
1

Increasing Concurrency using EDGE
Architectures

Karu Sankaralingam

Computer Architecture and Technology Laboratory
Department of Computer Sciences

1

Department of Computer Sciences
The University of Texas at Austin

http://www.cs.utexas.edu/~karu

1000010000

A Frequency to Concurrency Paradigm Shift

Frequency

Performance

C
IN

T)

H
z)

100

1000

100

1000
q y

Pe
rf

or
m

an
ce

 (S
PE

C

Fr
eq

ue
nc

y
(M

H

Frequency Era Concurrency Era

2

101990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

2012

2014

2016

10

Performance growth must come from concurrency

2

Exploiting Concurrency - 10,000 ft View

Algorithm Algorithm Algorithm

Programmer

Compiler

Programmer

Parallelizing
CompilerISA

(Instruction Set Architecture)

Today 2015 ?
Parallelizing
Programmer

Compiler
Threads

3

Hardware

Two decades of
research2X every 2 years

Industry is
moving to
multi-core

Concurrency in TRIPS - 10,000 ft View

Maintain conventional software
design methodology

Algorithm

Renegotiate Compiler-H/W interface
Design ISA to match technology

Explicit Data Graph Execution
1. Program is a sequence of blocks
2 Each block is a dataflow graph S

EDGE ISA

Programmer

Compiler

4

2. Each block is a dataflow graph

Concurrent hardware that can scale
with technology

TRIPS Processor

3

Outline
• Introduction

– Scaling conventional microarchitectures
– Summaryy

• Irregular concurrency
– EDGE: A class of ISAs for concurrency
– TRIPS: Concurrency in the microarchitecture
– Performance results
– TRIPS Prototype chip

E t i f l

5

• Extensions for regular concurrency
• Future work
• Conclusions

Why is Scaling Uniprocessors Hard?

add r1 ← r2, r3
mul r4 ← r1, r0
…

Instruction
C

ache

R
egister
File

R
e-order
Buffer

Inst.
Window

D
ecode &

R
enam

e

R
egister
FileInst.

Window

Instruction
C

ache

R
e-order
Buffer

D
ecode &

R
enam

e

6

Fetch Decode Issue Reg. Read Execute Retire

Hardware does dataflow analysis
Compares with all instructions to wake up

Fetch Decode Issue Reg. Read Execute Retire

Complex bypass paths with lots of wires and muxesLarge, power hungry, complex, and slow
Size limited by wire delays

Hardware must fetch N instructions, scan and
predict any branches

Hardware must route any issued
instruction to input of any ALU -

no locality between instructions and ALUs!

Hardware must rename registers to eliminate
false dependences, including those within packet

Hardware must pull all 2N operands
from large register file (and write N) each cycle

Hardware enforces
in-order retire

4

Problem Statement

• How to design a concurrent architecture
for sequential programming?

• Principles
1. Rebalance compiler and hardware effort
2 Amortize instruction-level overheads

7

2. Amortize instruction-level overheads
3. Eliminate centralized resources

Summary
• Principled approach

– Programs encoded as blocks
• Amortize instruction-level overheads

– Each block is a dataflow graph
• Rebalance compiler and hardware effort

– Distributed microarchitecture built with mesh networks
• Eliminate centralized resources

• Results:

8

– Up to 5X better performance than best superscalar
processors

– Prototype system expected in summer

5

Outline
• Introduction

– Scaling conventional microarchitectures
– Summary of contributionsy

• Irregular Concurrency
– EDGE: A class of ISAs for concurrency
– TRIPS: Concurrency in the microarchitecture
– Performance results
– TRIPS Prototype chip

E t i f l

9

• Extensions for regular concurrency
• Future work
• Conclusions

Principle 1: Rebalance compiler and hardware effort
Principle 2: Amortize instruction-level overheads
Principle 3: Eliminate centralized resources

10

6

EDGE: A class of ISAs for concurrency

• Explicit Data Graph Execution
– Defined by two key features

1. Block-atomic execution
• Program graph is broken into sequences of blocks
• Basic blocks, hyperblocks, or something else

2. Blocks encoded as dataflow graphs: Direct instruction
communication

11

communication
• The block’s dataflow graph is explicit in the architecture
• Within a block, ISA support for direct producer-to-consumer

communication
• Across blocks, ISA support for named registers
• Caveat: memory is still a shared namespace

z i

Dataflow graph

An Example

int main(void) {
int z, i;
z = 0;

