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TPU Origin Timeline

● 2013: Prepare for success-disaster of new DNN apps
● If only CPUs, need 2X whole datacenter fleet for DNNs

● Custom hardware to reduce the TCO (total cost of ownership) 
of DNN inference by 10X vs. GPUs or CPUs

● Running in datacenter in 15 months
● Architecture, compiler, hardware design, build, test, deploy

● At Google I/O on May 18, 2016 Google CEO Sundar Pichai 
reveals Tensor Processing Unit as “10X performance/Watt”
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TPU Context:
Moore’s Law

● Moore’s Law: The number of transistors per chip increases by 
O(n2) with a process scaling by a factor of n

● Historical means of exploiting O(n2) transistors:
● Use all the transistors you can to build a faster core and 

bigger cache memories until you get diminishing returns
● Then use remaining die area to replicate cores and 

memories to increase throughput (both in CPUs and GPUs)
● Number of cores ends up growing as O(n2)
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Key Insight

● We want to accelerate tensor math
● Vectors are tensors of order 1: O(n)
● 2D matrices are tensors of order 2: O(n2)

● Let’s use the O(n2) transistors from Moore’s Law to support 
multiplication of order 2 tensors natively!

● “Schoolbook” matrix multiply requires O(n3) operations, so 
compute in O(n) time

● Use all the die area for just 1 “super brawny” tensor core
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Key Insight

● Energy for control logic, SRAM, and register accesses needed 
by matrix multiply dominates in conventional processors

● Example from Mark Horowitz’s ISSCC 2014 Keynote, slide 33: 
“Computing’s Energy Problem: (and what we can do about it)”:

5(8-bit add is 0.03pJ in 45nm)



Key Insight
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<1pJ

● Solution: matrix operations on a 256x256 systolic array
● Eliminate complex control logic (use pipelined enable bit)
● Reuse fetched memory and register data >100X
● Reduce energy overhead per compute by >10X



Systolic Execution: Data is Pipelined



TPU Architecture and 
Implementation● Add TPUs to existing servers

● Up to 4 cards per server
● Connect over I/O bus (“PCIe”)

● Host server sends it CISC instructions
● Complexity in SW vs. HW: No branches, only in-order issue,  

SW controlled buffers, SW controlled pipeline sync
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TPU: High-level Chip 
Architecture

● 4 MiB of on-chip Accumulator 
memory

● The Matrix Unit: 65,536 (256x256) 
8-bit multiply-accumulate ops

● Peak: 92T operations/second 
○ 65,536 * 2 * 700M

● >25X as many MACs vs GPU
● >100X as many MACs vs CPU

● 24 MiB of on-chip Unified Buffer 
(activation memory)
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● 700MHz clock rate

● Two 2133MHz DDR3 DRAM 
channels

● 8 GiB of off-chip weight DRAM 
memory



TPU: A Neural Network 
Accelerator Chip
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Inference Datacenter Workload (95%)
As of July 2016:
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Name LOC
Layers Nonlinear 

function Weights
TPU Ops / 

Weight 
Byte

TPU 
Batch 
Size

% 
Deployed

FC Conv Vector Pool Total

MLP0 0.1k 5 5 ReLU 20M 200 200 61%
MLP1 1k 4 4 ReLU 5M 168 168

LSTM0 1k 24 34 58 sigmoid, 
tanh 52M 64 64

29%
LSTM1 1.5k 37 19 56 sigmoid, 

tanh 34M 96 96

CNN0 1k 16 16 ReLU 8M 2888 8 5%CNN1 1k 4 72 13 89 ReLU 100M 1750 32



Relative Performance: 3 Contemporary Chips

Processor mm2 Clock 
MHz

TDP 
Watts

Idle 
Watts

Memory 
GB/sec

Peak TOPS/chip

8b int. 32b FP

CPU: Haswell 
(18 core) 

662 2300 145 41 51 2.6 1.3

GPU: Nvidia K80 
(13 core, 2 / card) 561 560 150 25 160 -- 2.8

TPU <331* 700 75 28 34 91.8 --

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22 nm process

12These chips and platforms chosen for comparison because widely deployed in Google data centers

*TPU is less than half die size of the Intel Haswell processor



Roofline Visual 
Performance Model

Two limits to performance:

1. Peak Computation
2. Peak Memory Bandwidth 

(For apps with large data that 
don’t fit in cache)

GFLOP/s = Min(Peak GFLOP/s, Peak GB/s x AI)

Arithmetic Intensity (FLOP/byte or reuse) 
determines which limit

Weight-reuse = Arithmetic Intensity for 
DNN roofline

Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual 
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.
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TPU Die Roofline
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Haswell (CPU) Die Roofline
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K80 (GPU) Die Roofline
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Why so far below Rooflines? (MLP0)
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Type Batch 99th% Response  Inf/s (IPS) % Max IPS
CPU 16 7.2 ms 5,482 42%
CPU 64 21.3 ms 13,194 100%
GPU 16 6.7 ms 13,461 37%
GPU 64 8.3 ms 36,465 100%
TPU 200 7.0 ms 225,000 80%
TPU 250 10.0 ms 280,000 100%

↕2.4X

↕2.7X

↕1.2X



Log Rooflines for CPU, GPU, TPU
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Star = TPU
Triangle = GPU
Circle = CPU



Linear Rooflines for CPU, GPU, TPU
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Star = TPU
Triangle = GPU
Circle = CPU



Perf/Watt TPU vs CPU & GPU
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~80X incremental perf/W of Haswell CPU
~30X incremental perf/W of K80 GPU



Improving TPU: Move 
“Ridge Point” to the Left

● Current DRAM
● 2 DDR3 2133 ⇒ 34 GB/s

● Replace with GDDR5 like in 
K80 ⇒ 180 GB/s

● Move Ridge Point from 
1400 to 256
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Revised TPU Raises Roofline
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Improves performance 4X for 
LSTM1, LSTM0, MLP1, MLP0 



Perf/Watt Original & Revised TPU
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~200X incremental perf/W of Haswell CPU
~70X incremental perf/W of K80 GPU



TPU succeeded because of: 

● Large systolic matrix multiply unit, extensive data reuse
● Single “brawny core” provided lower latency

10X difference in computer products are rare:

● 15-month design & live on I/O bus yet TPU 15X-30X faster Haswell 
CPU, K80 GPU (inference), <½ die size, ½ Watts

● GDDR5 memory could improve TPU >2X at low cost

Conclusions 
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Questions?
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