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1.  Introduction
Technology scaling has decreased the cost of computing to the point where it
can be included in almost anything.  As a result,  we now live in a world sur-
rounded by computing devices.  They power our searches on Google, connect
to our friends on Facebook, answer our questions to Siri, and serve us our
entertainment on Youtube; they are in our homes everywhere, in all our appli-
ances (I recently had to reboot my refrigerator), cars, workplaces, and even in
the cards we send to each other. We have become so accustomed to computing
becoming faster, cheaper, and lower power, we simply assume it will continue.
Already, smartphone capabilities are being embedded in eye glasses [1] and
smart watches [2].  

While scaling computing performance has never been easy, a number of fac-
tors have made scaling increasingly difficult this past decade, and have caused
power to become the principal constraint on performance.  Section 2 quickly
reviews how computing became power limited, even before Dennard constant-
field scaling [3] broke down, and explains the difficulties of using a technology
change to fix our problems. The rest of the paper explores different approaches
to addressing this computing-energy-consumption challenge, and shows that
it will take more than parallelism to get the results we need. The new key to
scaling computing performance is to create applications and hardware which
are better matched to the task and each other.  Accomplishing this will require
tools that allow application experts to create these new efficient systems.  While
creating these tools is challenging, they will enable a renaissance in application-
optimized computing!  

2.  Processor Scaling
Performance data for commercial microprocessors is now accessible on the
web [4], and Figure 1.1.1 uses this data to show how gate speed and processor
performance have scaled over time. The gate speed is an approximation of the
FO4 (the delay of an inverter in that technology driving a load that is 4× its input
capacitance) and the processor performance is normalized to that of a 386,
using SPEC scores as a criterion.  More details about how these numbers are
derived are given in [5].  Note that the gate speed has improved by 100× since
CMOS processors were introduced in the mid 80s, while application-level
uniprocessor performance has increased by over 3000.  During this same peri-
od, the number of transistors has followed a nice Moore’s law exponential
growth, and the rate of feature size scaling has also been remarkably consistent
(see Figure 1.1.2).   But, what has not scaled according to plan, is the power
density of the processors  (see Figure 1.1.3).  The underlying cause of the
observed exponential power growth can be traced to two factors:  the fact that
we did not scale power supply voltages at the constant field rate, which
Dennard himself reported [6], and the fact that in our quest for performance,
we scaled clock frequencies faster than dictated by constant-field scaling (see
Figure 1.1.4).  In the 1990s, voltage scaled down, but slower than technology
(at about the square root of feature-size scaling), and frequency scaled up, but
faster (at about the square of feature-size scaling).  Because power is CV2F, and
C scales with technology, power should have become an issue much sooner
than it did.  However, during this same time frame, designers added many
effective power saving techniques which extended this period of rapid perform-
ance gains.

But, this rapid scaling of clock frequency stopped in the early 2000s, as a result
of two factors:  First, processors hit the power wall for air cooling (using a low-
cost heatsink, and air flow at a noise level acceptable for an office) which is
around 100W.  Worse still was the fact that voltage scaling also slowed down,
since it was no longer possible to scale the threshold voltage due to rising leak-
age currents. To keep power in check, processor frequencies were reduced,
and multiple processors were added to each die.  However, since processor
“performance” was changed to measure throughput, it continued to scale, as
more cores were added each generation. 

Like most chips today, processors used to run at a fixed supply voltage, and
this voltage depended on the fabrication technology that was used.  But, as
processors became power constrained and leakage current grew, it became
apparent that one could dramatically reduce the power dissipation, and improve
the performance yield of a processor if each processor chip could specify the
supply voltage that was required for it to operate at the desired performance.
This would allow a chip fabricated with high-leakage, lower-average-Vth transis-
tors, to run at a lower supply voltage, reducing both the dynamic and leakage
power, for overall power optimization.  Correspondingly, processors with high-
er Vth transistors, and lower leakage could run at a higher supply voltage while
still operating within the total power budget, enabling these transistors to oper-
ate at the desired speed.  While this has been good for processor specification,
it has made it much more difficult to track how the average supply voltages
have been scaling over the past decade.  Thus, the numbers in the voltage plot
in Figure 1.1.4 are the peak allowable supply voltages, and do not represent the
average voltages used. From limited data, the actual operating supply voltages
seem to remain in the 0.9 to 1.1 volt range for peak performance.  But,  the
recent move to 3-D channel structures with reduced leakage currents, has
enabled about a 100 to 200mV decrease in operating voltage.