C-code EDGE ISA

$g1 ← 0

RISC ISA

.blockbegin init
block’s instructions

add inc ==10

goto
loopbody

goto
looptailiz

F T

.blockbegin loopbody
N[0] read $g1 →N[2],N[3],N[6]
N[1] read $g2 →N[2]

N[2] inc → N[7], N[4]
N[3] add → N[8]
N[4] teqi 10 → N[5], N[6]
N[5] bro_f loopbody
N[6] bro_t looptail

for (i = 1; i <= 10; i++) {
z += i;

}
printf(“Sum %d\n", z);

}

Dataflow graph

$g1 ← 0
$g2 ← 1
loopbody:
add $g1 ← $g1, $g2
cmp $g0 ← $g2, 10
bz looptail
inc $g2 ← $g2
br loopbody
looptail:
…

.blockend

.blockbegin loopbody
block’s instructions

.blockend

12

loopbody looptail
N[7] write $g1
N[8] write $g2
.blockend

z i

add inc ==10

goto
loopbody

goto
looptailiz

F T .blockbegin looptail
block’s instructions

.blockend

7

Role of the Compiler: Form Large Blocks
C Code Control flow Graph Dataflow Graph

S0 S1
int main(void) {
int z, i;
z = 0;
for (i = 1;

i <= 10; i++) {
z += i;

}
printf(“%d\n", z);

}

hy
pe

rb
lo

ck

S0

S3 S4S2

S5

S1

13

}

Control flow heuristics – loop unrolling, inlining, if-conversion…

S6

S7

Role of the Compiler: Schedule Blocks
Scheduled

Dataflow graph

S2 S3 S4N0 N1 N2 N3

Dataflow graph

S0 S1

S5

S6

S7

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

S3 S4S2

S5

Scheduler

Processor
topology model

N0 N1 N2 N3

14

Map dependence
graph paths
to physical paths
on execution
substrate

S6

S7

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

8

Principle 1: Rebalance compiler and hardware effort
Principle 2: Amortize instruction-level overheads
Principle 3: Eliminate centralized resources

15

TRIPS Microarchitecture Principles
• Limit wire lengths

– Architecture is partitioned
and distributed

– No centralized resources RGI-$ R R RNo centralized resources
– Local wires are short
– Networks connect only

nearest neighbors

• Design for scalability
– Design productivity by

replicating tiles

D-$

D-$

D-$

I-$

I-$

I-$

16

replicating tiles
– Communication through

well-defined control and
data networks

D-$I-$

9

TRIPS Processor Organization

RGI-$ R R R

• Partition all major structures into
banks, distribute, and
interconnect

• Execution Tile (E)

D-$

D-$

D-$

I-$

I-$

I-$
OP2Inst OP1

Control

0
1
.
.
.127

Execution Tile (E)
– Instruction and operand storage

• Register Tile (R)
– Architectural register storage

and buffers (32)
• Data Tile (D)

– Data cache (8KB) and buffers
– Ordering and miss-handling logic

• Instruction Tile (I)

17

Communication Networks

D-$I-$

Router

• Instruction Tile (I)
– Instruction cache (16KB)

• Global Control Tile (G)
– Block prediction & resolution logic

RGI-$ R R R

Execution Model (Fetch)

D-$

D-$

D-$

I-$

I-$

I-$

18

D-$I-$

Instructions mapped to processor

10

RGI-$ R
read

R
read R

Execution Model (Execution)

addiD-$ addi addi

cmpadd

add br_t br_f

D-$

D-$

I-$

I-$

I-$

19

addD-$I-$

Register values → RT
Branch result → GT
Stores values → DT

Instructions execute when operands arrive
Ordering determined dynamically

Operands routed through dynamic network

RGI-$ R R R

Execution Model (Commit)
Completion detected by data tile, register tile, and global tile

D-$

D-$

D-$

I-$

I-$

I-$

20

D-$I-$

Complete Commit Commit-ack

Resources can be deallocated

11

• Logically blocks execute sequentially

Inter-Block Concurrency

Fetch Execute Commit
Fetch Execute Commit

• Reservation stations and control speculation enables deep
instruction window

Fetch Execute Commit

Fetch Execute Commit

21

Fetch Execute Commit
Fetch Execute Commit

Fetch Execute Commit
Fetch Execute Commit

Predict

Performance Results

22

12

Performance Comparison
• What is a meaningful processor to compare against

TRIPS?
– Alpha 21264 is a balanced 4-wide machine
– Goal of TRIPS is a balanced 16-wide machine

