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Abstract 

During the concept phase and definition of next gen- 
eration high-end processors, power and performance will 
need to be weighted appropriately to deliver competitive 
cost/performance. It is not enough to adopt a CPl-centric 
view alone in early-stage definition studies. One of the fun- 
damental issues confronting the architect at this stage is 
the choice of pipeline depth and target frequency. In this 
paper we present an optbnization methodology that starts 
with an analytical power-performance model to derive op- 
timal pipeline depth for a superscalar processor. The results 
are validated and further refined using detailed simulation 
based analysis. As part of the power-modeling methodol- 
ogy, we have developed equations that model the variation 
of energy as a function of pipeline depth. Our results using 
a set of SPEC2000 applications show that when both power 
and performance are considered for optimization, the op- 
timal clock period is around 18 F04. We also provide a 
detailed sensitivity analysis of the optimal pipeline depth 
against key assumptions of these energy models. 

1 Introduction 

Current generation high-end, server-class processors are 
performance-driven designs. These chips are still somewhat 
below the power and power density limits afforded by the 
package/cooling solution of choice in server markets tar- 
geted by such processors. In designing future processors, 
however, energy efficiency is known to have become one of 
the primary design constraints 17, II. 

In this paper, we analyze key constraints in choosing the 
"optimal" pipeline depth (which directly influences the fre- 
quency target) of a microprocessor. The choice of pipeline 
depth is one of  the fundamental issues confronting the ar- 
chitect/designer during the very early stage microarchitec- 
ture definition phase of  high performance, power-efficient 
processors. Even from a performance-only viewpoint, this 
issue has been important, if only to understand the limits 
to which pipelining can scale in the context of real work- 
loads [15, 5, 9, 11, 21]. In certain segments of the mar- 
ket (typically desktops and low-end servers), there is often 

a market-driven tendency to equate delivered end perfor- 
mance with the frequency of  the processor. Enlightened 
customers do understand the value of net system perfor- 
mance; nonetheless, the instinctive urge of going primar- 
ily for the highest frequency processor in a given technol- 
ogy generation is a known weakness even among savvy end 
users and therefore processor design teams. Recent stud- 
ies [9, 11, 21] seem to suggest that there is still room to 
grow in the pipeline depth game, with performance optima 
in the range of 8-11 FO4 inverter delays I per stage (con- 
sisting of 6-8 FO4 logic delay and 2-3 FO4 latch delay) for 
current out-of-order superscalar design paradigms. How- 
ever, even in these performance-centric analysis papers, the 
authors do point out the practical difficulties of  design com- 
plexity, verification and power that must be solved in attain- 
ing these idealized limits. Our goal in this paper is to exam- 
ine the practical, achievable limits when power dissipation 
constraints are also factored in. We believe that such analy- 
sis is needed to realistically bound the scalability limit in the 
next few technology generations. In particular, power dissi- 
pation must be carefully minimized to avoid design points 
which on paper promise ever higher performance, yet un- 
der normal operating conditions, with commodity packag- 
ing and air cooling, only deliver a fraction of the theoretical 
peak performance. 

In this paper, we first develop an analytical model to 
understand the power and performance tradeoffs for super- 
scalar pipelines. From this model, we derive the optimal 
pipeline depth as a function of both power and performance. 
Subsequently, the results are validated and further refined 
using a detailed cycle-accurate simulator of a current gener- 
ation superscalar processor. The energy model for the core 
pipeline is based on circuit-extracted power analysis for 
structures in a current, high performance PowerPC proces- 
sor. We then derive a methodology for scaling these energy 
models to deeper and shallower pipelines. A key component 
of this methodology is the scaling of latch count growth as 
a function of pipeline depth. With these performance and 
power models we attempt to determine the optimal pipeline 

1Fan-out-of-four (FO4) delay is defined as the delay of one inverter 
driving four copies of an equally sized inverter. The amount of logic and 
latch overhead per pipeline stage is often measured in terms of FO4 delay 
which implies that deeper pipelines have smaller FO4. 
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depth for a particular power-performance metric. 
Our results based on an analysis of the TPC-C transac- 

tion processing benchmark and a large set of SPEC2000 
programs indicate that a power-performance optimum is 
achieved at much shallower pipeline depths than a purely 
performance-focused evaluation would suggest. In addi- 
tion, we find there is a range of pipeline depths for which 
performance increases can be achieved with a modest sac- 
rifice in power-performance efficiency. Pipelining beyond 
that range leads to drastic reduction in power-performance 
efficiency. 

The contributions of this paper are (1) energy mod- 
els for both dynamic and leakage power that capture the 
scaling of different power components as a function of 
pipeline depth; (2) an analytical performance model that 
can predict optimal pipeline depth as well as the shift in 
the optimal point, when combined with the energy models; 
(3) cycle-accurate, detailed power-performance simulation 
with a thorough sensitivity analysis of the optimal pipeline 
depth against key energy model parameters. 

