
PARSEC 2.0: A New Benchmark Suite for
Chip-Multiprocessors

Christian Bienia and Kai Li
Department of Computer Science, Princeton University

{cbienia,li}@cs.princeton.edu

ABSTRACT

The second version of the Princeton Application Repository for

Shared-Memory Computers (PARSEC) has been released. PAR-

SEC is a benchmark suite for Chip-Multiprocessors (CMPs) that

focuses on emerging applications. It includes a diverse set of work-

loads from different domains such as interactive animation or sys-

tems applications that mimic large-scale commercial workloads.

The next version of PARSEC features several improved and one

new workload. It also supports an additional parallelization model.

Many patches and changes were included which simplify the use of

PARSEC in practice. The benchmarks of the new suite have higher

scalability and cover a larger number of emerging applications. In

this paper we discuss the major changes in detail and provide the

information necessary to interpret results obtained with PARSEC

2.0 correctly.

Categories and Subject Descriptors

D.0 [Software]: [benchmark suite]

General Terms

Performance, Measurement, Experimentation

Keywords

benchmark suite, performance measurement, multithreading,

shared-memory computers

1. INTRODUCTION
The goal of the first version of PARSEC was to provide a se-

lection of next-generation workloads to enable the development of

future CMPs. The PARSEC team believes that such a benchmark

suite should satisfy the following five criteria [2]:

• It is composed of multithreaded applications.

• It focuses on emerging workloads.

• It is diverse enough to represent the increasingly heteroge-

neous ways in which multiprocessors are used.

• Its workloads employ state-of-art techniques.

• It should support research.

An assessment of existing benchmark suites showed that no sin-

gle suite before PARSEC satisfied all five conditions. That is why

PARSEC was created. A statistical comparison of PARSEC and

SPLASH-2 revealed significant, systematic differences [1]. These

findings suggest that parallel programs have changed considerably

since the first wave of commercially available multiprocessor ma-

chines, which means that the use of PARSEC instead of older suites

will impact the results obtained.

Until today PARSEC has been downloaded over 1,500 times. It

is now in use at virtually all major research institutions worldwide,

as the list of acknowledgments in Section 8 suggests. The first

publications using PARSEC have been released.

The initial version of PARSEC was made publicly available in

January 2008. The second version followed in February 2009. Its

major improvements over the original release are several new and

enhanced workloads as well as additional parallelization models.

How does it differ from the first version of the benchmark suite?

To answer this question this paper makes the following contribu-

tions:

• We motivate the need for the second version of the benchmark

suite.

• We describe some common emerging applications and how

well PARSEC covers them.

• We provide the information necessary to understand results

obtained with PARSEC 2.0.

2. MOTIVATION
The initial version of PARSEC was an improvement over exist-

ing benchmark suites. However, despite the fact that it made sev-

eral new types of workloads available for performance measure-

ment and research, it had its shortcomings. Important emerging ap-

plication domains remained uncovered. New parallelization mod-

els for CMPs are being developed and should be considered in a

state-of-art benchmark suite. And the increasing use of PARSEC

workloads continues to reveal bugs and other issues that should be

addressed. The second version of PARSEC was created with the

following goals:

• Improve its existing workloads.

• Increase the application coverage of the suite.

• Simplify its use in practice.

The new suite covers a wider spectrum of emerging applications:

One new application, raytrace, was added. It represents impor-

tant tasks commonly found in emerging interactive animations such

as frame rendering or visibility detection. We will investigate this

area of emerging applications in Section 3.

The improvements make a substantial difference. All PARSEC

1.0 benchmark programs were altered in some way, in four cases

the changes are so significant that the characteristics of the work-

loads are noticeably affected. Support for a new parallelization

model, Intel Threading Building Blocks (TBB), was added to sev-

eral PARSEC benchmarks. For example, the original version of

the bodytrack program suffered from limited scalability because

it contained an important unparallelized kernel. It supported two

parallelization models: OpenMP and pthreads. The scalability is-

sue was addressed for the second version of the benchmark suite.

Figure 1 shows a direct comparison of the two bodytrack versions

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Linear

Bodytrack
(PARSEC 1.0)

Bodytrack
(PARSEC 2.0)

Number of Cores

S
p
e
e
d
u
p

Figure 1: Comparison of the speedups of the bodytrack

workloads of PARSEC 1.0 and 2.0. The improved paralleliza-

tion achieves 30% more performance with 8 threads on a real

8-way multiprocessor machine.

on a real 8-way multiprocessor machine. The bodytrack bench-

mark of PARSEC 2.0 exhibits a 30% higher performance with 8

threads. The memory requirements of the feature extraction phase

continue to limit its speedup in practice. The new version of the

workload now also supports TBB. Major changes like these will be

discussed in Section 5.

The handling of PARSEC 2.0 in practice has been simplified. All

PARSEC workloads now support the Solaris/Sparc platform. This

feature increases the number of simulators that can be used with

PARSEC. Numerous bugs were fixed. An online documentation

system was added which will help PARSEC users to leverage the

full potential of the suite.