• 1024 deep window, 4-port memory, 4-port register file
• ISA exposes concurrency, exploits locality

• Experimental evaluation methodology
– Sensitivity to design parameters

• High level analysis: ALU-ALU delay, network topology, routing
policies, speculation depth

– Complexity implication of design decisions
• H/W prototype answers some questions: OPN area, OPN routing

23

p yp q , g
latency, block predictor complexity, LSQ

– Breakdown of overheads and sources of performance
• High quality compiled code essential

– Compiler analysis and tuning ongoing
– More progress needed to draw final conclusions

Comparison to Superscalar Processors

10

12

Integer programs Floating-point programs

~6X

e

0

2

4

6

8

10

bzip2

gzip

m
cf

parse

tw
olf

M
EAN

am
m

art

equa

m
grid

sw
im

M
EAN

~2X

In
st

. p
er

 c
yc

le

24

2 er N p ke

d m N

Best Superscalar TRIPS Perfect TRIPS

Both processors have similar L2, main-memory system

13

Sensitivity to Blocks in Flight

10

12

e
Integer programs Floating-point programs

0

2

4

6

8

10

bzip2

gzip

m
cf

parse

tw
olf

M
EAN

am
m

art

equa

m
grid

sw
im

M
EAN

In
st

. p
er

 c
yc

le

25

TRIPS allows 8 blocks in flight
High quality code and block predictor tuning will affect sensitivity

2 er f N p ke

d m N

1-block 2-blocks 8-blocks 16-blocks Perfect TRIPS

TRIPS Chip

130 nm 7LM IBM ASIC process
335 mm2 die
~170 million transistors

Overall Chip Area:
29% - Processor 0
29% - Processor 1
21% - Level 2 Cache
14% - On-Chip Network
7% - Other

Processor Area:
30% - Functional Units
4% - Register Files & Queues

PROC 0

L2
Cache
& OCN

26

g
10% - Level 1 Caches
13% - Instruction Queues
13% - Load & Store Queues
12% - Operand Network
2% - Branch Predictor

16% - Other

PROC 1

14

Motherboard Blank PCB
• Size 14” x 17”
• 18 layers
• Host

PowerPC 440GP

FPGA Connectors

C2C– PowerPC 440GP
(400 MHz, 3-way
superscalar)

• Debug
– FPGA XC2VP40

(1148 pins)
– FPGA connectors for

external I/O
• Four daughtercards

FPGA

NeXLev Connectors to
daughterboards

C2C
Connector

PPC

ATX

27

• Four daughtercards
each with 1 TRIPS
chip

PPC

EBI Debug

RS-232

Ethernet

Prototype Design
• Design

– Modularity reduced complexity: Specification → Physical design
– SoC-like but tiles form one large uniprocessor

• VerificationVerification
– Hierarchical verification (265 bugs total)

• Tile-level, processor-level, chip-level
– Performance verification (16 bugs total)

• Lessons
+ Clean predicate model and simple block exit path
+ Register renaming design revised, full search done once
+ H/W prototype design helped push s/w toolchain flow

28

+ Compiler heuristics, register allocator, scheduler
– Block predictor design complexity ⇒ 3-cycles to predict
– Significant router area (12%), routing logic on critical path
– LSQ replication consumed significant area

• Ongoing work addresses this challenge

15

My Contributions
• Processor architecture (MICRO 2001, ICCD 2003)

– Dataflow execution
– Explicit Data Graph Encoding ISA
– Distributed microarchitecture

NOT my work: block prediction memory disambiguation and TRIPS– NOT my work: block prediction, memory disambiguation, and TRIPS
compiler

• Prototype chip development
– Processor ISA and microarchitecture specification
– Many simulators, lines of verilog, and several tools
– Processor verification lead and chip physical design lead
– Spice → Netlist → Verilog → Microarchitecture

29

• Processor flexibility (ISCA 2003, MICRO 2003)
– Exploiting different types and granularities of parallelism
– Systematic identification of attributes to describe DLP programs
– Mechanisms to match these attributes