This paper is structured as follows: We discuss the prior, 
related work in Section 2. In Section 3, we describe the 
proposed analytical model to study pipeline depth effects in 
superscalar processors. Section 4 presents the simulation- 
based validation methodology. In Section 5 we present re- 
sults using both the analytical model and a detailed simula- 
tor. In Section 6 we present a detailed sensitivity analysis to 
understand the effect of variations in key parameters of the 
derived power models on the optimal pipeline depth. We 
conclude in Section 7, with pointers to future work. 

2 Related Work 

Previous work has studied the issue of "optimal" pipeline 
depth exclusively under the constraint of maximizing the 
performance delivered by the microprocessor. 

An initial study of optimal pipeline depths was per- 
formed by Kunkel and Smith in the context of supercom- 
puters [15]. The machine modeled in that study was based 
on a Cray-1S, with delays being expressed as ECL gate lev- 
els. The authors studied the achievable performance from 
scalar and vector codes as a function of gate levels per 
pipeline stage for the Livermore kernels. The study demon- 
strated that vector codes can achieve optimum performance 
by deep pipelining, while scalar (floating-point) workloads 
reach an optimum at shallower pipelines. 

Subsequently, Dubey and Flynn [5] revisited the topic 
of optimal pipelining in a more general analytical frame- 
work. The authors showed the impact of various workload 
and design parameters. In particular, the optimal number of 
pipeline stages is shown to decrease with increasing over- 
head of partitioning logic into pipeline stages (i.e., clock 
skew, jitter, and latch delay). In this model, the authors con- 
sidered only stalls due to branch mispredictions and did not 
consider data dependent stalls due to memory or register 
dependencies. 

More recently, several authors have reexamined this 
topic in the context of modern superscalar processor mi- 
croarchitectures. Hartstein and Puzak [9] treat this prob- 
lem analytically and verify based on detailed simulation of 
a variety of benchmarks for a 4-issue out-of-order machine 
with a memory-execute pipeline. Simulation is also used to 
determine the values of several parameters of their mathe- 
matical model, since these cannot be formulated axiomati- 
cally. They report optimal logic delay per pipeline stage to 
be 7.7 FO4 for SPEC2000 and 5.5 FO4 for traditional and 
Java/C++ workloads. Assuming a latch insertion delay of 
3 FO4, this would result in a total delay of about 10.7 FO4 
and 8.5 FO4 per pipeline stage, respectively. 

Hrishikesh et al. [11] treat the question of logic depth 
per pipeline stage empirically based on simulation of the 
SPEC2000 benchmarks for an Alpha 21264-1ike machine. 
Based on their assumed latch insertion delay of 1.8 FO4, 
they demonstrate that a performance-optimal point is at 
logic delay of 6.0 FO4. This would result in a total pipeline 
delay of about 8 FO4. 

Sprangle and Carmean [21] extrapolate from the current 
performance of the Pentium 4 using IPC degradation factors 
for adding a cycle to critical processor loops, such as ALU, 
L1 and L2 cache latencies, and branch miss penalty for a 
variety of application types. The authors compute an opti- 
mal branch misprediction pipeline depth of 52 stages, cor- 
responding to a pipeline stage total delay of 9.9 FO4 (based 
on a logic depth of 6.3 FO4 and a latch insertion delay of 3.6 
of which 3 FO4 are due to latch delay and 0.6 FO4 represent 
skew and jitter overhead). 

All of the above studies (as well as ours) assume that mi- 
croarchitectural structures can be pipelined without limita- 
tion. Several authors have evaluated limits on the scalability 
and pipelining of these structures [6, 19, 22, 4, 11]. 

Collectively, the cited works on optimal pipelining have 
made a significant contribution to the understanding of 
workloads and their interaction with pipeline structures by 
studying the theoretical limits of deep pipelining. How- 
ever, prior work does not address scalability with respect to 
increased power dissipation that is associated with deeper 
pipelines. In this work, we aim to build on this foundation 
by extending the existing analytical models and by propos- 
ing a power modeling methodology that allows us to es- 
timate optimal pipeline depth as a function of both power 
and performance. 

3 Analytical Pipeline Model 

In the concept phase definition studies, the exactorgani- 
zation and parameters of the target processor are not known. 
As such, a custom, cycle-accurate power-performance sim- 
ulator for the full machine is often not available or rel- 
evant. Therefore, the use of analytical reasoning mod- 
els supplemented by workload characterization and limit 
studies (obtained from prior generation simulators or trace 
analysis programs) is common in real design groups. We 
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present such an analytical model to understand the power- 
performance optima and tradeoffs during the pre-simulation 
phase of a design project. 

Figure 1 shows a high-level block diagram of the pipeline 
model used in our analysis. Our primary goal is to derive the 
optimum pipeline depth for the various execution units by 
estimating the various types of stalls in these pipes while 
using a perfect front-end for the processor. Although Fig- 
ure 1 shows only one pipe for each unit (fixed point, floating 
point, load/store, and branch), the model can be used for a 
design with multiple pipes per unit as well. 

stages: iI S2 s3 s4 
corn letion time: tl  t2 t3 t4 
(no ~altehes) 
latch delay/stage: el c2 c3 e4 

Figure 1. Pipeline Model 

In Figure I, let ti be the latch-free logic time to complete 
an operation in pipe i, and s~ be the number of pipeline 
stages of pipe i. Assuming the same clock frequency for all 
the pipes, ti/s~ = t j / s j ,  Vi, j.  