3. EMERGING APPLICATIONS
In this section we discuss two types of emerging applications

that were a main focus during the development of PARSEC 1.0 and

2.0: Video games and virtual worlds. We will begin with an expla-

nation of what an emerging application is, which will be followed

by an analysis of these two application areas. We conclude this

section with a coverage analysis of the PARSEC benchmark suite

to illustrate how well it represents the different components of the

presented emerging applications and why the inclusion of the new

raytrace workload is an improvement.

What defines an emerging application and what not has an in-

herent degree of subjectivity to it. Opinions can differ without nec-

essarily invalidating each other. The definition used by the PAR-

SEC benchmark suite is derived from the scientific Grand Chal-

lenge problems:

1. The application is hard to run well, it requires significant per-

formance increases.

2. It is feasible to run the application, the required performance

is considered to be attainable.

3. There is strong demand for the application.

The motivation for this analogy to the Grand Challenges is to

obtain a set of benchmarks that can drive research. In fact, parallel

computing itself is considered a Grand Challenge due to its signif-

icance for many applied sciences, and several PARSEC workloads

solve problems that are directly related to Grand Challenges, such

as computational fluid dynamics for example. Just like the Grand

Challenges help to focus research efforts, emerging applications

can channel computer architecture research by describing a com-

mon goal that puts the need of computer users into the center of

attention.

3.1 Video Games
Video games have become a driver for the entire computer in-

dustry. They are arguably the most important and demanding type

of application on clients. Computer processors are now being de-

veloped with the primary goal of improving the gaming experi-

ence [11]. No performance analysis should omit modern computer

game workloads from its benchmark selection.

The focus of game development has traditionally been on the

creation of more realistic graphics. However, as the visual quality

of games is approaching photorealism this is no longer sufficient

for a successful game. Players are increasingly demanding a more

immersive environment and are asking for more realistic physics

and improved artificial intelligence (AI).

Figure 2 shows a breakdown of the computational kernels of

next-generation games. After processing the user input a game

needs to update the virtual world by calculating any necessary phys-

ical effects, such as object deformations or fluid movement. It also

needs to determine the new strategies of the Non-Player Characters

(NPCs). After these decisions the game world can be animated.

During the course of these steps collisions of impenetrable objects

can occur, which need to be detected and resolved. Finally, the

screen can be updated by rendering the output of the game. Online

games work in a very similar fashion but perform several of these

steps on the server. The game client only animates and renders the

frames. A typical feature of games is that the game world data is

static and available to both the client and the server. It can therefore

be distributed and installed offline. Only the position and number

of objects need to be updated during runtime. Some of the most

popular online games to date are World of Warcraft and Eve On-

line, which typically simultaneously serve thousands of clients per

server.

3.2 Virtual Worlds
Virtual worlds are highly immersive, simulated realities. On first

glance they resemble online games, but they typically allow a wider

degree of actions and accept user-generated content. Some virtual

worlds like Second Life function like a 3D Internet and aim to create

another interface for online content [7]. Virtual worlds are consid-

ered one of the most important emerging applications. As generic

online games become more complex and realistic, they become in-

creasingly similar to virtual worlds. For example, the space combat

game Eve Online has announced an extension named Ambulation

that will allow players to leave their ships at space stations and in-

teract with each other. No form of combat will be possible outside

of space ships, but players will be able to socialize in bars or casi-

nos, use mission rooms for briefings or sell self-made clothes to

other players.

The fact that virtual worlds allow user-generated content creates

the problem of distributing this content efficiently to the clients.

Unlike in the case of games, clients only have partial information

about the world. In Figure 2 we compare virtual worlds to tra-

ditional games. Three differences can be identified: First, virtual

world servers must employ some form of visibility detection to de-

termine which content must be sent to the clients. Virtual worlds

Client Server Client Server Client

User InputsGet Input

Animation

Physics (server)

Physics (client)

AI (NPC)

Scripting (client)

Scripting (server)

Render Frame

Collision Detection

Get DataAvatar Update

Get DataVisibility Detection

Data Cache Mgr.Send Req. Data

Complete Data

Store (Dynamic)

Partial Data

Store (Dynamic)

User InputsGet Input

Animation

Physics

AI (NPC)

Render Frame

Collision Detection

Get DataAvatar Update

Complete Data

Store (Static)

Complete Data

Store (Static)

User Inputs

Animation

Physics

AI (NPC)

Render Frame

Collision Detection

Complete Data

Store (Static)

Figure 2: Breakdown of computational kernels in computer games (left), massive multiplayer online games (middle) and virtual

worlds (right). Online games must perform some of the client operations centrally on the game servers. Virtual worlds furthermore

allow user-generated content, which poses the additional problems of animating it with scripts and determining when it is visible and

must thus be sent to the user. Virtual world clients do not have the entire world stored locally, unlike computer game clients.

can also execute scripts to give behavior to user-generated in-world

objects. Second Life offers the Linden Scripting Language (LSL)

that its users can use for this purpose. A third difference compared

to online games is that virtual world clients typically take on more

work to create additional realism. Like the server they also simulate

physical effects and execute scripts. These differences allow vir-

tual worlds to create a more immersive reality than current online

games, at the cost of significantly increased performance require-

ments: A server for a virtual world like Second Life can usually

handle no more than a few dozen clients. This is several orders of

magnitudes less than the typical numbers for an online game server.