Outline
• Introduction

– Scaling conventional microarchitectures
– Summary of contributionsy

• Irregular Concurrency
– EDGE: A class of ISAs for concurrency
– TRIPS: Concurrency in the microarchitecture
– Performance results
– TRIPS Prototype chip

E t i f l

30

• Extensions for regular concurrency
• Future work
• Conclusions

16

Irregular vs. Regular Concurrency
Hardware mines concurrency

Few ALUs (4-6)
Programmer can find concurrency

Regular processor organization
Many ALUs (>32)

IBM Cell
NVIDIA G40
(graphics chip)Pentium 4

31

(g p p)Pentium 4

What are the underlying attributes of applications?
How to efficiently support regular concurrency in a dataflow substrate?

Regular Concurrency (Data Level Parallelism)

• A systematic analysis of DLP
– Identify and characterize fundamental program behavior
– Spanning microarchitecture mechanisms
– This talk: Constant reuse

Scientific
Vector-add
FFT
LU-Decomposition

Multimedia
RGB-YIQ conversion
2D DCT
2D High-pass filter

Graphics (vertex)
Simple lighting
Reflection surface
Skinning

32

p

Network Proc.
MD5
AES encryption
Blowfish encryption

g p g

Graphics (pixel)
Simple lighting
Reflection surface
Anisotropic texture filter

17

ld ldld

Dataflow graph

Constant Reuse

Setup phase:
L d t t f

Pseudocode

S t

Control flow graph

R1 R2R0
Load constants from
memory into registers

Loop body:
Read data to operate on
Perform computation

- High constant re-use
Write data to memory

Tail:

…
Setup

Loop body

Tail

33

… …
.

• High constant re-use results in high operand fanout
• Persistent local data storage eliminates operand fanout

Persistent Local Data for Constant Reuse

RGI-$ R R R
Control

D-$

D-$

D-$

D-$

I-$

I-$

I-$

I-$
Router

OP2Inst OP1

ALU

34

D $I $

Track reuse using status bits in reservation stations

18

DLP Results

r T
R

IP
S

2

2.5

3
0.37

0.33

%
 S

pe
ed

up
 o

ve
r

0

0.5

1

1.5

convert

dct

highpassfilter

fragm
ent-

reflection

fragm
ent-

sim
plelight

vertex-
reflection

vertex-
sim

plelight

m
d5

blow
fish

rijndael

vertex-
skinning

0.1

0.020.52 0.01

35

~2.5X Speedup over TRIPS
Speedup correlated with constant fanout

r

TRIPS + Persistent local data

Summary of Attributes and Mechanisms
• Memory

– High constant reuse
• Persistent local data

– Regular and numerous memory accesses
• High bandwidth channels and multi-word load

– Frequently accessed small lookup tables
• Local per-tile scratchpad memories

• Control
– Regular control flow and many loop iterations

• Instruction revitalization
– Inner-loops with data-dependent branching

36

Inner loops with data dependent branching
• Local per-tile control

• Flexibility provides 55% better performance than a fixed
configuration

19

Related Work
• Dataflow

– Dataflow machines (Dennis 1974, U-Interpreter, Manchester
1985, Sigma-1 1987, TTDA/Monsoon 1990)

– WaveScalar (2003) ASH (2004)WaveScalar (2003), ASH (2004)

• Tiled Architectures
– RAW(1997), Smart Memories(2000)
– Cell (2001-2005), Niagara (2001-2005)

• Concurrency

37

y
– Multiscalar (1995), ILDP (2002), Continual Flow pipelines (2004)
– Transactional memory (1993)
– Thread level speculation (1995)

Summary
• Three design principles

– Rebalance compiler and hardware effort
– Amortize instruction level overheads
– Eliminate centralized resources

• EDGE: A new class of ISAs to match technology
– Block atomic execution
– Instruction-to-instruction communication, dependences explicit

• TRIPS microarchitecture
– Modular and tiled design with mesh network

38

Modular and tiled design with mesh network

• Up to 5X better performance than superscalar
processors

20

Future Work: Systems 10-15 years from now
• Energy efficiency and programmer productivity at high performance
• Technology

– Much more unreliable
– High process variability: each transistor is unique

• Software
– Applications will change: mobility, modeling, ubiquitous connectivity
– Concurrency will be expressed at language level also

• Transactions, active objects, futures, parallel STL algorithms
– Abundant latent concurrency in the application – 1000 “threads”

• Architecture:
Exploiting concurrency in “threads”: Where to run when to run how to

39

– Exploiting concurrency in threads : Where to run, when to run, how to
run (voltage/frequency)?