If ci is the latch overhead per stage for pipe i, the total 
time per stage of  pipe i is T~ = ( (h / s  d + c~), Vi. As 
derived by Dubey and Flynn in [7], and Larson and David- 
son (cited in Chapter 2 of [14]), the throughput of the above 
machine in the absence of stalls is given by G = ~ ( ~ ) .  

We now extend this baseline model to include the effect 
of data-dependent stalls. Workload analysis can be used to 
derive first-cut estimates of the probability that an instruc- 
tion n depends on another instruction j for all instructions 
n, and can be used to estimate the frequency of pipeline 
stalls. This is illustrated in the example below, where an 
FXU instruction (i + 1) depends on the immediately pre- 
ceding instruction i, and will be stalled for (sl - 1) stages 
assuming a register file bypass to forward the results. Simi- 
larly, another FXU instruction ( j+2)  depends on instruction 
j ,  and will be stalled (sl - 2) stages. Note that in the above 
workload analysis, if the source operands of an instruction 
i are produced by more than one instruction, the largest of 
the possible stalls is assigned to i. 

inst (i) add rl = r2, r3 

inst (i+l) and r4 = rl, r5 -- 

stalled for (sl - i) stages 

inst (j) add rl = r2, r3 

inst (j+l) or r6 = r7, r8 

inst (j+2) and r4 = rl, r5 -- 

stalled for (sl,- 2) stages 

Tfx. = T1 + Stallf×._fxu * T1 + Stallfxu_fp. * T2 + 
Stallf×u-ls~ * T3 + Stallfxu-bru * T4 

where Stall~×u-fxu = fl * (sl - 1) + f2 * (sl - 2) + . . .  
The above equation represents the time to complete an 

FXU operation in the presence of stalls; fi is the condi- 
tional probability that an FXU instruction m depends on 
another FXU instruction (m - i) for all FXU instructions 
m, provided that instruction (ra - i) is the producer with 
the largest stall for instruction m. Similar expressions can 
be derived for Tfpu, ~su, and Tbru, the completion times 
of an FPU, LSU, and BRU operation, respectively. To ac- 
count for superscalar (> 1) issue widths, the workload anal- 
ysis assumes a given issue width along with the number of 
execution pipes of various types (FXU, FPU, BRU, LSU), 
and issues independent instructions as an instruction bundle 
such that the bundle width < issue width. Thus, the distance 
between dependent instructions is the number of instruction 
bundles issued between them. To account for the dependent 
instruction stalls due to L1 data cache misses we use a func- 
tional cache simulator to determine cache hits and misses. 
In addition, we split the load/store pipe into two, namely, 
load-hit and load-miss pipe; thereby, steering all data refer- 
ences that miss in the data cache to the load miss pipeline 
which results in longer stall times for the dependent instruc- 
tions. Since the workload analysis is independent of the ma- 
chine architecture details and uses only the superscalar issue 
width to determine the different stalls, it suffices to analyze 
each application once to derive the stalls. 

The stalls modeled so far include only hazards in the ex- 
ecution stages of the different pipes. However, these pipes 
could also be waiting for instructions to arrive from the 
front-end of the machine. If  ui represents the fraction of 
time pipe i has instructions arriving from the front-end of 
the machine, the equation below gives the throughput of the 
pipeline in the presence of stalls. Note that ui = 0 for unuti- 
lized pipelines, and ui = 1 for fully utilized pipelines. 

U l  U2  U3  1-14 

G = T~x~ + T~p~ + T~u + Tb~ ~ 

Thus far, we focused on deriving the throughput of a 
pipeline as a function of  the number of pipeline stages. In 
order to optimize the pipeline for both power and perfor- 
mance we use circuit-extracted power models described in 
Section 4.2. 

If Ps, is the total power of pipe i derived from the power 
models, the energy-delay product for pipe i is given by 
ED = P~i/G 2. Hence, the optimal value of si which 
minimizes the energy-delay product can be obtained us- 
ing d(ED)/dsi  = 0. Note that depending on the class 
of processors the desired metric for optimization could be 
d( (BIPS)~/W)/ds i  = 0 where 7 -> 0 is an exponent 
whose value can be fixed in specific circuit tradeoff contexts 
[26]; BIPS is billions of instructions per second. 
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4 Performance and Power Methodology 

In this section, we describe the performance simulator 
used in this study as well as the details of our power mod- 
eling toolkit and the methodology that we use to estimate 
changes in power dissipation as we vary the pipeline depth 
of  the machine. 