3.3 Coverage Analysis
In this section we will briefly discuss how well PARSEC covers

video games and virtual worlds. A direct comparison of the com-

putational kernels of the presented emerging applications with the

relevant PARSEC workloads can be seen in Table 1. The origi-

nal release of the benchmark suite already contained facesim and

fluidanimate which perform physics simulations and animations.

Realistic animation often requires simulation of physical effects to

obtain natural behavior, which means that both tasks use similar

computations.

Application Kernel PARSEC Benchmark

Physics, Animation facesim, fluidanimate

AI (NPC)

Scripting

Collision Detection raytrace

Visibility Detection raytrace

Render Frame raytrace

Table 1: Computational kernels of virtual worlds and which

PARSEC 2.0 kernels they are covered by.

For PARSEC 2.0 the raytrace workload was included. This

benchmark renders a 3D scene so that it can be seen on the screen

by a human observer. The basic idea of the ray tracing method is to

shoot rays into a scene and compute where they hit objects. A new

set of rays is then created at each intersection point to simulate ef-

fects such as reflections and refractions. To accelerate this process

ray tracers usually use a data structure that is called a Bounding

Volume Hierarchy (BVH). A BVH organizes the entire scene in a

tree structure, which means that by descending down from the root

ray tracers can find ray-surface intersection points extremely fast.

A more detailed description of the raytrace workload with its core

algorithms and data structures can be found in Section 5.1.4.

The ray tracing method can also be used for collision and visi-

bility detection. Identifying the set of visible surfaces is a subprob-

lem of visualization. It is hence automatically computed for every

frame. A visibility detection algorithm related to ray tracing is ray

casting [10]. It resembles ray tracing but only casts the primary

rays without following reflections and refractions. Ray casting can

be thought of as a non-recursive version of ray tracing. This means

that the set of visible surfaces is a side product of the ray tracing

method.

Likewise, the ray tracing method must be able to handle collision

detection efficiently because the ray-surface intersections that a ray

tracer has to compute are nothing but ray-surface collisions. Col-

lision detection methods usually need to find surface-surface inter-

sections instead of the ray-surface intersections that are computed

by the raytrace workload. This requires different computations

for the actual intersection test in the inner-most loop. However,

collision detection methods usually implement BVHs to quickly

reduce the set of surfaces to consider, which will result in similar

access patterns and sharing behavior.

Another difference of collision detection methods is that a colli-

sion response must be computed once a collision is detected. Ex-

amples are object deformations or a "bouncing off" effect for which

ragdoll physics are frequently employed. Realistic collision be-

havior takes advantage of physics simulation, which is already in-

cluded in the PARSEC suite as discussed earlier.

Because of these similarities we conclude that PARSEC cov-

ers next-generation online games and virtual worlds well. The

raytrace workload was a significant addition to PARSEC 2.0 that

greatly improves the coverage of the suite. The only two major

components of emerging virtual world applications that are left are

next-generation AI and scripting.

4. METHODOLOGY
All measurements presented in this paper were conducted on an

8-way multiprocessor machine. The operating system was Linux,

the processors were AMD Opterons. Statistics were collected using

Pin [9]. Pin is a tool for dynamic instrumentation of programs. It is

similar to the ATOM toolkit for Alpha machines, but unlike ATOM

the instrumentation and analysis code is injected by Pin during run-

time.

We used the precompiled PARSEC 2.0 binaries for our experi-

ments that are available from the PARSEC website. The binaries

were compiled with gcc 4.2.1.

5. THE PARSEC 2.0 BENCHMARK SUITE
The second release of the PARSEC benchmark suite extends and

improves the original program selection of PARSEC. All work-

loads were modified in some way so that researchers should not

automatically assume that results obtained with PARSEC 1.0 and

2.0 are comparable. In most cases the impact on the characteris-

tics should be limited so that some degree of continuity can be ex-

pected, however four benchmarks - bodytrack, canneal, dedup

and x264 - were overhauled significantly and are now very differ-

ent from their original version. One new benchmark - raytrace -

has been added to the program selection, increasing the total num-

ber of workloads that are part of the PARSEC benchmark suite to

13. The impact of these changes is summarized in Tables 2 and 3.

Another important area in which PARSEC has been improved

is support of additional parallelization models. The programming

model of parallel systems has not matured yet, and no satisfac-

tory standard method to parallelize programs currently exists. This

makes it important to consider the impact of alternate paralleliza-

tion models. The original release supported pthreads and OpenMP.

With TBB a third parallel programming paradigm has been added.

It is currently supported by five workloads. Support for OpenMP

has also been extended so that researchers have more choice when

they decide on a set of benchmarks and parallelization models to

use.

PARSEC has also been improved in many other ways besides

these major changes so that the suite is now much easier to use

in practice. All PARSEC tools and the source code of the hooks

instrumentation library are now fully documented. Important con-

cepts are also explained in detail. The documentation is accessible

at the command line in the form of man pages. An HTML version of

the man pages has been made available online on the PARSEC web-

site. One of the most requested features that has been added is im-

proved program portability, especially support for big-endian archi-

tectures. All workloads now auto-detect the endianness of their ar-

chitecture at runtime and automatically apply any transformations

necessary. Numerous changes to the syntax of the programs and

their build systems make PARSEC easier to compile on new archi-

tectures. Due to these updates PARSEC now fully supports at least

the following three platforms: Linux/x86, Linux/Itanium and So-

laris/Sparc. Binary distributions for Linux/x86 and Solaris/Sparc

with precompiled binaries for all build configurations have been

made available on the PARSEC website.