– What abstraction should compiler and language see?
– Mechanisms and microarchitecture optimized for common case
– Agile at many levels

Acknowledgements
Advisors

Stephen W. Keckler Doug Burger

Architecture Contributors

Raj Desikan
Saurabh Drolia
Sibi Govindan

Paul Gratz

Haiming Liu
Robert McDonald

Ramdas Nagarajan
Simha Sethumadhavan

40

Divya Gulati
Heather Hanson
Changkyu Kim

Premkishore Shivakumar
Nitya Ranganathan

Bill Yoder

21

41

“A human being should be able to change a
diaper, plan an invasion, butcher a hog, conn a p , p , g,
ship, design a building, write a sonnet, balance
accounts, build a wall, set a bone, comfort the
dying, take orders, give orders, cooperate, act

alone, solve equations, analyze a new problem,
pitch manure, program a computer, cook a tasty

meal, fight efficiently, die gallantly.

42

meal, fight efficiently, die gallantly.
Specialization is for insects.”

- Lazarus Long

22

Backup Slides

43

Experimental Design Methodology
• Baseline balanced machine

– Alpha 21264, 80 instructions in flight, 4 issue
• Target: Balanced 16 issue machine
• Challenges for conventional superscalar processor

2– O(N2) area growth in many structures
– Scalable fetch bandwidth
– Scalable memory bandwidth

• TRIPS: 16 issue, 1024 deep window, distributed organization
– ILP through deep speculation and wide issue

• Sensitivity analysis (2001-2003)
– Wire delay, ALU-ALU delay, network topology, speculation depth

44

• Microarchitecture tuning (2004)
– Operand network routing algorithm, fairness policy, separated global

networks, execution pipeline issue policies
• Processor microarchitecture critical path tool (2005-2006)

– Quantify effects of “every” microarchitecture event

23

Daughterboard Components and Placement

• Size 6” x 7.5”
• 18 layers

DRAM t 2

NeXLev Connectors
(to motherboard)

Spare Connectors

• DRAM: up to 2
GB (2 x 1GB)

• Power: derived
from 12V supply

• JTAG for TRIPS
d b i

TRIPS chip

Heatsink

D
D

R
 D

IM
M

D
D

R
 D

IM
M

45

debugging NeXLev Connectors
(to motherboard)

MM

VRM (Voltage Regulator Module)
DC/DC Converter

DC/DC
Converter

Results – Comparison to Limit IPC

e

14

16

18

In
st

. p
er

 c
yc

le

0

2

4

6

8

10

12

bz gz m
c

pa tw M
E

am art

eq m
g

sw M
E

46

zip2

zip cf

arser

w
olf

EAN

m
m

p

t quake

grid

w
im

EAN

Best Superscalar TRIPS Limit

Limit = 16-issue, 2048 entry instruction window, perfect prediction,
1-cycle memory

24

Data-dependent Branching
foreach pixel

Read memory←x,color,depth
z = 0;
for (i = 0; i < x; i++) {

b t i [i] B1
x

B0

z = z ⋅ bonematrix[i];
…

}
Write to memory→z

B1

B2

B0
B1
B1
B1

B0
B1
B2

B0
B1
B1
B2

B0
B1
B1
B1

Pixel 0 Pixel 1 Pixel 2 Pixel 3

Unnecessary
control

dependence
edges

47

1. Concurrency within each pixel is small
2. Data-dependent branching causes mispredictions
3. Local control can expose intra-pixel concurrency

B1
B2

B2 B1
B2

edges

Local Control for Data-dependent Branching

B0 B0 B0 B0

Pixel 0 Pixel 1 Pixel 2 Pixel 3
RGI-$ R R R

B1
B1
B1
B2

B1
B2

B1
B1
B2

B1
B1
B1
B2

D-$

D-$

D-$

I-$

I-$

I-$

Pixel 0,
4,8,12..

Pixel 1,
2,5,9,.