Fetch Latencies Decode Latencies 
Latency Parms STD/INF Latency Parms STD/INF 
NFA Predictor 1/0 Multiple Decode 2/0 

L2 ICache 11/0  Millicode Decode 2/0 
L3 (Instruction) 85/0 Expand String 2/0 

I-TLB Miss 10/0  Mispredict Cycles 3/0 
L2 I-TLB Miss 50/0 Register Read 1/1 

Execution Pipe Latencies Load/Store Latencies 
Latency Parms 

Fix Execute 
Float Execute 

Branch Execute 
Float Divide 

Integer Multiply 
Integer Divide 
Retire Delay 

STD/INF 
1/1 
4/4 
1/1 

12/12 
7/7 

35/35 
2/2 

Latency Parms 
L1 D-Load 
L2 D-Load 
L3 (Data) 

Load Float 
D-TLB Miss 

L2 D-TLB Miss 
StoreQ Forward 

STD/INF 
3/3  
9/9 
77/0 
2/2 
7/0 

50/0 
4/0 

Table 1. Latencies for 19 FO4 Design Point 

4.1 Performance Simulation Methodology 

I 

Figure 2. Modeled Processor Organization 

We utilize a generic, parameterized, out-of-order 8-way 
superscalar processor model called Turandot [16, 17] with 
32KB I and D-caches and a 2MB L2 cache. The overall 
pipeline structure (as reported in [16]), is repeated here in 
Figure 2. The modeled baseline microarchitecture is simi- 
lar to a current generation microprocessor. As described in 
[16], this research simulator was calibrated against a pre- 
RTL, detailed, latch-accurate processor model. Turandot 

supports a large number and parameters including config- 
urable pipeline latencies discussed below. 

Table 1 details the latency values in processor cycles for 
the 19 FO4 base design point of this study. We assume a 2 
FO4 latch overhead and 1 FO4 clock skew and jitter over- 
head. The 19 FO4 latency values are then scaled with the 
FO4-depth (after accounting for latch and clock skew over- 
head). Each latency in Table 1 has two values: the first la- 
beled STD, is for our detailed simulation model, and the 
second labeled INF, assumes infinite I-Cache, I-TLB, D- 
TLB, and a perfect front-end. The INF simulator model 
is used for validating the analytical model described in Sec- 
tion 3. 

4.2 Power Simulation Methodology 

To estimate power dissipation, we use the PowerTimer 
toolset developed at IBM T.J. Watson Research Center [3, 1] 
as the starting point for the simulator used in this work. 
PowerTimer is similar to power-performance simulators de- 
veloped in academia [2, 23, 24], except for the methodology 
to build energy models. 

Energy Models 

Sub-Units (uArch-level Structures) 

I Macro1 SF D a t a  P o ~ r = C I * S ~  Power Estimate p [ Power=c2~+HolclPower I Macro2 • 

I Power=Cn*SF+HoldPower] Macron 

Figure 3. PowerTimer Energy Models 

Figure 3 above depicts the derivation of the energy mod- 
els in PowerTimer. The energy models are based on circuit- 
level power analysis that has been performed on structures 
in a current, high performance PowerPC processor. The 
power analysis has been performed at the macro level using 
a circuit-level power analysis tool [18]. Generally, multi- 
ple macros combine to form one micro-architectural level 
structure which we will call a sub-unit. For example, the 
fixed-point issue queue (one sub-unit) might contain sep- 
arate macros for storage memory, comparison logic, and 
control. Power analysis has been perfoymed on each macro 
to determine the macro's unconstrained (no clock gating) 
power as a function of the input switching factor. In addi- 
tion, the hold power, or power when no switching is occur- 
ring (SF = 0%), is also determined. Hold power primarily 
consists of power dissipated in latches, local clock buffers, 
the global clock network, and data-independent fraction of  
the arrays. The switching power, which is primarily combi- 
natorial logic and data-dependent array power dissipation, 
is the additional power that is dissipated when switching 
factors are applied to the macro's primary inputs. These 
two pieces of data allow us to form simple linear equations 
for each macro's power. The energy model for a sub-unit is 
determined by summing the linear equations for each macro 
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within that sub-unit. We have generated these power models 
for all microarchitecture-level structures (sub-units) mod- 
eled in our research simulator [16, 17]. PowerTimer models 
over 60 microarchitectural structures which are defined by 
over 400 macro-level power equations. 

PowerTimer uses microarchitectural activity information 
from the Turandot model to scale down the unconstrained 
hold and switching power on a per-cycle basis under a vari- 
ety of clock gating assumptions. In this study, we use a real- 
istic form of clock gating which considers the applicability 
of clock gating on a per-macro basis to scale down either 
the hold power or the combined hold and switching power 
depending on the microarchitectural event counts. We de- 
termine which macros can be clock gated in a fine-grained 
manner (per-entry or per-stage clock gating) and which can 
be clock gated in a coarse-grained manner (the entire unit 
must be idle to be clock gated). For some macros (in par- 
ticular control logic) we do not apply any clock gating; this 
corresponds to about 20-25% of the unconstrained power 
dissipation. The overall savings due to clock gating relative 
to the unconstrained power is roughly 40-45%. 