We describe the five workloads that are new or have been signifi-

cantly overhauled in Section 5.1. The parallel programming models

available are discussed in Section 5.2.

5.1 New and Improved Workloads
This section summarizes the most important changes to the work-

loads included in PARSEC 2.0. In all cases listed here the updates

affected fundamental properties of the program such as instruction

count, scalability or the locality of memory references.

5.1.1 bodytrack

Bodytrack is an application which tracks the body pose of a

human with multiple cameras. The program uses computer vision

algorithms to extract all necessary image features from the video

streams. An annealed particle filter is employed to pin down the

exact location and pose of the body on the images. The use of an

annealing algorithm makes the body tracking program robust and

flexible enough to solve the problem without further help such as

markers or any constraints. The program was included in the PAR-

SEC benchmark suite because computer vision algorithms play an

increasingly important role in many application areas.

The program works as follows: First, bodytrack extracts the

needed image features from the set of images that form the current

observation. The program then makes an annealing run through

all layers of the annealed particle filter. Each layer is initialized

with the particles which are the result of the previous filter update,

and each particle is an instance of the model configuration that de-

scribes the location and state of the tracked body. The layer com-

putes a weight for each particle that encodes how likely it is that this

particle is a good solution. A new, random set of particles is then

drawn. A particle is selected with a probability equal to its weight.

After that step the particles are resampled to obtain the final par-

ticle set for the next layer. This process is repeated for all layers.

After the processing steps for the last layer have been completed

the estimated model configuration is computed by calculating the

weighted average of all particles. A more detailed description of

the workload can be found in [3].

For the second release of the PARSEC benchmark suite the body-

track benchmark was substantially improved. A new TBB version

of the workload was implemented. It introduces pipelining to the

program to increase the amount of concurrency. This change is

achieved implicitly by leveraging the task concept of the TBB li-

brary which executes all available tasks concurrently. The pthreads

version uses an alternative approach to achieve higher scalability.

It loads the input images that form the individual observations us-

ing asynchronous I/O so that disk I/O and computations are over-

lapping. Finally, the particle resampling phase has been paral-

lelized, making it the fourth parallel kernel employed by the pro-

gram. These changes address the scalability limitations that were

reported before [3, 2]. On a real 8-way multiprocessor machine

the cumulative effects of the improvements result in 30% higher

performance with 8 threads.

Bodytrack now uses a total of four parallel kernels:

Edge detection This kernel implements a gradient based edge de-

tection mask. Spurious edges are elimianted by a comparison

with a threshold. This functionality can be found in function

GradientMagThreshold.

Edge smoothing A separable Gaussian filter is used to smooth the

edges. The result is converted to a pixel map which encodes

the distance of each pixel from an edge. The filter is imple-

mented in function GaussianBlur.

Calculate particle weights This kernel analyzes the image fea-

tures extracted earlier and determines how likely the indi-

vidual particles are to describe the correct body pose and lo-

cation. The kernel is executed once for each annealing layer.

It is the hot spot of the bodytrack workload.

Particle resampling This kernel resamples particles by adding nor-

mally distributed random noise to them, thereby effectively

creating a new set of particles. This function is implemented

in GenerateNewParticles. The random number generator

used for the task is given by class RandomGenerator.

Program Application Domain
Parallelization

Working Set
Data Usage

Model Granularity Sharing Exchange

blackscholes Financial Analysis data-parallel coarse small low low

bodytrack Computer Vision data-parallel medium medium high medium

canneal Engineering unstructured fine unbounded high high

dedup Enterprise Storage pipeline medium unbounded high high

facesim Animation data-parallel coarse large low medium

ferret Similarity Search pipeline medium unbounded high high

fluidanimate Animation data-parallel fine large low medium

freqmine Data Mining data-parallel medium unbounded high medium

raytrace Rendering data-parallel medium unbounded high low

streamcluster Data Mining data-parallel medium medium low medium

swaptions Financial Analysis data-parallel coarse medium low low

vips Media Processing data-parallel coarse medium low medium

x264 Media Processing pipeline coarse medium high high

Table 2: Qualitative summary of the inherent key characteristics of PARSEC benchmarks. Working sets that are ‘unbounded’ are

large and have the additional qualitative property that there is significant application demand to make them even bigger. In practice

they are typically only constrained by main memory size.

The input sets for bodytrack did not change:

• test: 4 cameras, 1 frame, 5 particles, 1 annealing layer

• simdev: 4 cameras, 1 frame, 100 particles, 3 annealing lay-

ers

• simsmall: 4 cameras, 1 frame, 1,000 particles, 5 annealing

layers

• simmedium: 4 cameras, 2 frames, 2,000 particles, 5 anneal-

ing layers

• simlarge: 4 cameras, 4 frames, 4,000 particles, 5 annealing

layers

• native: 4 cameras, 261 frames, 4,000 particles, 5 annealing

layers

5.1.2 canneal

The canneal kernel employs a simulated annealing (SA) algo-

rithm to minimize the routing cost of a chip design. This optimiza-

tion method tries to pseudo-randomly swap netlist elements. If the

swap would decrease the routing cost it is automatically accepted.