Pixel 2,
6 10

Pixel 3,
7 11

Fetch B0
Predict B1, Execute B1

B0
B1
B1

B0
B1

B0
B1
B1

B0
B1
B1

Pixel 4 Pixel 5 Pixel 6 Pixel 7

B1

48

D-$I-$ 6,10... 7,11…,
Predict B1, Execute B1
Predict B1, Execute B1
….

Local control allows MIMD-like execution

B1
B2

B2

B1
B2

B1
B2

B1
B1
B1

25

DLP Results

250

300

r T
R

IP
S

0

50

100

150

200

convert

dct

highpassf

fragm
ent-

reflection

fragm
ent-

sim
pleligh

vertex-
reflection

vertex-
sim

plelig h

m
d5

blow
fish

rijndael

vertex-
skinning

%
 S

pe
ed

up
 o

ve
r

49

filter

-ht ht

Up to 250% improvement
Run-time processor flexibility

Persistent data Local Control

Dataflow History
1. Petri nets (1962)
2. Estrin and Turn (1963)

Karp and Miller (1966)Karp and Miller (1966)
3. Tomasulo’s Algorithm (1964)
4. Chamberlain (1971) – SSA dataflow language
5. Kahn (1974) – parallel language

• Embedded systems: SDF(1986), Multi-dimensional
dataflow boolean dataflow cyclostatic dataflow Timed

50

dataflow, boolean dataflow, cyclostatic dataflow, Timed
SDF, Heterochronous dataflow

6. Dennis (1974)
7. Arvind – TTDA

26

Dataflow Graph Definition
• Directed acyclic graph
• Each node is an “instruction” or operator in the program
• Control-flow (branch) represented by “merge” nodesControl flow (branch) represented by merge nodes
• Edges represent inputs for operators

foo() {
x = 4;
y = 8;
z = x + y;

4 8

51

y;
}

=

+

=

A Frequency to Concurrency Paradigm Shift

• Deeper pipelines

Latch overhead is fixed ⇒ At best 6X more than
Pentium4

• Faster transistors

52

– Moore’s law ⇒ smaller transistors
– Smaller translates to faster

Vd, and Vth does not scale ⇒ Only smaller, not faster

27

Overhead of Distributed Protocols
• Performance overhead (Nagarajan et al. ISPASS ‘06)

– Fetch, Complete, Commit, Commit-ack: ~1% to 10% slowdown
– Operand network: ~30% slowdown relative to oracle n/w

• Implementation overhead: Area, power, and designImplementation overhead: Area, power, and design
complexity
– Fetch

• Wires: ~140 bits between tiles
• ~3500 latches

– Complete, Commit, Commit-ack
• Wires: ~30 bits between tiles
• ~750 latches

– Operand network

Dependent instructions
always execute
“back-to-back”

53

Operand network
• Wires: ~140 bits between tiles
• 12% of processor area
• Non-recurring one-time design complexity
• High frequency design can be a challenge

Processor Memory Gap
• Reduce latency

– Prefetch: H/W or S/W
hides latency as best

• Tolerate latency
– Switch to another

thready
as possible

– Streaming model:
Programmer fetches
from memory before
use

– Speculate on value
and continue

– Deep control
speculation generates
useful work early

54

28

TRIPS Compiler – Block Sizes

Compiler -O4

Benchmarks Min Max MeanBenchmarks Min Max Mean
SPECINT2000 8.8 29.2 18.4
SPECFP2000 13.7 75.9 29.5
EEMBC 8.2 49.9 22.7
Microbenchmarks 16.5 101.3 48.6

