
1

© 2001 Ravi Rajwar

Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution

Ravi Rajwar and Jim Goodman

University of Wisconsin-Madison

International Symposium on Microarchitecture, Dec. 2001

Elision: the act or an instance of dropping out or omitting something

Elide : to leave out of consideration

Funding Ack.: NSF grant CCR-9810114 and Intel Corporation

2

The problem

• Locks

– Contention limits performance

– Contention limits scalability

– Cause unnecessary memory traffic

– Involve long latency memory accesses

• Programmers can use finer-grained locks

– Time-consuming

– Difficult and Error-prone

2

3

The question

Can speculative hardware provide?

– Higher performance

– More scalability

– Without software changes

4

The solution

Idea

1. “Get” lock without writing lock variable

2. Execute critical section speculatively

3. Track data (blocks) read/written

4. Rollback when data conflicts occur

Features

• Implement with small changes to processor

• Transparent to software

• Use existing coherence protocol for tracking data

• Non-conflicting critical sections execute in parallel!

Speculative Lock Elision

3

5

• Motivation

• Speculative Lock Elision concept

• Speculative Lock Elision details

• Results

• Concluding remarks

• Motivation

– Thread-safe hash table

– Lock contention vs. data conflict

• Speculative Lock Elision concept

• Speculative Lock Elision details

• Results

• Concluding remarks

Outline

6

Conservative lock use: thread safe hash table

Hash Table

Thread 1 Thread 2

Lock Acq.

Lock Acq.

X

Critical
section

YCritical
section

Lock Rel.

Lock Rel.

T
im
e

Lock: FreeLock: FreeLock: T1Lock: T1Lock: FreeLock: FreeLock: FreeLock: FreeLock: FreeLock: FreeLock: T2Lock: T2Lock: FreeLock: Free

4

7

Lock contention vs. Data conflict

Data conflicts limit concurrency, not lock contention

Y

X

LockLockLock contention
present

No data conflicts

Thread 1

Thread 2

Thread 1 and 2

Focus on data conflicts, not lock contention

8

Ideal case: concurrent critical sections

Y

X

Lock: FreeLock: Free

Hash Table

Thread 1 Thread 2

Lock Acq. Lock Acq.

Critical
section

Critical
section

Lock Rel.

Lock Rel.

T
im
e

If no data conflicts

5

9

• Motivation

• Speculative Lock Elision concept

– Critical sections

– Conceptual view of SLE

• Speculative Lock Elision details

• Results

• Concluding remarks

Outline

10

Critical sections

ti
m
e

CS1

CS2 CS1

CS2

CS1

CS2

T1 T2 T1 T2 T1 T2

Correct Correct

Conflicting overlap?

??

Don’t know in advance, hence need a lock

• Provide atomicity

• Implemented using locks

6

11

CS1

CS2

CS1

CS2

CS2

CS1
CS1

CS2 CS1

CS2

CS1

CS2

Conceptual view of SLE
ti
m
e

T1 T2 T1 T2 T1 T2

• Commit, if no data conflicts detected

• Identify candidate instruction sequences for atomic execution

• Execute critical section speculatively

12

Outline

• Motivation

• Speculative Lock Elision concept

• Speculative Lock Elision details

– SLE details

• Identifying regions for atomic execution

• Buffering speculative state

• Detecting conflicts/recovering

• Committing speculative state

• Conditions for speculating

– Microarchitectural datapaths

– SLE execution

• Results

• Concluding remarks

7

13

Identifying regions for atomic execution

• Look for instruction sequences to execute atomically

• Locks provide a good hint

– Protect critical sections

• Hardware normally cannot identify lock operations

– Can predict these operations

• Predict “candidate instruction sequence” for execution

– Exploit property of lock variables

14

Key: Lock variables exhibit temporal silence

• Exploit property of lock variables

– Lock variables exhibit temporal silence

– Lock release restores value of lock prior to lock acquire

If (lock == UNHELD)
lock := HELD

lock := UNHELD

Acquire

Release

Temporally
Silent-pairs

• Speculating thread sees acquired lock
• Other threads see a free lock

8

15

SLE details

• Two local predictions

– Predict silent store-pairs (acquire and release)

