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Abstract

The SPLASH-2 suite of parallel applications has recently been

released to facilitate the study of centralized and distributed shared-

address-space multiprocessors. In this context, this paper has two

goals. One is to quantitatively characterize the SPLASH-2 programs

in terms of fundamental properties and architectural interactions that

are important to understand them well. The properties we study in-

clude the computational load balance, communication to computa-
tion ratio and traffic needs, important working set sizes, and issues
related to spatial locality, as well as how these properties scale with

problem size and the number of processors. The other, related goal
is methodological: to assist people who will use the programs in ar-
chitectural evaluations to prune the space of application and ma-

chine parameters in an informed and meaningful way. For example,

by characterizing the working sets of the applications, we describe
which operating points in terms of cache size and problem size are

representative of realistlc situations, which are not, and which re re-

dundant. Using SPLASH-2 as an example, we hope to convey the
importance of understanding the interplay of problem size, number

of processors, and working sets in designing experiments and inter-
preting their results.

1 Introduction

Many architectural studies use parallel programs as workloads

for the quantitative evaluation of ideas and tradeoffs. In shared-ad-

dress-space multiprocessing, early research typically used small

workloads consisting of a few simple programs. Often, different
programs and different problem sizes were used, making compari-
sons across studies difficult. Many recent studies have used the

Stanford ParalleL Applications for SHared memory
(SPLASH) [SWG92], a suite of parallel programs written for cache-
coherent shared address space machines. While SPLASH has pro-
vided a degree of consistency and comparability across studies, like
any other suite of applications it has many limitations. In particular,
it consists of only a small number of programs and does not provide

broad enough coverage even of scientific and engineering comput-
ing. The SPLASH programs are also not implemented for optimal
interaction with modern memory system characteristics (long cache
lines, high Iatencies and physically distributed memory) or for ma-
chines that scale beyond a relatively small number of processors.
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Given these limitations, and with the increasing use of SPLASH
for architectural studies, the suite has recently been expanded and

modified to include several new programs as well as improved ver-

sions of the original SPLASH programs. The resulting SPLASH-2
suite contains programs that (i) represent a wider range of computa-

tions in the scientific, engineering and graphics domains; (ii) use

better algorithms and implementations; and (iii) are more architec-
turally aware.

This paper has two related goals.

● To characterize the SPLASH-2 programs in terms of the basic
properties and architectural interactions that are important to un-

derstand them well.

● To help people who will use the programs for system evahration

to choose parameters and prune the experimental space in in-

formed and meaningful ways.

While the first goal is clearly useful—it provides data about the

behavior of new parallel programs and allows us to compare the re-
sults with those of prewous studies—the second is in many ways

more Important. Architectural evaluations are faced with a huge

space of application as well as machine parameters, many of which
can substantially impact the results of a study. Performing a com-
plete sensitivity analysis on this space is prohibitive. In addition,
most architectural studies use software simulation, which is typical-
ly very slow and compels us to scale down the problem and machine
configurations from those we would really like to evaluate. Finally,

many points in the parameter space (scaled down or original) lead to

execution characteristics that are not representative of reality, so
blind sensitivity sweeps may not be appropriate anyway. For these

reasons, it is very important that we understand the relevant charac-
teristics of the programs we use for architectural evaluation, and

how these characteristics change with problem and machine param-
eters. The goal is to avoid unrealistic combinations of parameters,
choose representative points among the realistic ones, and prune the
rest of the space when possible.

In this paper, we provide the necessary quantitative character-

ization and qualitative understanding for the SPLASH-2 programs.
We also identify some specific methodological guidelines that

emerge from the characterization. By doing this, we hope to help
people prune their parameter spaces, and also contribute to the adop-
tion of sound experimental methodology in using these (and other)
programs for architectural evaluation.

The next section discusses the particular program characteristics

that we measure, and our motivations for choosing them. It also de-
scribes our overall approach to gathering and presenting results. In
Section 3, we provide a very brief description of each of the
SPLASH-2 programs, concentrating on the features that will later be
relevant to explaining the effects observed. Sections 4 through 8
characterize the programs along the dimensions discussed in Section
2. Finally, we present some concluding remarks in Section 9.
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2 Characteristics and Approach

2.1 Axes of Characterization

We characterize the programs along four axes which we consid-

er most important to understanding shared address space programs
from the viewpoint of choosing experimental parameters. They are:

(i) speedup and load balancing, (ii) working sets, (iii) communica-

tion to computation ratios and traffic needs, and (iv) issues related to
spatial locality. We also discuss how these characteristics change
with important application parameters and the number of processors,

since understanding this is very important for using the programs ap-
propriately.

● The concurrency and load balancing characteristics of a pro-
gram indicate how many processors can be effectively utilized

by that program, assuming a perfect memory system and com-

munication architecture. This indicates whether a program with

a certain data set is appropriate for evaluating the communica-

tion architecture of a machine of a given scale. For example, if a
program does not speed up well, it may not be appropriate for

evaluating a large scale machine.

● The working sets of a program [Den68, RSG93] indicate its tem-

poral locality. They can be identified as the knees in the curve of
cache miss rate versus cache size. Whether or not an important
working set fits in the cache can have a tremendous impact on
local memory bandwidth as well as on communication needs. It
is therefore crucial to understand the sizes and scaling of the im-

portant working sets, so that application and machine parame-

ters can be chosen in ways that represent realistic situations. As
we shall see, knowledge of working sets can help us prune the

cache size dimension of the parameter space.

● The communication to computation ratio indicates the potential

impact of communication latency on performance, as well as the
potential bandwidth needs of the application. The actual perfor-

mance impact and bandwidth needs are harder to predict, since
they depend on many other characteristics such as the burstiness
of the communication and how much latency is hidden. Our goal
in characterizing this ratio and how it scales is to guide simula-

tion studies against making unrepresentative bandwidth provi-

sions relative to bandwidth needs. In addition to the inherent
communication in the application. we also characterize the total

communication traffic and local traffic for a set of architectural

parameters.

● The spatial locality in a program also has tremendous impact on
its memory and communication behavior. In addition to the un-
iprocessor tradeoffs in using long cache lines (prefetching, frag-
mentation and transfer time). cache-coherent multiprocessors
have the potential drawback of~alse sharing, which causes com-

munication and can be very expensive. We therefore need to un-
derstand the spatial Iocality and false sharing in our programs. as
well as how they scale.

There are two important program characteristics that we do not

examine quantitatively in this paper: the patterns of data sharing or

communication, and contention. While the first is useful in under-

standing a program and the second can be performance-critical, they
are not as important as the other issues from the viewpoint of choos-

ing application and memory system parameters.

2.2 Approach to Characterization

Experimental Environment: We perform our characterization
study through execution-driven simulation. using the Tango-Lite
reference generator [G0193] to drive a multiprocessor cache and
memory system simulator. The si mttlator tracks cache misses of var-
ious types according to an extension of the classification presented
in [DSR+93] developed to handle the effects of finite cache capaci-

ty. We simu~ate a cache-coherent shared address space multiproces-

sor with physically distributed memory and one processor per node.

Every processor has a single-level cache that is kept coherent using
a directory-based Illinois protocol (dirty, shared, valid-exclusive,

and invalid states) [PaP84]. Processors are assumed to send replace-

ment hints to the home nodes when shared copies of data are re-

placed from their caches, so that the list of sharing nodes maintained

at the home contains only those nodes which require invalidations

when an invalidating action occurs.