With a certain probability that is decreasing over time a swap that

would increase the routing cost is also accepted so that the design

can escape from local minima. The design converges as the num-

ber of swaps that can be successfully executed decreases until it

is fully stable. Canneal has been included in the PARSEC suite

to represent engineering workloads and because of its demanding

memory access behavior. A more comprehensive description of the

algorithm and the characteristics of the program is available in [3].

For the second generation of the PARSEC suite the program

mechanism controlling how the design converges have been changed.

Originally each thread of the program kept track of the number of

successful swaps for itself. The program would terminate if one

of the threads determines that the design has converged. The new

version of the benchmark tracks the swaps globally, which slightly

increases communication between threads. Moreover, the program

now has the additional ability to terminate before the chip design

has converged. This behavior can be controlled by passing a new

argument to the program that specifies the maximum number of

steps to run. This new feature can be used to reduce the run time

of the benchmark to some extent without changing its working set

sizes or other characteristics much.

The changes of the algorithm permitted a modification of the

input sets of canneal to reduce the run time of the benchmark. Its

input sets are now defined as follows:

• test: 5 swaps per temperature step, 100◦ start temperature,

10 netlist elements, 1 temperature step

• simdev: 100 swaps per temperature step, 300◦ start temper-

ature, 100 netlist elements, 2 temperature steps

• simsmall: 10,000 swaps per temperature step, 2,000◦ start

temperature, 100,000 netlist elements, 32 temperature steps

• simmedium: 15,000 swaps per temperature step, 2,000◦ start

temperature, 200,000 netlist elements, 64 temperature steps

• simlarge: 15,000 swaps per temperature step, 2,000◦ start

temperature, 400,000 netlist elements, 128 temperature steps

• native: 15,000 swaps per temperature step, 2,000◦ start

temperature, 2,500,000 netlist elements, 6,000 temperature

steps

5.1.3 dedup

Dedup is a kernel which uses a next-generation data compression

method called ‘deduplication’. It combines local and global com-

pression to achieve very high compression ratios. This workload

was included in the PARSEC benchmark suite because deduplica-

tion is becoming a standard method for backup storage systems and

bandwidth optimized network appliances.

The benchmark streams the input through a pipeline. First, the

program breaks the input stream into coarse-grained chunks that

can be processed independently. The second stage employs rolling

fingerprinting to fragment the chunks into even smaller pieces. The

next stage computes a hash value for each chunk that uniquely

identifies its content. The fourth stage builds a global database of

chunks that is indexed with the hash values. If a chunk has not

been encountered before it is compressed using the Ziv-Lempel al-

gorithm and added to the database. The final stage assembles the

output stream that consists of compressed chunks and hash values

so that each chunk occurs exactly once in its compressed form. The

algorithm is described in more detail in [3].

Program Problem Size
Instructions (Billions) Synchronization Primitives

Total FLOPS Reads Writes Locks Barriers Conditions

blackscholes 65,536 options 4.90 2.32 1.51 0.79 0 8 0

bodytrack 4 frames, 4,000 particles 14.04 6.08 3.26 0.80 28,538 2,242 518

canneal 400,000 elements, 7.00 0.45 1.76 0.88 34 1,024 0

128 temperature steps

dedup 184 MB data 41.40 0.23 9.85 3.77 258,381 0 291

facesim 1 frame, 30.46 17.17 9.91 4.23 14,566 0 3,327

372,126 tetrahedra

ferret 256 queries, 25.90 6.58 7.65 1.99 534,866 0 1273

34,973 images

fluidanimate 5 frames, 13.54 4.30 4.46 1.07 9,347,914 320 0

300,000 particles

freqmine 990,000 transactions 33.22 0.08 11.19 5.23 990,025 0 0

raytrace 3 frames, 46.48 8.12 11.07 9.28 105 0 38

1,920×1,080 pixels

streamcluster 16,384 points per block, 22.15 16.49 4.26 0.06 183 129,584 115

1 block

swaptions 64 swaptions, 16.81 5.66 5.62 1.54 23 0 0

20,000 simulations

vips 1 image, 31.30 6.34 6.69 1.62 33,920 0 7,356

2662×5500 pixels

x264 128 frames, 14.42 7.37 3.88 1.16 16,974 0 1,101

640×360 pixels

Table 3: Breakdown of instructions and synchronization primitives of PARSEC 2.0 workloads for input set simlarge on a sys-

tem with 8 cores. All numbers are totals across all threads. Numbers for synchronization primitives also include primitives in

system libraries. "Locks" and "Barriers" are all lock- and barrier-based synchronizations, "Conditions" are all waits on condition

variables.