3.  Technology to the Rescue? 
Given the current limitations of CMOS scaling, it is natural to look toward other
technologies to enable computing performance to continue to scale.  After all,
computing started with mechanical devices, moved to electro-mechanical
(relays), then to electronic tubes, transistors, bipolar ICs, nMOS, and finally to
the CMOS technology we are using today.  In fact, our CMOS technology has
changed dramatically over the past 30 years: moving from single level Al con-
nection  to over 10 levels of Cu,  away from SiO2 gate oxide and back to metal
gates, adding Ge for strain, and now to 3-D topologies.  While CMOS will con-
tinue to evolve, and everyone should hope that the research in off-roadmap
technologies is successful, there is a real possibility that, computing at least,
will stay with CMOS-like technologies.  The problem is not simply the potential
abandonment of the manufacturing capability that the enormous investment
has created:  CMOS VLSI also has shaped our design abstractions that have
allowed us to build functional artifacts of enormous complexity. 

To move off the CMOS roadmap (for example, to quantum computing), would
require a very different hardware platform. (Note, that we have already accepted
that technology advances such as finFET are an extension of CMOS rather than
a separate manufacturing process,)  Such a new platform would disrupt the
entire design abstraction hierarchy.  Thus, the insertion cost for such a disrup-
tive technology would include the creation of both a state-of-the-art manufac-
turing facility, and the tools and training in all the design abstraction layers that
require change, which is not going to “come cheap”. And, that is the problem.
The fundamental challenge for any new startup (new idea) is insertion – how to
minimize the investment needed to compete with the status quo.  A radical idea
must demonstrate its utility with only a modest investment since there is sig-
nificant chance it will fail. The larger the investment, the lower the risk the
investors are willing to tolerate, which is why large industries change incremen-
tally.  Thus, changing technology to fix the power problem is a perfect catch-
22. 

In some ways, the key problem is the capabilities of modern CMOS technolo-
gies:  With CMOS, we can create chips with millions of transistors at nearly no
cost, have all the transistors work, and run at GHz frequencies.  While I am sure
there are better technologies out there, I am not sure how we can afford the
investment to find and develop them to the point where they are competitive.
While there are many interesting new technologies, for any to develop will
require  a niche market different from computing, where they can be successful
and earn the resources they need to grow.  It is important to remember that
most successful radical ideas create new markets.  Only when these markets
become large, do they challenge the players of the status quo, often indirectly,
by changing the underlying rules of that market.  So while it is possible that a
new technology will eventually compete with CMOS for computing, it is not
likely it will be from a frontal assault, and it will take time for this new technol-
ogy to grow large enough to compete. Given this dynamic, CMOS-like technol-
ogy will continue to dominate computing for the foreseeable future, and we will
need to figure out ways to make our computing systems more energy efficient
by means other than technology scaling.  
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4.  The Limits of Parallelism
When uniprocessors ran into the power wall, to continue to scale perform-
ance, manufacturers began to include more processor cores on each die.  It
had been known for decades [7] that if the application was parallel, a parallel
machine would be more power-efficient.  The reason can be easily seen from
the data in Figure 1.1.5:  Here, we have taken data on early processors, and
plotted the energy/operation vs. the peak performance that the processor
could achieve, and approximately normalize out the technology’s effect on the
energy and the performance. The curve clearly shows that achieving more
operations/second means that each operation consumes more energy, which
means that power increases super-linearly with performance, since power is
energy/operation (ops/sec). This is quite contrary to what  one needs if the
system is power limited:  In the power limited world in which  we now live,
increasing performance means we need to decrease the energy/operation to
keep the total power constant. Thus, twice the performance requires each
operation consume half the energy.