All instructions in our simulated multiprocessor complete in a
single cycle. The performance of the memory sys~em is assumed to
be perfect (PRAM model [FoW78]), so that all memory references

complete in a single cycle as well regardless of whether they are
cache hits, or whether they are local or remote misses. There are two
reasons for this. First, for non-deterministic programs it is otherwise

difficult to compare data (e.g., miss rates, bus traffic) when architec-

tural parameters are varied, since the execution path of the program

may change. Second, the focus of this study is not absolute perfor-

mance but the architecturally-relevant characteristics of the pro-
grams. While these can sometimes be affected by 1he interleaving of

instructions from different processors and hence the timing model

(in both deterministic and particularly in nontfeterministic pro-
grams), a given timing model is not necessarily any better than an-

other from this perspective. In fact, we believe that the effect of the
timing model on the characteristics we measure is small for our ap-
plications, including the nondeterministic ones.’

Data are distributed among the processing nodes according to

the guidelines stated in each SPLASH-2 application. In most cases,
we begin our measurements j ust after the parallel processes are cre-

ated. The exceptions are cases where the application would in prac-

tice run for many more iterations or time-steps than we simulate. In
these cases, we start our measurements after initialization and cold

start. All programs were compiled with cc compiler version 3.18 on

Silicon Graphics Indy machines with the -02 optimization level.

Data Sets and Scaling: Default input data sets are specified for the
programs in the SPLASH-2 suite. For almost all applications, larger
data sets are either provided or automatically generated by the pro-
grams. These data sets are by no means large compared to practical
data sets likely to be run on real machines. Rather., they are intended
to be small enough to simulate in a reasonable time, yet large enough

to be of interest in their problem domains in practice. While data set
size and number of processors can have tremendous impact on the

resu Its of characterization experiments, due to space constraints we

present most of our quantitative data for the default problem config-
uration and a fixed number of processors, We fix the number of pro-
cessors at 32 for most of our characterizations, (except the commu-

nication to computation ratio), and discuss the effects of scaling the
number of processors qualitatively.

Inherent versus Practical Characteristics: A question that arises
in such a study is whether to characterize the inherent properties of
the applications or to characterize properties that arise with realistic
machine parameters. For example, the best way to measure inherent

communication is by using infinite caches with a line size of a single
word, and the best way to measure inherent working sets is with a

one-word cache line and fully-associative caches. However, these

memory system parameters are not realistic, and unlike timing pa-
rameters can change the observed characteristics substantially. Ide-

ally, we would present both inherent properties and those obtained
with realistic machine parameters, but space constraints prevent us
from doing so. Since researchers are likely to use the SPLASH-2

lThls may not be true for multiprogrammed worklc)ads that exercise the
operating system intensively, or for other workloads witlh a real-time compo-

nent, since changes to the instructions executed by a processor (due to non-
determinism) may affect memory system behavior substantially The impact
of the timing model on memory system behavior cannot be ignored so easily
m these cases.
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suite with realistic memory system parameters, we choose to focus
on these while still trying to approach inherent properties and avoid
too many artifacts, For example, the default line size for our charac-
terizations (other than when we vary it to measuring spatial locality)
is 64 bytes, which leads us away from inherent properties. On the
other hand, our default cache associativity is 4-way, which is realis-
t~c but large enough to be relatively free of cache mapping artifacts.

We cannot present as much data as we would like in this paper,

and since researchers may want to view this and other data in other

ways, we have created an online database of characterization resu[ts.

This database has a menu-driven interface to an interactive graphing
tool that allows results for different combinations of machine and

experiment parameters to be viewed. The tool and database are ac-

cessible via the World Wide Web at http://www-flash. stanford.edu/.

3 The SPLASH-2 Application Suite

The SPLASH-2 suite consists of a mixture of complete applica-
tions and computational kernels. It currently has 8 complete applica-
tions and 4 kernels, which represent a variety of computations in sci-

entific, engineering, and graphics computing. Some of the original
SPLASH codes have been removed because of their poor formula-

tion for medium-to-large scale parallel machines (e.g. MP3D), or

because they are no longer maintainable (e.g. PTHOR) and some
have been improved. We now briefly describe the applications and
kernels. More complete descriptions will be available in the upcom-

ing SPLASH-2 report. In these descriptions, p refers to the number
of processors used.

Barnes: The Barnes application simulates the interaction of a sys-
tem of bodies (galaxies or particles, for example) in three dimen-
sions over a number of time-steps, using the Barnes-Hut hierarchical
N-body method. It differs from the version in SPLASH in two re-

spects: (i) it allows multiple particles per leaf cell [HoS95], and (ii)

it implements the cell data structures differently for better data local-

ity. Like the SPLASH application, it represents the computational

domain as an octree with leaves containing information on each

body, and internal nodes representing space cells. Most of the time
is spent in partial traversals of the octree (one traversal per body) to
compute the forces on individual bodies. The communication pat-
terns are dependent on the particle distribution and are quite unstruc-
tured. No attempt is made at intelligent distribution of body data in
main memory, since this is difficult at page granularity and not very
important to performance.

Cholesky: The blocked sparse Cholesky factorization kernel factors
a sparse matrix into the product of a lower triangular matrix and its

transpose. It is similar in structure and partitioning to the LU factor-

ization kernel (see LU), but has two major differences: (i) it operates

on sparse matrices, which have a larger communication to computa-
tion ratio for comparable problem sizes, and (ii) it is not globally

synchronized between steps.

FFT: The FfT kernel is a complex 1-D version of the radix- n slx-
J.

step FFT algorithm described in [Bai90], which is optimized to min-

imize interprocessor communication. The data set consists of the n
complex data points to be transformed, and another n complex data
points referred to as the roots of umty. Both sets of data are orga-
nized .S & x & mat r]ces partitioned so that ewxy processor is as-

signed a contiguous set of rows which are allocated in its local mem-

ory. Communication occurs in three matrix transpose steps, which
require all-to-all interprocessor communication. Every processor

transposes a contiguous submatrix of ~/p x ~/p from every

other processor, and transposes one submatnx locally. The transpos-
es are blocked to exploit cache line reuse. To avoid memory hot-

spotting, submatrices are communicated in a staggered fashion, with
processor i first transposing a submatrix from processor i+], then

one from processor i+2, etc. See [WSH94] for more details.

FMM: Like Barnes, the FMM application also simulates a system

of bodies over a number of timesteps. However, it simulates interac-
tions in two dimensions using a different hierarchical N-body meth-
od called the adaptive Fast Multi pole Method [Gre87]. As in Barnes.
the major data structures are body and tree cells, with multiple par-
ticles per leaf cell. FMM differs from Barnes in two respects: (i) the
tree is not traversed once per body, but only in a single upward and

downward pass (per timestep) that computes interactions among

cells and propagates their effects down to the bodies, and (ii) the ac-

curacy is not controlled by how many cells a body or cell interacts

with, but by how accurately each interaction is modeled. The com-

munication patterns are quite unstructured, and no attempt is made
at intelligent distribution of particle data in main memory.

LU: The LU kernel factors a dense matrix into the product of a lower

triangular and an upper triangular matrix. The dense n x n matrix A

is divided into an N x N array of B x B blocks (n = NB) to exploit

temporal locality on submatrix elements. To reduce communication,
block ownership is assigned using a 2-D scatter decomposition, with
blocks being updated by the processors that own them. The block
size B should be large enough to keep the cache miss rate low, and

small enough to maintain good load balance. Fairly small block sizes

(B=8 or B=l 6) strike a good balance in practice. Elements within a

block are allocated contiguously to improve spatial locality benefits,

and blocks are allocated locally to processors that own them.