Hand optimized

55

Hand optimized

Microbenchmarks 17 112.5 73.5

TRIPS Compiler - Performance

14.00

4.00

6.00

8.00

10.00

12.00

S
p

e
e
d

u
p Alpha gcc -O3

Scale O3

Scale O4

Hand TIL

56

0.00

2.00

am
m
p_

1

am
m
p_

2
ar

t_
1

ar
t_

2
ar

t_
3

bz
ip
2_

1

bz
ip
2_

2

bz
ip
2_

3

do
pp

le
r_

GMTI

eq
ua

ke
_1

fft
2_

GMTI

fft
4_

GMTI

gz
ip
_2

m
at
rix

_1

pa
rs
er

_1
sie

ve

tra
ns

po
se

_G
MTI

tw
ol
f_
1

tw
ol
f_
3

va
dd

av
er

ag
e

29

1.2

Compiler Progress April 2005 - March 2006

Microbenchmark Cycle Counts

0.4

0.6

0.8

1

A
v
e
ra

g
e
 N

o
rm

a
li
z
e
d
 P

e
rf

o
r

57

0

0.2

Apr_17 May_7 Jun_1 Jul_3 Aug_3 Sep_3 Oct_1 Nov_5 Dec_3 Jan_3 Feb_1 Mar_3 Mar_23

Processor Performance

Name
TRIPS

Speedup
Alpha
IPC

TRIPS
IPC

TRIPS
Inst/Block

Description

a2time 5.05 0.81 4.05 77 Control, integer math

bezier 3.30 1.05 3.20 76 Bezier curve, fixed-point
math

dct8x8 2.66 1.70 4.70 90 2D discrete cosine transform

matrix 3.30 1.68 4.05 72 Matrix multiply

sha 0.92 2.28 2.10 80 Secure hash
(mostly sequential algorithm)

vadd 1.92 3.04 6.51 74
Vector add
(limited by load/store

58

Simulated on TRIPS and Alpha 21264 cycle simulators
Alpha compilation with GEM compiler and maximum opts (O4 and tuned for 21264)
TRIPS compilation with in-development compiler plus some hand-tuning
Speedup measured by comparing Alpha cycles to TRIPS cycles

bandwidth)

30

Hardware Role in ILP

Block A Execute A

Program Binary Block Predictor

Block A

Mapped Blocks

st

ld

st

ld

st

ld

st

st

Block C

Block D

Block B
Predict C

Fetch/Execute C

Predict D
Fetch/Execute D

st

ld

st

st

Block C

59

ld

st

Block D

… ld

st

Block D

ld

st Stores
Register writes
Loads

Hardware builds dynamic full program dataflow graph
by register-renaming and enforcing load store dependences

Thread-level Parallelism
• Partition instruction

window, register files,
L/S queues between

Thread 0 Thread 1

st

ld

st

ld

st

ld

st

ld
st

st

L/S queues between
threads

• Speculate within each
thread

st

ld

st

ld
st

st

ld

st

ld

st

60

ld

st

ld

st

• Round-robin fetch and
issue between threads

ld
st

st

31

TLP Results

20

25

30

(IP
C

)

0

5

10

15

20

2 4 8

of threads

R
at

e
of

 W
or

k Sequential Execution
TLP-mode execution
Multiple processors

61

• Speedup: 1.8x to 2.9x
• Reasons for performance losses

– Contention for resources (principally in instruction and data supply)
– Reduced instruction window size

P4 Microarchitecture

62

32

P4 Microarchitecture

63

Wire Delays

64

33

Power Scaling

65

Comparison to Specialized Hardware

1 2

1.6
GraphicsMultimedia

0

0.4

0.8

1.2

Encryption

ScientificSp
ee

du
p

66

MPC-74
47

Im
ag

ine

Ta
ran

tul
a

Cryp
tom

an
iac

Qua
dro

FX
(F

)

Qua
dro

FX
(V

)
Mea

n

34

TRIPS Block Format

• Each block is formed five 128-byte
program “chunks”

Header
Chunk

PC

128 Bytes

• The header chunk includes a block
header (execution flags plus a store
mask) and register read/write
instructions

• Each instruction chunk holds 32 4-
byte instructions (including NOPs)

• A maximally sized block contains 128
regular instructions, 32 read

Instruction
Chunk 0 128 Bytes

128 Bytes

128 Bytes

Instruction
Chunk 1

Instruction

67

instructions, and 32 write instructions128 Bytes

128 Bytes

Chunk 2

Instruction
Chunk 3

Block Contents

R[0] read G[0] N[0] N[1]
R[1] read G[1] N[2]
…

• 32 Register reads

R[31] read G[3] N[4]

N[0] add N[1]
N[1] mul w[0]
…
N[127] br

W[0] write G[64]

• 128 Instructions
• 32 Loads+Stores total
• 8 Branches

68

W[0] write G[64]
W[1] write G[65]
…
W[31] write G[127]

• 32 Writes

35

Key Features of TRIPS ISA
• Fixed instruction lengths - all instructions 32 bits
• Read and write instructions