The move to parallel processing avoided the performance-energy correlation.
It allowed each core to be more energy efficient by having a lower peak per-
formance, and added multiple cores on the die to increase the overall perform-
ance.  In addition, the move to multicore allowed processors to use the ener-
gy/delay scaling of changing supply voltages to their advantage.  Remember
that we need to reduce the energy/operation to enable us to keep the power in
check when running at peak performance with all cores operating.  To achieve
this goal, the processor is run at a supply voltage that is below the peak safe
operating voltage for this technology, at a level that is  tuned to the individual
die.  However, now sequential applications run slower than before, since each
uses only  a single slower core.  To improve the performance of sequential
application, the supply voltage is increased, and that one core gets over-
clocked, while the other cores are parked, (that is put in a low-power state).
While running at a higher voltage decreases its energy efficiency, since the
other core(s) are idle, the overall chip remains within its power window.  

Such turbo modes make the accounting of supply voltages even more difficult,
since now there are at least three voltages to track, one each for turbo mode,
normal mode, and low power/battery mode.  For mobile processors, the
power-supply voltage is even more complex.  Since these systems are con-
cerned about total energy usage (a.k.a. battery life), they need to do computa-
tion as efficiently as possible, that is at as low a voltage as possible, while still
meeting performance targets.  As a result, these systems support a large num-
ber of frequencies and supply voltages at which they can run, and have a num-
ber of control loops which set the supply voltages and frequencies.  This tech-
nique is referred to as DVFS (dynamic voltage and frequency scaling). In sys-
tems which dissipate static power, the optimal frequency selection becomes a
little more complex, since slower operation increases the energy/operation
when static power is present, 

Parallelism alone is not going to allow computing performance to scale; this is
apparent from  the graph in Figure 1.1.5 which shows diminishing returns at
both extremes.  As we try to lower energy, we soon need to forgo large per-
formance factors for small energy savings. Said differently, once we have
moved off the “bleeding edge”, the energy gain for going even slower is mod-
est.   The same is true for supply voltage. This means that as we scale tech-
nology, reducing device  switching capacitances, we still get an energy saving
since everything is smaller.  Thus, a 2× linear shrink will reduce energy by 2×,
which should allow the number of cores to increase by a similar amount, if we
run each core at the same frequency as they run today.  If the intrinsic gate
speed improves, small additional performance gain might be possible (by low-
ering supply to save a little more energy).  Note that this scenario is growing
the number of cores at half the rate possible from device scaling.  This is much
less performance scaling than we are used to, since a 2× shrink no longer
enables 4× the number of cores on the same die area.

Yet even this slow performance scaling might be somewhat optimistic since it
ignores the energy cost of the memory system that is attached to the proces-
sor.  As shown below in Section 5, this memory-system energy can dwarf the
energy of an efficient processor.

5.  Don’t Forget the Memory Energy
The data in Figure 1.1.5 is not completely accurate, since it assumes that the
processor performance would scale linearly with the clock rate as technology
scaled.  This is not true unless the time the processor spends waiting on mem-
ory also scales with the clock rate.  Since DRAM access times have scaled
slowly, to scale memory stall time we need to decrease the miss rate of the
processor’s caches by adding a large last-level cache.  Today this cache is on
the order of 8MB, and needs to be added to the processor’s energy budget.
The leakage of the large last level cache is very dependent on technology and
the circuit tricks used to reduce the leakage when the cache is idle (since most
of the cache is idle most of the time).  Thus, it is hard to predict how cache
leakage will scale.  We estimate the leakage to be around 100mW/MB, which
matches data we had for 45 to 32nm parts. Correspondingly, we have added
this leakage power to the energy of each processor  presented in Figure 1.1.6.
When this energy is added, the energy efficiency advantage of the older
processors goes away, and makes the processor energy change with perform-
ance even flatter. A comparison of Figures 1.1.5 and 1.1.6 leads to a startling
conclusion: the leakage power of a modern last-level cache is larger than the
power of a simple core running full out.  This means that a slower energy effi-
cient processor is really not efficient when the entire memory system is con-
sidered, unless future technology can greatly reduce this leakage power.
Without this development, it is better to use multiple processors sharing the
cache such that its leakage cost can be amortized. 