See [WSH94] for more details.

Ocean: The Ocean application studies large-scale ocean movements
based on eddy and boundary currents, and is an improved version of

the Ocean program in SPLASH. The major differences are: (i) it par-
titions the grids into square-like subgrids rather than groups of col-
umns to improve the communication to computation ratio, (ii) grids
are conceptually represented as 4-D arrays, with all subgrids allocat-
ed contiguously and locally in the nodes that own them, and (iii) it

uses a red-black Gauss-Seidel multigrid equation solver [Bra77],

rather than an SOR solver. See [WSH93] for more details.

Radiosity: This application computes the equilibrium distribution of

light in a scene using the iterative hierarchical diffuse radiosity

method [HSA91 ]. A scene is initially modeled as a number of large
input polygons. Light transport interactions are computed among

these polygons. and polygons are hierarchically subdivided into
patches as necessary to improve accuracy. In each step, the algo-
rithm iterates over the current interaction lists of patches, subdivides

patches recursively, and modifies interaction lists as necessary. At
the end of each step, the patch radiosities are combined via an up-
ward pass through the quadtrees of patches to determine if the over-

all radiosity has converged. The main data structures represent

patches, interactions, interaction lists, the quadtree structures, and a
BSP tree which facilitates efficient visibility computation between

pairs of polygons. The structure of the computation and the access
patterns to data structures are highly irregular. Parallelism is man-

aged by distributed task queues, one per processor, with task stealing
for ioad balancing. No attempt is made at intelligent data distribu-
tion. See [SGL94] for more details,

Radix: The integer radix sort kernel is based on the method de-

scribed in [BLM+91 ]. The algorithm is iterative, performing one it-
eration for each radix r-digit of the keys. In each iteration, a proces-
sor passes over its assigned keys and generates a local histogram.

The local histograms are then accumulated into a global histogram.
Finally, each processor uses the global histogram to permute its keys
into a new array for the next iteration. This permutation step requires

all-to-all communication. The permutation is inherently a sender-de-
termined one, so keys are communicated through writes rather than
reads. See [WSH93, HHS+95] for details.

Raytrace: This application renders a three-dimensional scene using
ray tracing. A hierarchical uniform grid (similar to an octree) is used
to represent the scene, and early ray termination and antialiasing are
implemented, akhouglr antialiasing is not used in this study. A ray is
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Total Total Total Total Shared Shared

Problem Instr FLOPS Reads Writes Reads Writes

Code Size (M) (M) (M) (M) (M) (M) Barriers Locks Pauses

Barnes 16K particles 2002.79 239.24 I 406.85 313.29 225.05 93.23 8 34648 0

Cholesky tk15.O 539.17 172.00 \ 111.86 28,03 75.87 23.31 3 54054 4203

FFT 64K points 34.79 6.36 ~ 4.07 2.88 4.05 2.87 6 0 0

FMM 16K particles 1250.02 423.88 I 226.23 38.58 217.84 30.10 20 2$088 0

LU 512x512 matrix, 494.05 92.20 104.00 48.00 93.20 44.74 66 0 0

16X 16 blocks

Ocean 258 x 258 ocean 379.93 101.54 81.89 18.93 80.26 17.27 364 ‘2592 o
Radiosity room, -ae 5000.0 2832.47 --- 499.72 284.61 261.08 21.99 10 231190 0

-en 0.050 -bf 0.10

Radix 1M integers, 50.99 --- 12,06 7.03 12.06 7.03 10 0 124

radix 1024

Raytrace car 829.32 --- 208.90 79.95 159.97 22.22 0 94471 0

Vokend head 754.77 --- 152.19 59.57 81.93 3.07 15 28934 0

Water-Nsq 512 molecules 460.52 98.15 81.27 35.25 69.07 26.60 10 1’7728 0

Water-Sp 512 molecules 435.42 91.50 72.31 32.73 60.54 22.64 10 353 0

TabIe 1. Breakdown of instructions executed for default problem sizes on a 32 processor machine. Instructions executed are broken
down into total floating point operations across all processors for applications with significant floating point computation, reads,

and writes. The number of synchronization operations is broken down into number of barriers encountered per processor, and total
number of locks and pauses (flag-based synchronizations) encountered across all processors.

traced through each pixel in the image plane, and reflects in unpre-

dictable ways off the objects it strikes. Each contact generates mul-

tiple rays, and the recursion results in a ray tree per pixel. The image

plane is partitioned among processors in contiguous blocks of pixel
groups, and distributed task queues are used with task stealing. The
major data structures represent rays, ray trees, the hierarchical uni-
form grid, task queues, and the primitives that describe the scene.
The data access patterns are highly unpredictable in this application.
See [SGL94] for more information.

Volrend: This application renders a three-dimensional volume us-

ing a ray casting technique. The volume is represented as a cube of
voxels (volume elements), and an octree data structure is used to

traverse the volume quickly. The program renders several frames

from changing viewpoints, and early ray termination and adaptive

pixel sampling are implemented, although adaptive pixel sampling
is not used in this study. A ray is shot through each pixel in every

frame, but rays do not reflect. Instead, rays are sampled along their

linear paths using interpolation to compute a color for the corre-
sponding pixel. The partitioning and task queues are similar to those
in Raytrace. The main data structures are the voxels, octree and pix-

els. Data accesses are input-dependent and irregular, and no attempt
is made at intelligent data distribution. See [NiL92] for details.

Water-Nsquared: This application is an improved version of the
Water program in SPLASH [SWG92]. This application evaluates
forces and potentials that occur over time in a system of water mol-

ecules. The forces and potentials are computed using an 0(n2) algo-
rithm (hence the name), and a predictor-corrector method is used to
integrate the motion of the water molecules over time. The main dif-

ference from the SPLASH program is that the locking strategy in the

updates to the accelerations is improved. A process updates a local
copy of the particle accelerations as it computes them, and accumu-
lates into the shared copy once at the end.

Water-Spatial: This application solves the same problem as Water-

Nsquared, but uses a more efficient algorithm. It imposes a uniform
3-D grid of cells on the problem domain, and uses an O(n) algorithm
which is more efficient than Water-Nsquared for large numbers of

molecules. The advantage of the grid of cells is that processors

which own a cell need only look at neighboring cells to find mole-

cules that might be within the cutoff radius of molecules in the box

it owns. The movement of molecules into and out of cells causes cell

lists to be updated, resulting in communication.

Table 1 provides a basic characterization of the applications for
a 32-processor execution. We now examine the four characteristics
previously discussed for the SPLASH-2 suite.

4 Concurrency and Load Balance

As discussed in Section 2.1, the concurrency and load balance of
a program—and how they change with problem size and number of

processors—are very important to understanding whether an appli-

cation and data set are appropriate for a study involving a machine
with a given number of processors. For example, if a program is lim-

ited by computational load balance to a small speedup on a given in-

put, it may not be appropriate for use in evaluating a large-scale ma-
chine. We study how the computational load balance scales with the
number of processors by measuring speedups on a PRAM architec-

tural model. When measured in this manner, deviations from ideal
speedup are attributable to load imbalance, serialization due to crit-
ical sections, and the overheads of redundant computation and par-

allelism management.