Identify regions for executing atomically

– Predict no data conflicts

– Locally verified

• Region may not be critical section but simply match the pattern

– That’s ok, correct execution is still guaranteed

• Program order semantics guaranteed

– No dependence on semantics/software information

SLE relies on patterns in instruction stream, not semantics

16

1. “Get” lock without writing lock variable

Save processor state: registers

Elide write to lock

2. Execute critical section speculatively

Use speculative execution

3. Track data (blocks) read/written and detect conflicts

Use cache coherence protocol

4. Rollback when data conflicts occur

Restore processor state: registers

• Conceptually similar to database OCC

SLE details

9

17

Buffering speculative state

• Register state

– No need to track inter-instruction dependences

– One checkpoint already available for restoring

– Speculatively retire instructions

• Memory state

– Augment write buffer to store speculative data

Any other buffering technique ok

– Speculative data never exposed until commit

18

• Data conflicts

– For any two threads, at least one is writing the data block

– Extend cache with speculative access bits

Track data block accesses

Detecting data conflicts

• Data conflicts

– For any two threads, at least one is writing the data block

– Extend cache with speculative access bits

Track data block accesses

• Coherence protocol provides functionality

– Writes to shared locations generate invalidations

– Zero cost detection

• Data conflicts

– For any two threads, at least one is writing the data block

– Extend cache with speculative access bits

Track data block accesses

• Coherence protocol provides functionality

– Writes to shared locations generate invalidations

– Zero cost detection

• Lock kept in shared state

– Automatically notified if anyone acquires lock

– Misspeculation may result in explicit lock acquisition

10

19

Recovering from misspeculation

• Recovery

– Treat like a branch misprediction

– Roll-back processor state

– Squash speculative entries in write buffer

– Coherence protocol does not care

• Restart threshold N

– Can re-attempt speculation until N failures

20

Committing speculation

• Register state

– Simply discard checkpoint

• Memory state

– Write permissions for modified blocks already obtained

• Write requests (not data) exposed to outside world

• Write buffer is marked as having latest data

• Alternatively, can use cache to buffer data

– Coherence state transitions support present

• Speculative loads, exclusive prefetches

– Provides illusion of atomic commit of all writes

11

21

SLE summary

• Conditions for starting speculation

– Appropriate starting instruction/value pattern detected

• Conditions for ending speculation

– Restoring store to lock detected

– Non-restoring store to lock detected

– Some operation cannot be performed speculatively

– Appropriate terminating pattern not detected

– Data conflict detected

• All operations between start and end appear atomic

• Memory consistency

– Always correct to insert an atomic set of memory operations
into a global order of operations under any memory model

22

Microarchitecture data-paths

Front end Load/store queue

Data cache

write-buffer

Silent pair/misspeculation
detector

Register checkpoint

Speculative access bits

Lock filter

E
x
te
rn
a
l
m
e
m
o
ry
 i
n
te
rf
a
ce

Speculative data

12

23

SLE execution

Lock: FreeLock: Free

Hash Table

Thread 1 Thread 2

Lock Acq. Lock Acq.

X

Critical
section

Y

Critical
section

Lock Rel.

Lock Rel.T
im
e

24

Outline

• Motivation

• Speculative Lock Elision concept

• Speculative Lock Elision details

• Results

• Concluding remarks

13

25

Micro-benchmark result

• CMP, N counters, N processors (one per counter), 1 lock

• 216/N increments per processor

0 2 4 6 8 10 12

Processor Count

E
xe

cu
tio

n
 c

yc
le

 (
m

ils
)

W ithout SLE W ith SLE

26

Application results

• CMP/SMP/DSM configurations for 8 and 16 processors

• Sun Gigaplane-type bus and SGI Origin 2000-type directory

• Splash/Splash2 applications used

• Detailed parameters in paper

14

27

Outline

• Motivation

• Speculative Lock Elision concept

• Speculative Lock Elision details

• Results

• Concluding remarks

– SLE advantages/limitations

– SLE summary

28

SLE advantages

Implementation

+ Uses well understood speculation techniques

+ Much functionality already present: coherence protocol

+ Transparent to programmers

No software or instruction set support

+ No system level changes

Completely in the micro-architecture

No coherence protocol changes

Performance

+ Lock never written to

No serialization on lock

Kept locally in shared state

+ Concurrent execution

+ Reduced observed memory latencies

+ Reduced memory traffic

15

29

SLE limitations

– Extra data paths and hardware

– Lock acquired for misspeculation conditions other than conflicts

• Resource constraints, I/O, certain types of system calls

• Get same performance and behavior as without SLE

– Sensitive to restart threshold

• Coherence protocol interference

30

SLE contributions

• Enables highly concurrent multithreaded execution

• Concurrently execute non-conflict critical sections

• Validation without writing to/acquiring lock

• Simplifies correct multithreaded code development

• Programmers do not have to learn new techniques

• Easy implementation

• Does not require software or instruction set support

• Minor changes to modern processors

• Opens up optimization opportunities…

– Can provide strong performance guarantees even with conflicts?

16

31

Simulation parameters for SMP

8-bytes wide, ~70ns access time for 64 byte line

Total Store Ordering

DRAM memory module

Memory consistency

Sun Gigaplane-type MOESI protocol b/w L2s. Split transaction.

Broadcast snooping, 20 ns per snoop, 120 outstanding
transactions.

Point-to-Point, pipelined, 70 ns transfer latency

Coherence protocol

Address network

Data network

64-KB, 2-way, 1-cycle access, 8 pend. misses

128-KB, 4-way, write-back, 3 ports, 1-cycle access, 8 pen. misses

4-MB, 4-way, write-back, 12 cycle access, 16 pend. misses

64 bytes

L1 instruction cache

L1 data cache

L2 unified cache

Line size

1 GHz (1 ns clock)

128 entry with a 64 entry LSQ

Out-of-order issue/commit of 8 ops. per cycle

8-K entry combining predictor, 8-K 4-way BTB

64-entry

Processor speed

Reorder buffer

Issue mechanism

Branch predictor

Write buffer

More configurations in paper

backup

32

Related work

• Concurrency techniques

– Lamport

– Transactional memory

– Load-Linked/Store-conditional

• Database techniques

– Optimistic concurrency control

• Speculative buffering

– ARB (Franklin & Sohi)

– SVC (Gopal et al.)

– Speculative Retirement (Ranganathan et al., Lai & Falsafi)

– Multiversion Memory (Sorin et al.)

backup

17

33

Predicting critical sections

• Need only detect atomic TEST&SET operation

– Load-locked/store-conditional sequence

– No need to detect TEST operations

• Track stores to address of LL/SC operand to detect lock release

• PC of store-conditional used to identify critical section

• Similar approach for other primitives

backup

34

Nested critical sections

• Does not matter

– Automatically handled

– Speculation un-aware of critical sections

• Commit a sequence of instructions atomically

• The sequence can have nested critical sections too

– Speculation does not care about locks or nesting

– Speculation simply looks for sequence to commit atomically

• For a dynamic instance of speculation

– All “critical sections” nested within are executed normally

backup