The importance of memory energy is shown in Figure 1.1.7 which gives the
power breakdown of a recent 40nm, 8-core superscalar processor with an
8MB last-level cache. Over 50% of the processor die energy is dissipated in
the caches and register files in this machine.  While the cache hierarchy con-
sumes a significant amount of energy, it reduces the overall system energy by
eliminating energy intensive memory accesses. Given that the energy/opera-
tion is now critical, it is worth revisiting many of the cache design strategies
with a view to minimizing the average memory access energy (AMAE) [8].  In
this optimization, it is important to consider adding a small level-0 cache to
reduce the energy cost of loads, and to consider leakage to determine the opti-
mal cache size, since bigger is no longer always better!

AMAE minimization must also take into account the DRAM energy of the sys-
tem.  DRAM power is generally left out of most processor power analysis,
since it is off-die, but must be included in any computing-system analysis. The
energy cost of a DRAM access (1 to 2nJ) is a couple of orders-of-magnitude
higher than the cost of an internal cache access or functional operation (10pJ).
Part of this high cost comes from the very energy-inefficient I/O that DRAM
systems use [8], which not only takes over 20pJ/bit, but also require static
power to keep the I/O active.  This static power makes the effective cost/bit
even higher, especially for efficient computation, which minimizes the number
of memory accesses.  One hopes that this interface power problem can be
resolved soon, since very efficient I/O has been demonstrated by many differ-
ent companies [9], but changing standards can be difficult. Yet even when the
I/O is improved, the energy cost of a DRAM access will still be large (10pJ/bit,
0.6nJ/8B) compared to a core processor operation, since requests and data
still must travel a large distance on the processor and memory chips to reach
this efficient I/O.  Thus, much work still needs to be done in this area to find
ways to minimize this energy, or at least minimize it for specific kinds of
access patterns. 

6.  Gaining Efficiency through Specialization
Given the energy costs of the memory system, and the constraints on both
parallelism and technology scaling, it might seem like there is not much room
for energy improvement.  Yet there are numerous examples of specialized
hardware which is 2 to 3 orders-of-magnitude more efficient than a processor-
based solution as shown in Figure 1.1.8 [10].  The key to understanding how
much energy saving is available is to look at the energy costs for the funda-
mental operations of the application.  It is critical to consider both the compu-
tation and the communication (memory accesses) that are required. The data
for various operations in a 45nm technology are shown in Figure 1.1.9, which
also gives the energy breakdown of a simple in-order processor.  These num-
bers make two things very clear:  First, the programmable nature of a proces-
sor has high energy overhead, 70pJ/instruction, vs. a few pJ for an operation.
Fetching the instruction, and clocking the state registers that keep the data
organized, add a significant cost. Second, if high energy efficiency is required,
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the application must have very good data locality, since a cache fetch is 20pJ.
Fetches from the first level cache have an energy cost that is a significant frac-
tion of that of an instruction, so if data needs to be fetched often, the energy
improvement will be modest.

While the energy cost of programmability is high, the dollar cost of creating
custom solutions is also high.  This combination of forces has instigated a
change from bare processor dies to SoCs which integrate a number of applica-
tion accelerators and processors for energy efficiency.  Most processor dies
today contain the CPU, GPU, and image processing accelerator, and a number
of audio, video, and wireless codecs.  This growth in application accelerators
has led to research into whether there is enough commonality between a set of
applications to create a user programmable hardware engine for accelerating
that entire application class.  We have seen this sort of evolution before in
graphics, where we went from units with limited programmability to a highly-
programmable engine for a class of data-parallel floating-point (FP) applica-
tions.  In fact, since FP arithmetic takes around 1/10 the energy of a simple
instruction, forming a SIMD engine which performs the same operation on
about 10 data lanes, easily makes the machine’s instruction energy dominated
by the FP operation, minimizing the cost of the programmability.  This is the
approach that GPUs have taken, so it is likely that this class of machine might
be able to handle all data-parallel FP computation efficiently.   Current machines
cannot yet do this, since they were architected to maximize performance, and
they do not yet leverage locality as much as they could. However, both hard-
ware and software are migrating in this direction, since they need to exploit
locality as well, to reduce their energy usage.