Figure 1 shows the PRAM speedups for the SPLASH-2 pro-

grams for up to 64 processors. Most of the progmms speed up very
well even with the default data sets. The exceptions are LU,
Cholesky, Radiosity, and Radix. To illustrate load imbalance fur-

ther, Figure 2 shows the time spent waiting at synchronization points
for 32-processor executions of each application. Figure 2 indicates
the minimum, maximum, and average fraction of time, over all pro-
cesses, spent at synchronization points (locks, barriers, and pauses).

Note that for Cholesky, LU and Radiosity, the average synchroniza-
tion time exceeds 25% of overall execution time.

The reasons for sub-linear speedups in the above four applica-

tions have to do with the sizes of the input data-sets rather than the

inherent nature of the applications. In LU and Cholesky, the default
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Figure 1: Speedups for the SPLASH-2 applications given the default input data sets shown in Table 1 and a perfect memory system.
The poor scalability of LU, Cholesky, and Radiosity is due in large part to small problem sizes. The poor scalability of Radix is due

to a prefix computation in each phase that is not completely parallelizable.

data sets result in considerable load imbalance for 64 processors, de-

spite their block-oriented decompositions. Larger data sets reduce

the imbalance by providing more blocks per processor in each step

of the factorization. In LU, the number of blocks per processor in the

I/h step (out of rr/B total blocks) is ( 1/p) ( (n/B) –k) 2 (see Sec-

&ion 3 for an explanation of these parameters). Thus, larger input

data sets should be used when studying larger machines. For Radi-

osity, the sublinear speedup is also due to the use of a small data set.

The imbalance is difficult to analyze. and a larger data set is not cur-

rently available in an appropriate form. Finally, for Radix the poor

speedup at 64 processors is due to a parallel prefix computation in

each phase that cannot be completely parallelized. The time spent in

this prefix computation is O(logp ) while the time spent in the other

phases is 0( n/p), so the fraction of total work in this unbalanced

phase decreases quickly as the number of keys being sorted increas-

o%

{1 I
+Maxlmum

4-- Average

4- Minimum

Figure 2: Synchronization characteristics of the SPLASH-2
suite for32 processors. The graph shows a breakdown of
minimtrm, maximum, andaverage execution time spent in

synchronization across all processors (locks, barriers. and
pauses) as well as user defined synchronization (for Radi-
osity only).

es. All four applications can therefore be used to evaluate larger ma-

chines as Iongaslarger data sets are chosen.

Overall, even with the default input data sets, most of the pro-
grams in SPLASH-2 scale well and are suitable for studying 32-64

processor systems. Because of this they are likely to be useful for
studies involving larger numbers of processors as well.

The next characteristics we examine are the sizes and scaling of
the important working sets of the applications. We study working

sets before communication to computation ratio because in the latter
section we examine not only inherent communication but also arti-
factual communication and local traffic, for which we use our under-

standing of working sets to pick parameters.

5 Working Setsand Temporal Locality

The temporal locality of a program, and how effectively a cache
of given organization exploits it, can be determined by examining

how a processor’s miss rate changes as a function of cache size. Of-

ten, the relationship between miss rate and cache size is not linear,
but contains points of inflection (orkrrees) at cache sizes where a
working set of the program fits in the cache [Den68]. As shown

in [RSG93], many parallel applications have a hierarchy of working

sets, each corresponding to a different knee in the miss rate versus
cache size curve. Some of these working sets aremore important to

performance than others, since fitting them in the cache lowers the
miss rate more.

Methodological Importance: Depending on how data are distribut-

ed in main memory, the capacity misses resulting from not fitting an
important working set in the cache may be satisfied locally (and in-

crease local data traffic), or they maycause inter-node communica-
tion. Methodologically, it is very important that we understand the
sizes of an application’s important working sets and how they scale
with application parameters and the number of processors, as well as
how a cache’s ability to hold them changes with line size and asso-
ciativity. This can help us determine which working sets are expect-
ed to fit or not fit in the cache in practice. In turn, this helps us

achieve our methodological goals of avoiding unrealistic situations
and selecting realistic ones properly. This understanding isparticu-
Iarly important when scaling down problem sizes for ease of simu-
lation, since cache sizes for the reduced problems must be chosen

that represent realistic situations for full-scale problems running
with full-scale caches.

When the knees in a working set curve are well defined knees,

and partictrkrrly when they are separated by relatively flat regions,
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they present a valuable opportunity to prune the cache size dimen-

sion of the experimental space. Knowledge of the size and scaling of
an important working set can indicate whether (i) it is unrealistic for

that working set to fit in the cache for realistic problem and machine

parameters, (ii) it is unrealistic for that working set to not fit in the

cache, or (iii) both situations, fitting and not fitting, are realistic.

This knowledge indicates which regions in the miss rate versus

cache size curves are representative of practice and which are not.
This helps us prune the space in two ways. First, we can ignore the

unrealistic regions. Second, if the curve in a representative region is
relatively flat, and if all we care about with respect to a cache is its
miss rate, then a single operating point (cache size) can be chosen

from that region and the rest can be pruned.

The inherent working sets of an application are best character-

ized by simulating fully associative caches of different sizes with
one-word cache lines. Cache sizes should be varied at a fine granu-

larity to precisely identify the sizes at which knees occur. Following

our interest in realism (Section 2.2) however, we use a 64-byte line
size, and examine only cache sizes that are powers of two. Since the

cache size needed to hold a working set depends on cache associa-

tivity as well, we present results for three finite associativities, four-
way, two-way and one-way. We also supply fully-associative miss

rate information for comparison. We ignore the impact of line size
on cache size required to hold working sets for space reasons. How-
ever, because most of the programs exhibit very good spatial locality
the required cache size does not change much.
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Figure 3 depicts the miss rate as a function of cache size for the

SPLASH-2 suite. Results are shown for all power-of.two cache siz-
es between 1KB and 1MB. 1MB is chosen because it is a Tealistic

size for second-level caches today, and it is large enough to comfort-

ably accommodate the important working sets in almost all our ap-
plications. The methodological danger in ignoring caches smaller

than 1KB is that there may be an important working set smaller than
this for our default problem sizes, but which grows rapidly at larger

problem sizes so that it may no longer fit in the cache. However, this

is not true for these applications.

We first examine the results for our default 4-way set associative

caches (the bold lines). We see that for all the applicsstions, the miss
rate has either completely or almost completely stabilized by 1MB

caches. The important working sets for these problem sizes (and for
several applications the entire footprint of data that a processor ref-

erences) are smaller than 1MB. From the fact that these are realistic
problem sizes that can also yield good speedups (see Section 4), and

from the sizes and growth rates of the working sets that we shall dis-

cuss, we infer that having the important working sets fit in the cache

is an important operating point to consider for all applications. We

therefore use 1MB caches as one of the operating points in the rest

of our characterizations. The question is whether there is also a real-
istic operating point in practice where an important working set does
not fit in a modern secondary cache. In this case we should also
choose a cache size to represent this operating point. We examine
this question next.