In order to quantify the power-performance efficiency of 
pipelines of a given FO4-depth, and to scale the power dissi- 
pation from the power models of our base FO4 design point 
across a range of FO4-depths, we have extended the Power- 
Timer methodology as discussed below. 

Power dissipated by a processor consists of dynamic and 
leakage components, P = Pdynaraic + Pleakage. The dy- 
namic power data measured by PowerTimer (for a particu- 

p b a s e  = CV2 f , lar design point) can be expressed a s .  dynamic 
(c~+fl) *CGF, where c~ is the average "true" switching fac- 
tor in circuits; i.e., ~ represents transitions required for the 
functionality of the circuit and is measured as the switching 
factor by an RTL-level simulator run under the zero-delay 
mode. In contrast,/3 is the average glitching factor that ac- 
counts for spurious transitions in circuits due to race con- 
ditions. Thus, (c~ + r )  is the average number of transitions 
actually seen inside circuits. Both a and/3 are averaged over 
the whole processor over non-gated cycles with appropriate 
energy weights (the higher the capacitance at a particular 
node the higher the corresponding energy weight). CGF is 
the clock gating factor which is defined as the fraction of 
cycles where the microarchitectural structures are not clock 
gated. The CGF is measured from our PowerTimer runs at 
each FO4 design point as described above. The remaining 
terms C, V, and f are effective switching capacitance, chip 
supply voltage, and clock frequency, respectively. 

Next we analyze how each of these factors scales 
with FO4 pipeline depth. To facilitate the expla- 
nation we define the following variables: FO41ogic, 
FO41atch and FO4pipeline , to designate the depth of 
the critical path through logic in one pipeline stage, 
the latch insertion delay including clock skew and jit- 
ter, and the sum of the two quantities, respectively, 
FO4pipeline -~" FO41ogic + FO41atch. We use FO4 and 
FO4pipeline interchangeably. In the remainder of the pa- 

per, the qualifier 'base' in all quantities designates the value 
of the quantities measured for the base 19 FO4 design. 

Frequency: FreqScale is the scaling factor that is used 
to account for the changes in the clock frequency with the 
pipeline depth. This factor applies to both hold power and 
switching power: 

base 0 FreqScale = FO4pipeline/F 4pipeline 

Latch: With fixed logic hardware for given logic func- 
tions, the primary change in the chip effective switching ca- 
pacitance C with pipeline depth is due to changes in the 
latch count with the depth of  the pipeline. LatchScale is a 
factor that appropriately adjusts the hold power dissipation, 
but does not affect the switching power dissipation. 

base 

LatchScale = LatchRatio • \FO41o~ic ] 

where LatchRatio defines the ratio of hold power to the 
total power and LatchGrowthFactor(LGF) captures the 
growth of latch count due to the logic shape functions. The 
amount of additional power that is spent in latches and clock 
in a more deeply pipelined design depends on the logic 
shape functions of the structures that are being pipelined. 
Logic shape functions describe the number of latches that 
would need to be inserted at any cut point in a piece of 
combinatorial logic if it were to be pipelined. Values of 
LGF > 1 recognize the fact that for certain hardware struc- 
tures the logic shape functions are not flat and hence the 
number of latches in the more deeply pipelined design in- 
creases super-linearly with pipeline depth. In our baseline 
model, we assume a LGF of 1.1 and study the sensitivity of 
the optimal pipeline depth to this parameter in Section 6. I. 

Clock Gate Factor:  In general, CGFF decreases with 
deeper pipelines because the amount of clock gating poten- 
tial increases with deeper pipes. This increased clock gating 
potential is primarily due to the increased number of cycles 
where pipeline stages are in stall conditions. This in turn 
leads to an increase in the clock gating potential on a per 
cycle basis. CGF is workload dependent and is measured 
directly from simulator runs. 

Glitch: The final two factors that must be considered 
for dynamic power dissipation when migrating to deeper 
pipelines are a and j3, the chip-wide activity and glitching 
factors. 

The "true" switching factor a does not depend on the 
pipeline depth, since it is determined by the functionality 
of the circuits. The glitching factor at any net, on the other 
hand, is determined by the difference in delay of paths from 
the output of a latch that feeds the circuit to the gate that 
drives that net. Once a glitch is generated at some net, there 
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is a high probability that it will propagate down the circuit 
until the input of the next latch down the pipeline. Further- 
more, the farther the distance from the latch output to the 
inputs of a gate the higher the probability of the existence 
of non-equal paths from the output of  the latch to the inputs 
of this gate. Therefore the average number of spurious tran- 
sitions grows with FO41ogie - the higher the FO4 the higher 
the average glitching factor. Experimental data, collected 
by running a dynamic circuit-level simulator (PowerMill) 
on post-layout extracted netlists of sample functional units 
show that the average glitching factor 13 can be modeled as 
being linearly dependent on the logic depth: 

FO41ogi¢ 
/3 =/3base ~ "  