Getting the highest energy efficiency requires a very specific combination: very
low energy operations, and extreme locality. 1000 MOPS/mW = 1pJ/operation.
Such efficiency levels are possible only if the application works on short integer
data (8 to16bits), and tens of data operations are completed for each local
memory fetch, and roughly a thousand operations are completed for each
DRAM fetch.  While this degree of reuse seems unlikely, it actually is quite com-
mon, and is very similar to what is needed to implement convolution. A prob-
lem with extremely-efficient computation is that each computation does not
consume much energy. Thus, to amortize the cost of each memory access, it
is critical that the outputs of one operation are forwarded directly (or through a
local buffer) to another intense computation. While this convolution-like data
flow is a very restricted form of computation, most of the accelerators being
proposed today fall into this form, including the image, video, and modem
processors being integrated on SoCs.  

As a result, my research group has been investigating different approaches to
creating accelerators for convolution-like applications.  We have created an
abstract machine model for this class of stencil computations, and are working
on a hardware generator and a programmable engine that can support it.  Since
generating software and drivers is always difficult for custom accelerators, we
have created a domain specific language (DSL) for stencil computations that
will enable application developers to take advantage of the special hardware in
the final product.  

7.  Tools for Enabling Design
A convolution engine solves only one class of applications, and that is the prob-
lem with specialization. Any special solution does not work for all applications,
so there are always more problems that need to be addressed.  Generating
solutions requires a deep understanding of the application, and the correspon-
ding energy costs of computation.  Rarely will an unmodified application or
algorithm run, let alone reach the desired efficiency on an accelerator. It takes
people thinking and working on their problem to find a truly efficient hardware
implementation. Thus, if specialization is going to be one of the key strategies
for continuing to scale computing performance, our principal task will be to
enable a larger group of application experts to participate in creating the effi-
cient hardware/software systems that they require.  While the breadth of the
application areas makes it unlikely that we can automatically generate highly-
efficient hardware given just the algorithm, codifying the principles of efficient
hardware implementations seems feasible.  We are starting to see the precur-
sors of these tools now, from the current generation of high-level synthesis

systems, to hardware generators such as  Chisel [11] and Genesis 2 [12] to
more domain-specific systems like SPIRAL [13].  Nearly thirty years after the
adoption of logic synthesis and place-and-route tools that opened the IC indus-
try to creating application-specific integrated circuits (ASICs), we have come
full circle, to the point where we need a new set of tools to enable application
experts to access our technology.

As we work on creating these tools, we should remember that not all problems
require the “bleeding edge” of performance or energy efficiency. For many
applications, current processors/microcontrollers are more than adequate to
meet the required system performance.  Unfortunately, the people who know
that these parts exist and how to use them are likely a distinct group from the
people who have applications that they want to implement. Like the high-per-
formance space, we again need tools that allow application experts access to
technology, but now at the level of building board-level systems from existing
parts. Imagine what would happen if creating a new hardware widget was as
easy as writing an iPhone or Android application.  This environment would
drive a new wave of innovative uses of computing. 

8.  Conclusion
In summary, our challenge is clear: The drive for performance and the end of
voltage scaling have made power, and not the number of transistors, the prin-
cipal factor limiting further improvements in computing performance.
Continuing to scale compute performance will require the creation and effective
use of new specialized compute engines, and will require the participation of
application experts to be successful.  If we play our cards right, and develop the
tools that allow our customers to become part of the design process, we will
create a new wave of innovative and efficient computing devices. 
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Figure 1.1.1: Improvement in microprocessor and gate performance vs. year. Figure 1.1.2:  Number of transistors and feature size vs. year.

Figure 1.1.3: Power density in mW/mm2 vs. year.

Figure 1.1.5: Instruction energy vs. peak performance (normalized).
Figure 1.1.6: Instruction energy vs performance, with LLcache leakage added,
with original points shown in grey for comparison.

Figure 1.1.4: Clock frequency vs. year.  The red line indicates frequency
increase due to gate speed.  The insert plot is  Vdd vs. year.
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Figure 1.1.7:  Power breakdown of an 8 core server chip. Figure 1.1.8:  Energy efficiency of specialized processing, from [10].

Figure 1.1.9: Rough energy costs for various operations in 45nm 0.9V.
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