-——.— ——.
I2% &

I F17
Io%

78% Q ~

-, 20”/0

!
I 16%

! 12“/0 ‘!‘“-
,.--

FMM

~.,
‘,

I

I

4

Cache Size (KB) Cache Size (KB) Cache Size (KB) Cache Size (KB)

....g.... ,-way A.... z.~~y — 4-way ---.0 ---- fulll

Figure 3: Miss rates versus cache size and associativity. Miss rate data assumes 32 processors with 64 byte line sizes. Note that for
many applications the, difference in miss rate from 1-way to 2-way associativity is much larger than the difference from 2-way to 4-
way associativity. WS 1 and WS2 refer to the observed working sets as described in Table 2.
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All of the applications have large miss rates at 1KB caches,

which decrease dramatically by 1MB. For most of the applications

(Barnes, Cholesky, FIT, FMM, LU, Radiosity, Volrend, Water-
Nsquared and Water-Spatial) the most important working set is en-
countered quite early (in these cases by 64KB). However, if a work-
ing set grows quickly with problem size or number of processors,

then there might be situations in practice with much larger problems
or machines where it does not fit in a real second-level cache. To see
if this is true, we examine the constitution and growth rates of the
working sets, which are summarized in Table 2.2 We see that the imp-

ortant working sets in the applications listed above do not grow
with increasing numbers of processors, and grow either very slowly
or not at all with the data set size. They are therefore expected to al-

most always fit in realistic second-level caches in practice, and it

would not make sense to simulate cache sizes smaller than these

working sets. For example, in the LU and Cholesky factorization ap-

plications, the important working set is a single block which is al-
ways sized to fit in the cache. There are other working sets in all

these programs that are larger and that may not fit in a cache in prac-
tice, but these usually amount to a processor’s entire partition of the
data set and turn out not to be very important to performance.

The applications that do have a realistic operating point in prac-

tice for which an important working set does not fit in the cache are
Ocean, Raytrace, Radix and to a lesser extent FFT. Ocean streams

through its partition of many different grids in different phases of the

computation, and can incur substantial capacity and conflict misses
as problem sizes increase. In Raytrace, unstructured reflections of

rays result in large working sets and curves that are not so well de-
fined into knees and flat regions until the asymptote. Radix streams
through different sets of keys with both regular and irregular strides
in two types of phases, and also accesses a small histogram heavily.

This results in a working set that is also not sharply defined, and

‘The scafing expressions assume fully-associative caches and a one-
word line size, since it is difficult to analyze artifacts of associativit y and line
size. This also makes it difficult to use analytic scaling models to predict
working sets exactly with tinite-associativity caches. Users are advised to
use the base results and the working set growth rates we provide as guides to
determine for themselves where the working sets fall for the problem and
machine sizes they choose.

which may or may not fit in the cache. And in FIT, a processor typ-
ically captures its most important working set in the cache, but may

or may not capture the next one (its partition of the data set). The
most important working set in the SPLASH-2 FIT is proportional to

a row of the ~ x .& matrix. If it does not fit in the cache, the row-
wise FITs can be blocked to make the working set fit.

For these four applications we should also examine a cache size
that does not accommodate the working sets described above. For
Ocean and FIT, we choose a cache size that holds the first working
set described in Table 2 (which we expect to fit in the cache in prac-

tice) but not the second, In Radix and Raytrace, the working sets are
not sharply defined, so we might choose a range of cache sizes be-

tween 1KB and 1MB. We compromise by simply choosing a reason-

able cache size that yields a relatively high capacity miss rate. A

cache size of 8KB works out well in all cases, so for these four ap-

plications we shall present results in subsequent sections for both

1MB and 8KB caches.

Figure 3 also shows us how the miss rate, and potentially the de-
sirable cache sizes to examine, change with associativity. In most
cases. increasing cache associativity from 1-way (direct-mapped) to
2-way improves miss rates greatly, while increasing from 2-way to
4-way changes them much less. While direct-mapped caches some-

times change the power-of-two cache size needed to hold the work-

ing set compared to fully-associative caches, 2-way set associative

caches do not for these problem sizes. In general, the impact of as-
sociativity on working set size is unpredictab~e,.

To summarize, the results and discussion in this section clearly

show that understanding the relationship between working sets and

cache sizes (i) is very important to good experimental methodology,
and (ii) requires substantial understanding of how the important
working sets in an application’s hierarchy depend on the problem
and machine parameters.

6 Comm-to-Comp Ratio and Traffic

In this section, we examine the communication-to-computation

ratio and the traffic characteristics of applications, using our default

cache parameters (4-way set associative with 64-byte lines) and the

representative cache sizes that we identified for the default data-set

size in the previous section ( 1MB in all cases and 8KB for four cas-

Growth Rate

of Working

Code Working Set 1 Set 1

Barnes I Tree data for 1 body \ logD,S

ChoIesky One block Fixed

FIW One row of matrix ~DS

FMM Expansion terms Fixed for n, P

LU I One block I Fixed

Ocean I A few subrows \ &/~DS

Radiosity BSP tree log (polygoru

Radix Histogram Radix r

Ravtrace I Unstructured I Unstructured

Volrend

!

Octree, part of ray IKlogDS+

kj~

Water-Nsa I private data I Fixed

Water-Sp Private data Fixed

I

I I
Growth Rate

Impo- Fits in of Working I Impo- 1Fitsin I
rtant? I Cache? Working Set 2 Set 2 - rtant? Cache?

Yes Yes partition of DS DS/P No \ Maybe
I

Yes 1 Yes partition of DS DS/P No Maybe

Yes I Yes \ Dartition of DS I DS/P I Mavbe I Mavbe I

Yes I Yes ) partition of DS I DS/P 1 No \ Maybe I

Yes I Yes I partition of DS I DS/P 1 No I Maybe I

Yes I Yes I partition of DS I DS/P I Yes I Maybe I

Yes i Yes I Unstructured I Unstructured I No I Mavbe I

Yes ! Yes I partition of DS I DS/P I Yes I Maybe I

Yes I Yes I Unstructured I Unstructured I Yes I Maybe I

Yes I Yes I partition of DS I approx DS/P I No I Maybe I

Yes I Yes I partition of DS I DS I No I Mavbe I

Yes Yes partition of DS DS/P No Maybe
1

Table 2. Important working sets and their growth rates for the SPLASH-2 suite. DS represents the data set size, P represents the

number of processors, and K and k represent large and small constants. respectively.
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es). This approach is useful for characterizing the traffic for realistic
cache parameters but not necessarily useful for characterizing the in-
herent communication in the algorithm itself, since the traffic in-

cludes artifacts of those cache parameters. In fact, we use true s!-rar-
irrg traffic, which is the data traffic due to true sharing misses. as an

approximation of the inherent communication. A true sharing miss

is defined so that it is independent of finite capacity, finite associa-
tivity, and false sharing effects (see Section 7). The difference be-

tween the true sharing traffic and the inherent communication is that

the true sharing traffic includes unnecessary traffic that occurs when
there is not enough spatial locality to use the entire 64-byte commu-

nicated line. As we will discuss in Section 7, our applications gener-

ally have good spatial locality up to 64-byte lines, so that the true

sharing traffic is a good approximation of the inherent communica-

tion.