– Contained in block header for managing DFG/register file
communication

• Target format (T0, T1)
– Output destinations specified with 9-bit targets

• Predication (PR)
– Nearly every instruction has a predicate field, encoded for

efficient dataflow predication

69

• Load/store IDs (LSID)
– Used to maintain sequential memory semantics despite EDGE

ISA

• Exit bits (EXIT)
– Used to improve block exit control prediction

TRIPS Instruction Formats

INSTRUCTION FIELDS
OPCODE = Primary Opcode

OPCODE T1 T0XOPPR

L d d St I t ti F t

General Instruction Formats

G

I

31 25 24 23 22 818 17 9 0

OPCODE IMM T0XOPPR

N
or

m
al

In
st

ru
ct

io
ns

XOP = Extended Opcode
PR = Predicate Field
IMM = Signed Immediate
T0 = Target 0 Specifier
T1 = Target 1 Specifier
LSID = Load/Store ID
EXIT = Exit Number
OFFSET = Branch Offset
CONST = 16-bit Constant
V = Valid Bit

OPCODE IMM T0

OPCODE OFFSET

Branch Instruction Format

Load and Store Instruction Formats

Constant Instruction Format

L

B

OPCODE CONST C

LSIDPR

31 25 24 23 22 818 17 9 0

PR

T0

31 25 24 089

EXIT

31 25 24 23 022 20 19

OPCODE IMM 0 SLSIDPR

70

V GR W
5 04

Write Instruction Format

Sp
ec

ia
l

In
st

ru
ct

io
ns

V Valid Bit
GR = General Register Index
RT0 = Read Target 0 Specifier
RT1 = Read Target 1 Specifier

Read Instruction Format

V GR RRT0

21 1620 078

RT1

15

Not shown: M3, M4 formats

36

TRIPS G and L formats

opcode pr xop T0T1

7 2 5 9 9

G:

IMM

Target fields

00: unpredicated
01: reserved
10: predicated on false
11: predicated on true

Pred

opcode pr T0

7 2 5 9 9

L: IMMLSIDLSID

71

9-bit address index for
calculating effective address

5-bit sequence number
for ordering loads/stores

Target (Operand) Formats

Target field
9 bits

2 bits 7 bits

• 00: No target (or write inst.)
• 01: Targets predicate field

• Names one of 128 target
instructions

72

01: Targets predicate field
• 10: Targets left operand
• 11: Targets right operand

• Location of instruction is
microarchitecture dependent

37

Object Code Example

[R1] $g1 [2]

[] $ [] []

T0T1v reg

T0T1

TASL (target format) Object Code

[R2] $g2 [1] [4]

[1] ld L[1] 4 [2]

[2] add [3] [4]

[3] mov [5] [6]

[4] st S[2] 4

[5] addi 2 [W1]

[6] teqz [7] [8]

opcode pr LSID T0imm

opcode pr xop T0T1

opcode pr xop T0T1

opcode pr LSID 0imm

opcode pr xop T0imm

opcode pr xop T0T1

T0T1v reg

73

[6] teq [] [8]

[7] b_t block3

[8] b_f block2

[W1] $g5

opcode pr exit offset

opcode pr exit offset

v reg

Object Code Example

[R1] $g1 [2]

[] $ [] []

TASL (target format)

----[2]1 00001

[4][1]1 00010

Object Code

[R2] $g2 [1] [4]

[1] ld L[1] 4 [2]

[2] add [3] [4]

[3] mov [5] [6]

[4] st S[2] 4

[5] addi 2 [W1]

[6] teqz [7] [8]

ld 00 00001 [2]4

add 00 --- [4][3]

mov 00 --- [6][5]

st 00 00010 ---4

addi 00 --- [W1]2

teqz 00 --- [8][7]

[4][1]1 00010

74

[6] teq [] [8]

[7] b_t block3

[8] b_f block2

[W1] $g5

b 11 (t) E0 block3 - PC

b 10 (f) E1 block2 - PC

1 00101

Store mask: 0000000000000000000000000000100

38

Publications
• "Universal Mechanisms for Data-Parallel

Architectures," Micro 2003
• “Routed Inter-ALU Networks for ILP Scalability y

and Performance," ICCD 2003
• "Distributed Pagerank for P2P Systems," HPDC

2003

75

End of Backup Slides

76