FO41ogic 

To account for the effect of the dependence of 13 on 
pipeline depth, we introduce the following factor which ap- 
plies only to the switching power: 

GlitchScale = ( 1 -  LatchRatio) ( o~ + ~_ 
] 

1 - LatehRatio ¢ ~b~ FO41ogic 
= T+~b.~o/~ ka + - Fb6~z?  / O~ logic / 

In this formula flbase is the actual glitching factor aver- 
aged over the baseline microprocessor for the base FO4 de- 
sign point. Notice that flUaso appears in the formula only 
in the ratio flbase/a. This is consistent with our experi- 
mental results showing that the glitching factor 13 is roughly 
proportional to the "true" switching factor c~, for the range 
0 < c~ < 0.3 (for higher values of c~ the growth of 13 typ- 
ically saturates). For the set of six sample units that we 
simulated, with the logic depth ranging from 6 FO4 to 20 
FO4, the ratio fl/c~ was found to be roughly proportional to 
the logic depth of the simulated units, FO41ogic, with the CO- 

base efficient equal to 0.3/FO41ogic. Based on these simulation 
results we set 13base/C~ = 0.3 for the whole microprocessor 
in the remainder of this section, and study the sensitivity of 
the results to variations in the glitching factor in Section 6.4. 

Leakage Currents:  As the technology feature size scales 
down and the power supply and transistor threshold voltages 
scale accordingly, the leakage power component becomes 
more and more significant. Since the magnitude of the leak- 
age power component is affected by the pipeline depth, it is 
essential to include the effect of the leakage power in the 
analysis of the optimal pipeline depth. Assuming that the 
leakage power is proportional to the total channel width of 
all transistors in the microprocessor, we model the depen- 
dence of the leakage power on the depth of the pipeline as 
follows: 

/ 
P1FO4 DbaSe / ~./)latch 

eakage ~ f leakage \1 "q- Wtotal  [f Fo41bog~ \LOF ] -'J) 

where LGF is the LatchGrowthFactor defined earlier, 
Wlateh/Wtotal is the ratio of the total channel width of tran- 
sistors in all pipeline latches (including local clock distri- 
bution circuitry) to the total transistor channel width in the 
base (19 FO4) microprocessor (excluding all low-leakage 
transistors that might be used in caches or other on-chip 
memories). If  the technology supports multiple thresholds, 
or any of the recently introduced leakage reduction tech- 
niques are used on a unit-by-unit basis, such as MTCMOS, 
back biasing, power-down, or transistor stacking, then the 
above formula for the leakage power component needs to 
be modified accordingly and we leave the detailed study of 
these effects for future work. For the remainder of the study 
we set Wlatch/Wtotal to 0.2 for the base 19 FO4 pipeline. 
Also, rather than giving the absolute value for the leak- 
age current, p ba~e in the base microprocessor we will leakage 
count it as a fraction of the dynamic power of the base de- 
sign, /9base base base  .t leakage -~- LeakageFactor Pdynamic" We set the 
LeakageFactor base to the value of 0.1, typically quoted 
for state of the art microprocessors, and analyze the sensi- 
tivity of the results to LeakageFactor in Section 6.5. 

Total Power: The following equation expresses the rela- 
tionship between the dynamic power for the base FO4 de- 

base sign, Pdynamic' leakage power and the scaled power for de- 
signs with different depths of the pipeline, pFO4 consider- ~ t o t a l ,  
ing all factors above. 

ptFot°a~ = C G F , F S , ( L S + G S ) , P~n~mic q- plFea°k4age 

where F S  is FreqScale, L S  is LatchScale, and GS is 
GlitehScale. 
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Figure 4. Power Growth Breakdown 

Figure 4 shows contributions of different factors in the 
above formula, depending on the pipeline depth of the de- 
sign FO4pipeline. The 19 FO4 design was chosen as a base 
pipeline. 

The line labeled "combined" shows the cumulative in- 
crease or decrease in power dissipation. The line labeled 
"only clock gate" quantifies the amount of additional clock 
gating power savings for deeper pipelines. The relative ef- 
fect of scaling in clock gating is fairly rninor with slightly 
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more than 10% additional power reduction when going 
from the 19 FO4 to 7 FO4 design points. There are several 
reasons why the effect of clock gating is not larger. First, 
the fraction of power dissipation that is not eligible to be 
clock gated becomes larger with more clock gating leading 
to diminishing returns. Second, some of the structures are 
clock gated in a coarse-grained fashion and while the aver- 
age utilization of the structure may decrease it must become 
idle in all stages before any additional savings can be real- 
ized. Finally, we observe that clock gating is more difficult 
in deeper pipelined machines, because it is harder to deliver 
cycle-accurate gating signals at lower FO4. 

The two lines labeled "only freq" and "only hold" show 
the power factors due to only frequency and hold power 
scaling, respectively. 2 Overall, dynamic power increases 
more than quadratically with increased pipeline depth. 