We use two metrics to evaluate the different types of traffic
needed by the programs. For programs that perform large amounts
of floating point computation, we present the communication traffic
per floating point operation (FLOP), since the number of FLOPS is

less influenced by compiler technology than the number of instruc-
tions. For programs that mostly perform integer computation, we re-

port bytes per instruction executed. We break traffic down into three

major categories: (i) remote data, which is the traffic caused by
writebacks and all data transferred between nodes to satisfy proces-

sor requests, (ii) remote overhead, which is the traffic associated

with remote data-request messages, invalidations, acknowledg-
ments, replacement hints, and headers for remote data transfers, and
(iii) local data, which is the amount of data transmitted by processor
requests and writebacks to local memory. Remote data can be bro-
ken down further into four subcategories: remote shared, remote
cold, remote capacity, and remote writeback. The first three subcat-
egories are a decomposition of remote traffic excluding writebacks,
by the cache miss type (remote shared consists of traffic due to re-

mote true and false sharing). Figure 4 shows the traffic broken down

into these categories as well as the true sharing traffic3 for 1 to 64

processor runs using the default input data-set sizes and 1MB cach-
es. In all cases, headers for data packets, and all other overhead

packets are assumed to be 8 bytes long.

Traffic with 32 processors: Let us first examine the traffic for a

fixed number of processors by focusing our attention on the second

bar from the right for each application in Figure 4. For all integer ap-
plications other than Radix, the remote traffic (the bottom five sec-
tions of each bar) is less than 0.1 bytes per instruction. With proces-
sors executing at 200 MIPS, this translates into less than 20MB/sec
of traffic per processor, In the absence of contention effects, this is
well under the per-processor network bandwidths found on shared

memory multiprocessors today. For Radix, the remote traffic for

processors executing at 200 MIPS approaches 90MB/sec per proces-

sor. This is quite high, and the traffic is in fact bursty as well, so eval-
uation studies using Radix should model both memory contention

and network bandwidth limitations to provide accurate results. Fig-
ure 4 also shows that the overhead traffic is moderate for 64-byte
cache lines (we study the impact of larger cache line sizes in Section

7). The amount of local traffic is usually small as well, since the
1MB caches hold the important working sets and keep capacity
misses low (a decomposition of misses by type is shown in Figure
7).

For the eight floating-point intensive applications, the remote

traffic is again typically quite small with lMB caches. For Cholesky,

with processors executing at 200 MFLOPS, the required bandwidth

is about 68MB/sec per processor, not unreasonable for networks

3True sharing ml.. .‘Yrer do not generate remote traffic if a processor re-
quests a locally allocated cache block that has been written back after being
modified by a remote processor. The true sharing tmfitc shown in Figure 4
consists of local and remote traffic due to true sharing misses.

found on multiprocessors today. (We also saw in Section 4 that

Cholesky is dominated by load imbalance for this problem size,
which further reduces bandwidth requirements.) The exception is
FFT, in which the remote bandwidth requirement is close to 124MB/

Barnes Cholesky FMM
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figure 4: Breakdown of traffic generated in bytes per in-

struction and bytes per FLOP. The results are ;how; for 1
to 64 processors. The graphs assume 1MB, 4-way associa-

tive, 64-byte line caches. All overhead packets and data
headers are assumed to be 8 bytes long.
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Code I Growth Rate of Comm/Comp Ratio \

Barnes approximately JP/ JDS

Cholesky JP/JDS, but input dependent

FFf (P- 1) / (P1ogDS)

FMM approximately fP/.@
I

LU I JP/dDS

Ocean JP/JDS

Radiosity I unpredictable I

Radix I (P-1)/P I

Table 3. Growth rates of the communication to computation

ratio for the SPLASH-2 suite. DS represents the data set

size, and P represents the number of processors.

sec per node. Communication in FFT is also bursty, so like Radix,
studies using FIW should be careful about modeling network and
memory system bandwidth and contention.

Scaling with number of processors and data set size: Letus now
look at the effects on traffic of changing the number of processors

while keeping the problem size fixed (Figure 4). Typically, the com-

munication-to-computation ratio increases with the number of pro-

cessors due to a finer-grained decomposition of the problem. For ex-
ample, in applications that perform localized communication in a
two-dimensional physical domain, the amount of computation is of-

ten proportional to the area of a partition while the amount of com-
munication is proportional to the perimeter. Table 3 shows how the
communication-to-computation ratio changes with data set size and

number of processors for the applications in which these growth

rates can be modeled analytically. DS in the table represents the data

set size, and P is the number of processors. While FFT and Radix

have high communication to computation ratios, their growth rates
with P small, particularly at large values of P.

Let us first look at the results with 1MB caches in Figure 4.
While true and false sharing traffic (and hence remote sharing traffic

in the figure) increase with P, capacity-related traffic may decrease:
A processor accesses less data, so more of these data may fit in its
cache. For example, a working set that grows as DS/P may not fit in

the cache for small P, but may fit for large P. This capacity effect re-

duces local traffic in almost all our applications as P increases, and
can even reduce remote traffic due to capacity misses to nonlocal

data (see remote capacity traffic for Raytrace and particularly Vol-
rend, where the working set close to 1MB for the default data set

with 32 processors is not completely unimportant, and does not fit in

the lMB cache with smaller P). How significant the change in ca-
pacity related traffic is depends on the importance of the working set
that scales with P.

The impact of increasing data set size is usually just the opposite

of that of increasing P: Sharing traffic decreases, while capacity-re-
lated traffic (local or remote) may increase. For example, Figure 5

shows the effect of using two different data set sizes in Ocean. The

change in overall traffic, as well as in the total communication (re-
mote) traffic. depends on how the different components scale.

To examine the representative cases where an important work-

ing set does not fit in the cache, we also present the traffic with 8KB
caches for the four applications discussed in Section 5. The results

n
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Figure 5: Breakdown of traffic for Ocean in bytes per float-
ing point operation for two problem sizes. The graph as-
sumes 1MB, 4-way associative, 64-byte line caches.

are shown in Figure 6. The total traffic (including local) is of course

much larger than for the 1MB caches. The increased capacity-relat-

ed traffic may be local (as in Ocean and FIT) or cause communica-
tion (as in Raytrace). It is therefore more important to model conten-

tion when the working set does not fit in the cache.

Overall, the above results reaffirm the importance of under-
standing the interplay among problem size, number of processors
and working set sizes for an application when using it in architectur-

al studies.

7 Spatial Locality and False Sharing

The last set of characteristics we examine are those related to the
use of multi word cache lines: spatial locality and false sharing. Pro-

grams with good spatial locality perform well with long cache lines

due to prefetching effects. Those with poor spatial locality do better
with shorter cache lines, because they avoid fetching unnecessary

!
m’

FFT Ocean Radix

n Local Data

= Rem. Overhead

~ Rem. Writeback

m Rem. Capacity

~ Rem. Cold

n Rem. Shared

— True Shared

Figure 6: Breakdown of traffic generated for 1-64 processors
using 8KB, 4-way associative, 64-byte line caches. All

overhead packets and data headers are assumed to be 8

bytes long. Traffic is show in bytes/FLOP for FFT and
Ocean and in bytesfinstruction for the others.
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data and undergoing more capacity misses due to fragmentation. On

parallel machines, long cache lines can also be detrimental if they
are used as the units of coherence (which we assume), since a pro-

gram may then exhibit false sharing [EgK89]. While perfect spatial
locality implies no false sharing, a program with quite good spatial
locality in each processor’s reference stream (e.g. a processor writes

every other element of a contiguous array, thus having 50V0 locality)

can suffer greatly from false sharing (e.g. another processor may
write the intervening elements of the array at the same time). In this

section, we characterize the behavior of the SPLASH-2 applications

as a function of cache line size, looking both at miss rates (which
translate to latency] and traffic (which translates to bandwidth), We

explain results with respect to the data structures and access patterns
of the applications, classify the applications in this regard, and dis-
cuss how the behavior changes with data set size and the number of
processors. Methodologically, the characterization shows how the
interaction with line size depends on these parameters and that one

should therefore be aware of this dependence when performing ar-

chitectural studies. This characterization also tells us for which ap-

plications we can predict the effects of line size and for which ones

we must perform sensitivity analysis along this dimension.