To fragment the data dedup uses rolling fingerprints that split

the input stream at content-dependent locations. This approach

ensures that splits do not hide redundancy in the input data. For

the second version of PARSEC the fragmentation process was fur-

ther improved. The algorithm now guarantees that the input buffer

does not introduce additional data-independent splits. In the pre-

vious program version the algorithm would introduce an artificial

split when it reached the end of the input buffer by starting a new

data chunk at the beginning of the next buffer, resulting in two data

chunks instead of a single chunk if the buffer had been sufficiently

large.

The new version of dedup also has a significantly improved se-

rial algorithm. The new algorithm moves data chunks through the

entire deduplication process at once. This behavior results in sig-

nificantly improved cache locality and thus higher performance.

The input sets for dedup did not change:

• test: 10 KB

• simdev: 1.1 MB

• simsmall: 10 MB

• simmedium: 31 MB

• simlarge: 184 MB

• native: 672 MB

5.1.4 raytrace

The raytrace application is an Intel RMS workload which ren-

ders an animated 3D scene. Ray tracing is a technique that gener-

ates a visually realistic image by tracing the path of light through

a scene [13]. Its major advantage over alternative rendering meth-

ods is its ability to create photorealistic images at the expense of

higher computational requirements because certain effects such as

reflections and shadows that are difficult to incorporate into other

rendering methods are a natural byproduct of its algorithm. Ray

tracing leverages the physical property that the path of light is al-

ways reversible to reduce the computational requirements by fol-

lowing the light rays from the eye point through each pixel of the

image plane to the source of the light. This way only light rays that

contribute to the image are considered. The computational com-

plexity of the algorithm depends on the resolution of the output

image and the scene. The raytrace benchmark program uses a

variety of the ray tracing method that would typically be employed

for real-time animations such as computer games because it is op-

timized for speed rather than realism. The raytrace benchmark

was included in PARSEC because of the continuing trend towards

more realistic graphics in video games and other forms of real-time

animation. As of 2009 all major graphics card vendors have an-

nounced plans to incorporate ray tracing into their products in one

form or another. Commercial computer games adapted to employ

ray tracing instead of rasterization have already been demonstrated.

All rendering methods try to solve the rendering equation [6],

which uses the physical law of conservation of energy to describe

the total amount of outgoing light Lo at location x, direction ω and

time t with wavelength λ:

Lo(x,ω,λ, t) =

Le(x,ω,λ, t)+
Z

Ω

fr(x,ω
′
,ω,λ, t)Li(x,ω

′
,λ, t)(ω′

·n)dω′

The total amount of outgoing light Lo is the sum of the emitted

light Le and an integral over all inward directions ω′ of a hemi-

sphere that gives the amount of reflected light. fr is the bidirec-

tional reflectance distribution function which describes the propor-

Figure 3: The native input set of the raytrace benchmark

is a 3D model of a Thai statue with 10 million polygons, which

is about the amount of triangles that need to be rendered per

frame for modern video games.

tion of the incoming light Li that is reflected from ω′ to ω at position

x and time t with wavelength λ. The term ω′
·n is the attenuation

of inward light. Solving the rendering equation gives theoretically

perfect results because all possible flows of light are included1, but

because of the high computational demand it is only approximated

in practice. The ray tracing method does so by sampling the ob-

ject surfaces at discrete locations and angles as given by the scatter

model.

The scatter model describes what happens when a ray hits a sur-

face. In that case the ray tracing method can generate up to three

new types of rays: Reflection rays, refraction rays and shadow rays.

Reflection rays are created if the surface of the object is shiny. A re-

flected ray continues to traverse the scene in the mirrored direction

from the surface. The closest surface it intersects will be visible as

a mirror image on the surface of the reflecting object. If the object

is transparent a refraction ray is generated. It is similar to a reflec-

tion ray with the notable exception that it enters and traverses the

material. Shadow rays are the method that is used by the ray trac-

ing algorithm to determine whether an intersection point is visible

or not. Every time a ray intersects a surface, shadow rays are cast

into the directions of every light source in the scene. If a shadow

ray reaches its light source then the intersection point is illuminated

by that light. But if the shadow ray is blocked by an opaque object

then the intersection point must be located in its shadow with re-

spect to that light, resulting in a lower light intensity.

To find intersection points quickly ray tracers store the scene

graph in a Bounding Volume Hierarchy (BVH). A BVH is a tree

in which each node represents a bounding volume. The bounding

volume of a leaf node corresponds to a single object in the scene

which is fully contained in the volume. Bounding volumes of in-

termediate nodes fully contain all the volumes of their children, up

1The rendering equation does not consider certain physical effects
such as phosphorescence, fluorescence or subsurface scattering.

to the volume of the root node which contains the entire scene. If

the bounding volumes are tight and partition the scene with little

overlap then a ray tracer searching for an intersection point can

eliminate large parts of the scene rapidly by recursively descend-

ing in the BVH while performing intersection tests until the correct

surface has been found.

The entry point for the rendering algorithm of the raytrace

benchmark is the renderFrame method of the Context class. In

the parallel case this function merely unblocks all threads, which

start executing the task method of the Context class for each work

unit. Work units correspond to tiles on the screen. The work is

distributed using the task queue in the MultiThreadedTaskQueue

class so that the program is dynamically load balanced. The BVH

containing the scene is stored in the m_bvh object, which is an in-

stance of the BVH class. It uses arrays to store the BVH nodes in a

compact way so they can be traversed quickly.