Figure 4 shows that the leakage component grows much 
less rapidly than the dynamic component with the increas- 
ing pipeline depth. There are two primary reasons for this. 
First, the leakage power does not scale with frequency. 
Second, the leakage power growth is proportional to the 
fraction of channel width of  transistors in pipeline latches, 
whereas the latch dynamic hold power growth is propor- 
tional to the fraction of the dynamic power dissipated in 
pipeline latches. Obviously, the former quantity is much 
smaller than the latter. 

4.3 W o r k l o a d s  and Metrics Used in the Study 

In this paper, we report experimental results based on 
PowerPC traces of a set of  21 SPEC2000 benchmarks, 
namely, ammp, applu, apsi, art, bzip2, crafty, equake, fac- 
erec, gap, gcc, gzip, lucas, mcf, mesa, mgrid, perl, six- 
track, swim, twolf, vpr, and wupwise. We have also used 
a 172M instruction trace of the TPC-C transaction process- 
ing benchmark. The SPEC2000 traces were generated using 
the tracing facility called Aria within the MET toolkit [17]. 
The particular SPEC2000 trace repository used in this study 
was created by using the full reference input set. However, 
sampling was used to reduce the total trace length to 100 
million .instructions per benchmark program. A systematic 
validation study to compare the sampled traces against the 
full traces was done in finalizing the choice of exact sam- 
piing parameters [ 12]. 

We use BIPS~/W (energy • delay 2) as a basic energy- 
efficiency metric for comparing different FO4 designs in 
the power-performance space. The choice of this metric 
is based on the observation that dynamic power is roughly 
proportional to the square of supply voltage (V) multiplied 
by clock frequency and clock frequency is roughly propor- 
tional to V. Hence, power is roughly proportional to V 3 
assuming a fixed logic/circuit design. Thus, delay cubed 
multiplied by power provides a voltage-invariant power- 
performance characterization metric which we feel is most 

2 A l t h o u g h  t h e s e  t w o  f a c t o r s  i n c r e a s e  l i n e a r l y  w i t h  c l o c k  f r e q u e n c y ,  w e  

a r e  p l o t t i n g  a g a i n s t  F O 4 - d e p t h  w h i c h  i s  1 / c l o c k  frequency. 

appropriate for server-class microprocessors (see discussion 
in [I, 7]). In fact, it was formally shown in [26] that opti- 
mizing performance subject to a constant power constraint 
leads to the BIPSa/W metric in processors operating at a 
supply voltage near the maximum allowed value in state of 
the art CMOS technologies. As a comparative measure, we 
also consider BIPS/W (energy) and BIPS2/W (energy-delay 
[8]) in the baseline power-performance study. 

5 Analytical Model  and Simulation Results 

5.1 Analytical Model Validation 

4.2 
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Figure 5. BIPS: Analytical Model vs. Simulator 

We now present the performance results using the sim- 
ple analytical model (see Section 3) and compare it with 
the results using our detailed cycle-accurate simulator. The 
results in this section are presented for the average of the 
SPEC2000 benchmarks described in Section 4.3. For fair 
comparison, we have modified the simulator to include a 
perfect front-end of the machine. The model and the sim- 
ulator use latencies shown in the column labeled "INF" in 
Table 1. 

Figure 5 shows BIPS as a function of the FO4 delay per 
stage of the pipeline. The BIPS for the analytical model 
was computed after determining the stalls for the different 
pipelines using independent workload analysis as explained 
in Section 3. 

From Figure 5 we observe that the performance optimal 
pipeline depth is roughly 10 FO4 delay per pipeline stage 
for both the model and the simulator. The BIPS estimated 
using the model correlates well with the BIPS estimated 
using the simulator except for very large and very small 
FO4-depth machines. Since the stalls are determined in the 
model independent of the pipeline and only once for a work- 
load, it is possible that for shallow pipelines with large FO4 
delay per stage, the model underestimates the total stall cy- 
cles, and hence the BIPS computed by the model is higher 
than the BIPS obtained from the simulator. The analytical 
model currently only uses data dependent stalls to derive 
the optimal pipeline depth. Hence, for the purpose of the 
validation experiment, the model and the simulator assume 
a perfect front-end. However, to estimate the effect of re- 
source stalls we modeled a large but finite register renamer, 
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instruction buffer, and miss queue in the simulator keeping 
the rest of the front-end resources infinite and perfect. For 
deeper pipelines (< 10 FO4), we observe from the simula- 
tor that the stalls due to the resources become appreciable 
and the analytical model begins to overestimate the BIPS 
relative to the simulator. 

Model 
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ 2  

1 

0 i i i i i t i i i q i 

25 22 19 16 13 t0  7 

Total F04 per stage 

Figure 6. BIPSa/W: Model vs. Simulator 

Figure 6 shows that the optimal FO4-depth that maxi- 
mizes the BIPSa/W is around 19-24 FO4 for the simulator. 
We observe that the analytical model tracks the simulator 
results more closely while optimizing performance alone as 
seen in Figure 5. Since the analytical model overestimates 
the performance for shallow pipelines, the cubing of BIPS 
in Figure 6 compounds these errors. 