If an application has perfect spatial locality, a k-fold increase in

line size will reduce the miss-rate k-fold, while keeping total data
traffic constant. In this case, there is no false sharing, and overalI
traffic will decrease since the relative impact of header overhead de-
creases as line size increases. To understand why an application falls
short of this perfect interaction, and to obtain insights into program
behavior, the misses incurred by an application are divided into four
broad components (i) cold misses, (ii) capacity (replacement) nniss-

es, (iii) true sharing misses, and (iv) false sharing misses. We use the
classification scheme presented by Dubois et al. [DSR+93], which
we have extended to account for the effects of finite cache capacity.

In our classification, a miss is a true sharing miss if, during the

lifetime of the line in the cache, the processor accesses a value that
was written by a different processor since either (i) the last true shar-

ing miss by the same processor to the same line, or (ii) the beginning
of the execution if there is no such previous true sharing miss. Thus,
a miss to a line that was replaced, but which would have incurred a

sharing miss (true or false) had it not been replaced is still classified
as a sharing miss. A miss is a false sharing miss if the line has been
modified since the last time it was in the processor’s cache (or the

beginning of the execution if this is the first time in the processor’s

cache), but the processor does not ttse any of the newly defined val-
ues. All other misses are either cold misses (if the line has never been

in this processor’s cache before) or capacity misses (ail others). ‘This
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definition captures the true communication inherent in the applica-
tion independent of cache size, and also recognizes the benefits of

long cache lines in capturing required communication.

Following our cache size methodology, we present results for all
applications with lMB 4-way set associative caches (which fit the
important working sets) and for four of the applications with 8KB

caches as well. Here we encounter an interesting methodological

question. since the cache size needed to hold a working set may de-
pend on the line size if spatial locality is not perfect. Particularly for
applications with poor spatial locality, then, it is important to ensure

that as the line size changes, the cache sizes chosen still represent the
same operating point with regard to fitting a working set. Figure 7
shows the breakdown of miss rate for the applications as line size is
varied from 8 to 256 bytes with lMB caches, and Figure 8 with 8KB

caches for the relevant applications.4 Besides Volrend, none of the
applications start to incur many more capacity misses with 1MB

caches as the line size changes. This is because the operating point

does not shift to the other side of an important knee in the working

set curve as the line size. changes. The same is true for the 8KB cach-

es.

We focus first on the results for 1MB caches, which are shown

in Figure 7. In this case, all important working sets fit in the cache,

so sharing and cold misses are most prominent. Figure 7 shows that
the impact of long cache lines varies greatly across applications.
Some applications, like LU, almost halve the miss ratio with every
doubling of line size in the range we study, while others like Radi-
osity don’t improve much. Still others, like FMM, improve early on
but then become worse. We first examine the applications in a few
different categories according to the interaction of their data struc-

tures and access patterns with respect to long cache lines. During this

process, we raise some important points that architects should keep
in mind when performing evaluations that depend on line size ef-

fects. Finally, we summarize these observations at the end of this

section.

The first class of applications consists of those whose data ac-

cess patterns are regular, and whose data structures are organized so
the access patterns use good stride through contiguously allocated
data structures. These include LU, Cholesky, FIT, and Ocean. LU

4The bars in these figures contain a new category called Upgrades.
These are writes that find the memory block in cache but in shared state, and
have to send an “upgrade” request for ownership. We put upgrades in white
at the top of the bars, so readers can easily ignore them visuall y if necessary;
we do not discuss them with miss rates, but they we used to compute traffic
later.

❑ Upgrade

❑ False

❑ True

❑ Capacity

■ Cold
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Figure 7: Breakdown ofmissrate versus cache line size. 'rhe4-way associative caches have capacities fixed at lMB, and line sizes

that are varied from 8 to 256 bytes,
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keys being sorted, the radix, and the number of processors, respec-
tively. While the exact pattern is dependent on the distribution of

keys, whether or not wehavesubstantial false sbaringclearly de-

pends on how n/(rxp) compares with the cache line size. We
therefore see the sharing miss rate drop with line size, until this ratio
is less than a line. At this point, thetrue sharing miss rate continues
to drop whi Ie the false sharing miss rate rises dramatically y, making

ni

large cache lines hurt performance.

‘he next class of atxdications are those whose data structures are

FFT Ocean Radix Raytrace

Figure 8: Breakdown of miss rate versus cache line size with
8KB, 4-way associative caches for applications with im-
portant working.

and Cholesky are blocked matrix codes that use data structures such

that a block is contiguous in the address space. FIW maintains good

stride during the row-wise FIW computations, and uses a blocked

submatrix transpose to ensure good cache line utilization. In Ocean,
processors stream through grid partitions which are allocated contig-
uously and IocaIIy, The result is that in LU the miss rate drops almost

linearly with increasing like size. In Cholesky, both the cold and true
sharing misses (but not the few false sharing misses) fall almost lin-
early as well. In FIT, the cold and true sharing misses fall almost lin-

early until 256 bytes (this is explained shortly). In Ocean, although
the access patterns have very good spatial locality, the miss rate with
1MB caches does not fall linearly with increasing line size. The rea-

son is that the best spatial locality is obtained on the references with-
inaprocessor’s own partition. While these are the majority of the

references, they do not cause misses in a 1MB cache for this problem

size, so only sharing misses are observed. Thus, we would expect to

see a larger influence with long cache lines when a processor’s local
partition(s) does not fit in the cache, as shown in Figure 8. AS for

sharing misses, they occur in Ocean when a processor tries to access
the elements in the nearest-neighbor subrows and subcolumns of its
adjacent partitions. The accesses to the neighboring subrows have

unit stride and good locality. while those to the subcolumns have
non-unit stride and no spatial locality.

These results bring us to an important methodological point. In

many applications the impact of long cache lines depends on appli-

cation parameters (particularly data set size) and the number of pro-

cessors. We have seen an example of this for Ocean, where whether

a processor’s partition fits in the cache depends on these parameters.

Another example isprovidedby FfT. With ourdefauk64K-point

FIT (256x256 matrix ofcomplex doubles) and32 processors, a
processor reads a submatrix of 8 x 8 points from every other proces-

sor during the transpose phase. Since each element is 16 bytes, a sub-
rowofthe submatrixis 128 bytes. Up to 128 byte lines, we see very
good spatial locality for this problem size in Figure7. But going
from 128t0256byte lines does notreduce either thecold miss rate
(for the first transpose) or the sharing miss rate (next two transpc)s-
es), although it does reduce the number of upgrades required.

