conflicts

- No asynchronous events from outside
+ paper talks about an optional design, but bottom line:

VTM allows requestor to make all overflow conflict detection
decisions for both, transactional and non-transactional requests

32

16

Did we meet the requirements? (2)

» Transactional & non-transactional interactions
-> Transactional data always guarded!

» Should be implementable
-> All changes localized on processor...
- Requestor initiated actions simplify overall design

33

Summary

* Demonstrated transactional memory virtualization
— Without radical changes to architecture
— Without hurting common-case performance
* Ensure isolation
— Performance
— Program
* Open challenges
— Many software usage model challenges
— Software semantics
— Operating systems interactions

34

17

BACKUP

35

Hardware/Software communication

» Transfer of ownership needs coordination

o After XADT gains ownership
— Send coherence invalidations
— Informs all hardware transactional modes
— Any cached copies invalidated
— Remote processors, if required, re-access block
* local VTM machinery intercepts this re-execution

36

18

Lifecycle of a transaction XSW

running
committed
aborted
HW critical loop
active
swapped SW

local-only

overflowed @ @?

Transactions access other XSWs via the XADT 37

19