For each frame the program starts traversing this scene graph

with the renderTile_With_StandardMesh method. The method

creates the initial rays and then calls TraverseBVH_with_Stan-

dardMesh to handle the actual BVH traversal. This function is the

hot spot of the raytrace workload. It is a recursive function by na-

ture, but to eliminate the recursive function calls a user-level stack

of BVH nodes is used. The stack is implemented as an array and

accessed with the sptr pointer. To further optimize the intersection

tests the function considers the origins and directions of rays and

handles the different cases with specialized code.

Figure 3 shows the rendered native input. The input sets for the

raytrace workload are defined as follows:

• test: 1×1 pixels, 8 polygons (octahedron), 1 frame

• simdev: 16× 16 pixels, 68,941 polygons (Stanford bunny),

3 frames

• simsmall: 480×270 pixels (1
4 HDTV resolution), 1 million

polygons (Buddha statue), 3 frames

• simmedium: 960× 540 pixels (1
2 HDTV resolution), 1 mil-

lion polygons (Buddha statue), 3 frames

• simlarge: 1,920×1,080 pixels (HDTV resolution), 1 mil-

lion polygons (Buddha statue), 3 frames

• native: 1,920× 1,080 pixels (HDTV resolution), 10 mil-

lion polygons (Thai statue), 200 frames

5.1.5 x264

X264 is a lossy video encoder based on the ITU-T H.264 stan-

dard. H.264 improves over previous video encoding standards with

many new features that allow it to achieve a higher output quality

at the expense of a significantly increased compression time. Next-

generation Blu-ray video players already use H.264 video compres-

sion, but many other application areas are equally supported by the

H.264 standard. The flexibility and wide-spread use of H.264 video

compression is the reason for the inclusion of the x264 application

in the PARSEC benchmark suite. We provide a more detailed de-

scription of the workload in [3].

For the second release of the PARSEC benchmark suite the x264

benchmark was updated to a significantly overhauled program ver-

sion. The H.264 standard only specifies how to decode a com-

pressed video stream. This leaves a large degree of freedom for

H.264 encoder development, which makes video encoding an ac-

tive area of research and development. The updates to x264 since

its first release as part of PARSEC 1.0 reflect the progress that was

made in that field since then.

The large number of updates and changes makes it difficult to

summarize them all. Some of the most important updates are sup-

port for additional prediction block sizes, a completely overworked

subpixel estimation system, the use of low-resolution lookahead

motion vectors as an extra predictor, an improved B-frame decision

method based on a Viterbi algorithm, additional inline assembly

kernels as well as numerous bugfixes and performance optimiza-

tions. A comparison of the two encoders included in PARSEC 1.0

and 2.0 with the default settings shows that the new version of the

program achieves a 1% higher peak signal-to-noise (PSNR) ratio,

at the expense of a 26% longer run time.

The significant updates to the code base of x264 made it neces-

sary to select a different set of encoding features for the benchmark,

but the input files did not change:

• test: 32×18 pixels, 1 frame

• simdev: 64×36 pixels, 3 frames

• simsmall: 640×360 pixels (1
3 HDTV resolution), 8 frames

• simmedium: 640×360 pixels (1
3 HDTV resolution), 32 frames

• simlarge: 640×360 pixels (1
3 HDTV resolution), 128 frames

• native: 1,920×1,080 pixels (HDTV resolution), 512 frames

5.2 New Parallelization Models
Parallel programming paradigms are a focus of computer sci-

ence research due to their importance for making the large per-

formance potential of CMPs more accessible. The first version of

the PARSEC benchmark suite supported POSIX threads (pthreads)

and OpenMP. The second version also includes support for In-

tel Threading Building Blocks (TBB). Table 4 summarizes which

workloads support which programming models. Besides the con-

structs of these parallelization models, atomic instructions are also

directly used by a few programs if synchronized low-latency data

access is necessary.

Program Pthreads OpenMP TBB

blackscholes X X X

bodytrack X X X

canneal X

dedup X

facesim X

ferret X

fluidanimate X X

freqmine X

raytrace X

streamcluster X X

swaptions X X

vips X

x264 X

Table 4: Parallelization models supported by PARSEC 2.0.

POSIX threads [12] are one of the most commonly used thread-

ing standards to program contemporary shared-memory Unix ma-

chines. Pthreads requires programmers to handle all thread cre-

ation, management and synchronization issues themselves. It was

officially finalized by IEEE in 1995 in section 1003.1c of the Portable

Operating System Interface for Unix (POSIX) standard in an effort

to harmonize and succeed the various threading standards that in-

dustry vendors had created themselves. The parallelization model

is supported by all PARSEC workloads except freqmine.

OpenMP [8] is a compiler-based approach to program paral-

lelization. To parallelize a program with OpenMP the programmer

must annotate the source code with the OpenMP #pragma omp di-

rectives. The compiler performs the actual parallelization, and all

details of the thread management and the synchronization are han-

dled by the OpenMP runtime. The first version of the OpenMP API

specification was released for Fortran in 1997 by the Architecture

Review Board (ARB). OpenMP 1.0 for C/C++ followed the subse-

quent year. The standard keeps evolving, the latest version 3.0 was

released in 2008. In the original release of the PARSEC benchmark

suite OpenMP was supported by bodytrack and freqmine. The

second version also adds OpenMP support to blackscholes.