Finally, a much more dramatic example is provided by Radix. In

the permutation phase of this program, a processor reads keys con-

tiguously from its partition in one array and writes them in scattered
form (basedon histogram values) to another array. The pattern of

writes by processors to the second array is such that on average,
writes by different processors are interleaved in the array at agran-
ularity of rz/(rxp) keys, where n, r, and p are the number of

records representing independent logical program units (e.g. mole-

ctdes), and in which the fields of these records are accessed differ-

ently in different phases of computation. Examples are Water-

Nsquared, Water-Spatial, Barnes-Hut and FMM. A processor in

these applications may only read certain fields of particles not

owned by it that are written by other processors. If these fields do not
constitute an integer multiple of the cache line size, then sharing

misses will not have perfect spatial locality. We see this in all these

applications beyond about a 64-byte line size, with the Water pro-
grams having better spatial locality than Barnes and FMM. Also, if
these fields are located on the same cache line with other fields of a
partic~e that is owned and updated by another processor—in either
the same or another phase of computation—then we will see false

sharing with long cache lines. This effect is seen in Barnes and
FMM. In both these programs, true sharing misses continue to drop

with larger lines (though not linearly), and false sharing misses start

togrowand outweigh thetrue-sharing reckrction by about 128-byte
lines. If cache lines are larger than a single record, false sharing
across records may result, This is more likely in Water-Nsquared
than in Barnes or FMM, since in the former a processor’s particles
are contiguous in the array of records while in the latter the assign-
ment of particles to processors changes dynamically so that a proces-

sor’s particles usually are not contiguous,

The third class of applications has highly unstructured access

patterns to irregular data structures. The graphics programs Ray-

trace, Volrend and Radiosity fall into this class. In Radiosity the

main data structures are written as well as read. However. access

patterns are unstructured, making it is difficult to analyze or predict

the impact of line size and how it changes with problem size and the

number of processors. Our limited experiments (not shown) indicate

that the spatial locality of true shared data does not change its local-
ity patterns much, while therelative impact of false sharing increas-

es with the number of processors. However, the miss rate is low
enough that the false sharing may not matter very much.

Raytrace and Volrend incur little false sharing, but also have
mediocre spatial locality. False sharing is small because the main

data structures are read-only. The primary sharing happens at the im-
age plane, which has relatively few accesses. The reason for poor

spatial locality is that the access patterns to the read-only data are

highly unstructured, and the processor that touches one small field

of a voxel or polygon may be different than the one that touches the
next field. Volrend is the one example in which the capacity miss

rate increases with line size even in lMB caches, due to increased
fragmentation and cache conflicts. Methodologically, this indicates
that, especially for applications like Volrend, working set issues
should in fact bere-evaluated with thelarger line sizes. As forscal-
ing, as problem size is increased (most likely in the form of more
polygons/voxels) the primary effect is a larger capacity miss rate.

The spatial locality on scene data does not change much, though it
improves on the image since the image becomes larger. The opposite

effect is obtained by reducing the problem size or increasing the

number of processors.

Figure 8 shows the results for FIT, Ocean, Radix, and Raytrace
for 8KB caches, an operating point where an important working set

does not fit in the cache. As expected, the overall miss rates are high-
er since capacity misses increase substantially. The spatial locality
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Figure 9: Breakdown of traffic versus line size for 1MB, 4-way associative caches.

and false sharing trends do not change significantly as compared to
results for 1MB caches, since these properties are fundamental to the
data structures and access patterns of the program, and are not too
sensitive to cache size. The key new interaction that we see is for the
Ocean application, where the capacity misses show much better spa-

tial locality than true sharing misses in the 1MB cache case. These

capacity misses dominate, so the overall effect of long cache lines is

much more positive.

Finally, Figure 9 indicates the impact of cache line size on net-

work traffic. Remote (network) traffic can be seen from the results

in Figure 9 by ignoring the top component (local traffic) of each bar.
Figure 9 shows the traffic in bytes per instruction as the line size is
varied. There are three points to observe from this graph. First, al-
though the traffic decreases with line size for LU and FIT (miss rate
decreases linearly, and per-miss overhead is amortized over larger
lines), for most of the applications the overall network traffic in-

creases substantially as line sizes become Iarger. Thus, bandwidth

assumptions for a machine may have to be re-examined as line size

changes. Whether the reduction in miss rate is more important than
the increased traffic depends on the latency and bandwidth provided

by the machine, and on how much latency can be hidden. Second,

the overall network traffic requirements for the SPLASH-2 suite are

still small even for large line sizes, with the exception of Radix. The
large bandwidth requirements reflect its false sharing problems at
large line sizes. If bandwidth is a possible concern, then Radix
makes a good stress test. Finally, the constant overhead for each net-
work transaction comprises a significant fraction of total traffic for
small line sizes. Hence, although actual data traffic increases as the
line size is increased, tbe total traffic is usually a minimum at be-

tween 32 and 128 bytes. Our results reconfirm previous studies such

as [GuW92], which shows that tbe overall network traffic in a dis-

tributed shared address space multiprocessor is usually a minimum

for cache line sizes of 32 bytes.

To summarize, in addition to showing which programs have

high bandwidth requirements with long cache lines, which have

good spatial locality and which incur false sharing, the above char-
acterization emphasizes some methodological points:

● It is important that users of the SPLASH-2 suite understand the
behavior of individual applications when choosing a line size for
their studies. Line size effects can be predicted in some pro-
grams that have excellent spatial locality, but not in others that

do not (e.g. Volrend and Raytrace) or that can have significant
false sharing reIative to other types of misses (e.g., Radix, FMM,
Barnes, Radiosity).

● The spatial locality and false sharing in a program often depend
on problem size, number of processors, and whether working
sets fit in the cache (capacity misses may have different spatial
locality than sharing misses). These effects must be understood,
and it is not sufficient to evaluate the effects of spatial locality

with a single set of these parameters.

● While there is a thresholding effect in the relationship among

line size, problem size, and number of processors, in many cases

(where this relationship is acute), line size is not as easy a pa-

rameter to prune in architectural studies as cache size.

8 Concluding Remarks

The SPLASH-2 application suite is designed to provide parallel
programs for the evaluation of architectural ideas and tradeoffs.
However, performing such evaluation well is a difficult task owing

to the large number of interacting degrees of freedom. For example,

many memory system parameters such as cache size, associativity,

and line size can both quantitatively and qualitatively impact the re-

sults of a study, as can application parameters and the number of
processors used. It is extremely time consuming to perform com-

plete sensitivity analyses on all these parameters. Since evaluation is

often done through simulation which is expensive, we are forced to

use smaller problem and machine sizes than we would really like to

evaluate. Finally, many combinations of application and machine
parameters that we might choose to evaluate might not be represen-
tative of realistic usage of the programs, so blind sweeps through the
space may not be appropriate. To use these programs effectively for
architectural evaluation, it is therefore very important that we under-
stand their relevant character sties well, particularly with regard to

determining what are realistic and unrealistic regions in the parame-

ter space, and how these regions change as important parameters are

scaled.

In this paper, we have tried to provide the necessary understand-
ing of the SPLASH-2 programs, as well as some methodological

guidelines for their use. We have characterized the programs along
several important behavioral axes, and described how the character-
istics scale with key application and machine parameters. These

axes are concurrency and load balancing, working-set sizes, com-
munication-to-computation ratio and traffic, and spatial locality.
Our hope is that this characterization will allow people to understand
the necessary growth rates, decide where the effects of changing cer-

tain parameters can be predicted and where they must be determined
experimentally, and prune the design space by avoiding unrealistic

and redundant operating points. We have provided some specific
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guidelines for pruning the space, for example looking for knees and

flat regions in characteristic curves where these can be found (e.g.
working sets in the miss rate versus cache size curve, as weH as

knees in curves for bandwidth and associativity), understanding how

the parameter values where knees occur scale, and using this under-

standing to prune entire regions when possible. Of course, we must

be careful in our pruning and ensure that the characteristic that dis-
plays the knees is the only one we care about with regard to that pa-
rameter.
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