TBB is a high-level alternative to pthreads and similar thread-

ing libraries [5]. It can be used to parallelize C++ programs. The

TBB library is a collection of C++ methods and templates which

allow to express high-level, task-based parallelism that abstracts

from details of the platform and the threading mechanism. The

first version of the TBB library was released in 2006, which makes

it one of the more recent parallelization models. PARSEC did not

support TBB when it was originally released. The second version

of the benchmark suite adds TBB support to five of its workloads:

blackscholes, bodytrack, fluidanimate, streamcluster and

swaptions.

Researchers that use the PARSEC benchmark suite for their work

must be aware that the different versions of a workload that use the

various parallelization methods can behave drastically different at

runtime. Contreras et al. studied the TBB versions of the PARSEC

workloads in more detail [4]. They conclude that the dynamic task

handling approach of the TBB runtime is effective at lower core

counts, where it efficiently reduces load imbalance and improves

scalability. However, with increasing core counts the overhead of

the random task stealing algorithm becomes the dominant bottle-

neck. In current TBB implementations it can contribute up to 47%

of the total per-core execution time on a 32-core system. Results

like these demonstrate the importance of choosing a suitable paral-

lelization model for performance experiments.

6. FUTUREWORK
Emerging applications continue to evolve, and so should a bench-

mark suite of emerging applications like PARSEC. We plan to offer

future versions of the suite that include new and improved work-

loads. Benchmarking needs to continue to develop in order to mir-

ror real-world computer usage accurately. OS effects are typically

already included in most performance experiments by the use of

full system simulation, but new trends such as cloud computing or

virtualization have introduced additional software layers and inter-

actions that are not reflected in current workloads. It might become

necessary to include effects such as TCP/IP communication or I/O

activity to obtain accurate benchmarks.

7. CONCLUSIONS
In this paper we discussed improvements introduced with the

second version of the PARSEC benchmark suite and explained ma-

jor differences to the original version. The main features of PAR-

SEC 2.0 are four significantly improved workloads, one new bench-

mark, support for the Intel Threading Building Blocks paralleliza-

tion model and improvements to ease the use of the suite in practice.

The new workload selection increases the coverage of the computa-

tional kernels typically found in emerging video games and virtual

worlds. The explanations of the updates that we provide will help

researchers to interpret PARSEC 2.0 results correctly.

8. ACKNOWLEDGMENTS
It is the goal of the PARSEC team to fully document every con-

tribution to the benchmark suite. The following researchers sub-

mitted source code that was included in PARSEC 2.0: Gilberto

Contreras (Princeton University), Christian Fensch (University of

Cambridge), Saugata Ghose (Cornell University), Wim Heirman

(University of Gent), Nikolay Kurtov (Intel Corp.) and Jiaqi Zhang

(Tsinghua University). Details can be found in the CHANGELOG that

is part of the PARSEC distribution. We would also like to thank the

users who provided us with bug reports and other forms of feed-

back. We are very grateful for all contributions.

9. REFERENCES
[1] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A

Quantitative Comparison of Two Multithreaded Benchmark

Suites on Chip-Multiprocessors. In Proceedings of the 2008

International Symposium on Workload Characterization,

September 2008.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

Benchmark Suite: Characterization and Architectural

Implications. In Proceedings of the 17th International

Conference on Parallel Architectures and Compilation

Techniques, October 2008.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

Benchmark Suite: Characterization and Architectural

Implications. Technical Report TR-811-08, Princeton

University, January 2008.

[4] G. Contreras and M. Martonosi. Characterizing and

Improving the Performance of the Intel Threading Building

Blocks Runtime System. In International Symposium on

Workload Characterization, September 2008.

[5] Intel. Threading Building Blocks.

http://www.threadingbuildingblocks.org/, 2008.

[6] J. T. Kajiya. The Rendering Equation. In SIGGRAPH ’86:

Proceedings of the 13th Annual Conference on Computer

Graphics and Interactive Techniques, pages 143–150, New

York, NY, USA, 1986. ACM.

[7] S. Kumar, J. Chhugani, C. Kim, D. Kim, A. Nguyen,

P. Dubey, C. Bienia, and Y. Kim. Second Life and the New

Generation of Virtual Worlds. Computer, 41(9):46–53, 2008.

[8] OpenMP Architecture Review Board. OpenMP Application

Program Interface. http://www.openmp.org/, 2008.

[9] Pin. http://rogue.colorado.edu/pin/.

[10] S. Roth. Ray Casting for Modeling Solids. Computer

Graphics and Image Processing, 18(2):109–144, 2 1982.

[11] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,

P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,

R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.

Larrabee: A Many-Core x86 Architecture for Visual

Computing. ACM Trans. Graph., 27(3):1–15, 2008.

[12] The Open Group and IEEE. IEEE Std 1003.1, 2004.

[13] T. Whitted. An Improved Illumination Model for Shaded

Display. Commun. ACM, 23(6):343–349, 1980.