5.2 Detailed Power-Performance Simulation 
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Figure 7. Simulation Results for SPEC2000 

In the remainder of this work we consider the power and 
performance results using the detailed performance simu- 
lator with parameters corresponding to the STD column in 
Table 1. Figure 7 shows the results for five metrics: BIPS, 
IPC, BIPS/W, BIPS2/W, and BIPS3/W. 

Figure 7 shows that the optimal FO4-depth for perfor- 
mance (defined by BIPS) is 10 FO4, although pipelines of 
8 FO4 to 15 FO4 are within 5% of the optimal. Because 
of the super-linear increase in power dissipation and sub- 
linear increases in overall performance, the BIPS/W always 
decreases with deeper pipelines. BIPS3/W shows an op- 
timum point at 18 FO4. BIPSa/W decreases sharply after 
the optimum and at the performance-optimal pipeline depth 
of 10 FO4, the BIPSa/W metric is reduced by 50% over 

the 18 FO4 depth. For metrics that have less emphasis on 
performance, such as BIPS2/W and BIPS/W, the optimal 
point shifts towards shallower pipelines, as expected. For 
the BIPS2/W, the optimal pipeline depth is achieved at 23 
FO4. 
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Figure 8. Simulation Results for TPC-C 

Figure 8 presents similar results for the TPC-C trace. 
The optimal BIPS for TPC-C is very fiat from 10-14 FO4 
(within 1-2% for all 5 design points which is much flat- 
ter than SPEC2000). Using BIPSa/W, the optimal pipeline 
depth shifts over to 25-28 FO4. The main reason that the 
optimal point is shallower for TPC-C is that BIPS decreases 
less dramatically with decrease in pipeline length (relative 
to SPEC2000). This is slightly counterbalanced because 
power increases at a slower rate for TPC-C with deeper 
pipes, because the additional amount of clock gating is more 
pronounced due to large increases in the number of stall cy- 
cles relative to the SPEC2000 suite. 

6 Sensitivity Analysis 

The derived equations that model the dependence of 
the power dissipation on the pipeline depth depend on 
several parameters. Some of these parameters, although 
accurately measured for the baseline microprocessor, are 
likely to change from one design to another, whereas oth- 
ers are difficult to measure accurately. In this section, we 
perform sensitivity analysis of the optimal pipeline depth 
to key parameters of the derived power models such as 
LatchGrowthFactor, LatchRatio, latch insertion delay 
(FO41atch), GlitchRatio and LeakageFactor. 

6.1 Latch Growth Factor 

LatchGrowthFactor (LGF) is determined by the in- 
trinsic logic shape functions of the structures that are being 
pipelined. We have analyzed many of the major rnicroar- 
chitectural structures to identify ones that are likely to have 
LatchGrowthFactor greater than 1. One structure that we 
will highlight is the Booth recoder and Wallace tree which 
is common in high-performance floating point multipliers 
[13, 20], as shown in Figure 9. Figure 9 shows the exponen- 
tial reduction in the number of result bits as the data passes 
through the 3-2 and 4-2 compressors. We have estimated 
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the amount of logic that can be inserted between latch cut 
points for 7, 10, 13, 16, and 19 FO4 designs by assuming 
3-4 FO4 delay for 3-2 and 4-2 compressor blocks. As the 7 
and 10 FO4 design points require latch insertions just after 
the Booth multiplexor (where there are 27 partial products), 
there would be a large increase in the number of latches re- 
quired for these designs. We note that the 7 FO4 design also 
requires a latch insertion after the booth recode stage. 

)eline Cuts 
7ttOF04 

7/13F04 

7/10/16F04 

7/'19F 04 

7/10fl 3 F04 

7.il 6F04 

7/10/1 9 F04 

Figure 9. Wallace Tree Diagram and Latch Cut 
points for 7/10113116119 F04 

Figure 10 gives estimates for the cumulative number of 
latches in the FPU design as a function of the FO4 depth 
of the FPU. For example, the first stage of the 10 FO4 FPU 
requires 3x as many latches as the first stage of the 19 FO4 
FPU because the first latch cut point of  the 19 FO4 FPU is 
beyond the initial 9:2 compressor tree. Overall, the 10 FO4 
FPU requires nearly 3x more latches than the 19 FO4 FPU. 
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Figure 10. Cumulative latch count for FPU 

There are many other areas of  parallel logic that are 
likely to see super-linear increases in the number of latches 
such as structures with decoders, priority encoders, carry 
look ahead logic, etc. Beyond the pipelining of logic struc- 
tures, deeper pipelines may require more pre-decode infor- 
mation to meet aggressive cycle times, which would require 
more bits to be latched in intermediate stages. On the other 
hand, the number of latches that comprise storage bits in 
various on-chip memory arrays (such as register files and 

queues) does not grow at all with the pipeline depth, mean- 
ing that the LGF = 0 for those latches. Thus, designs with 
overall LGF < 1 are also possible. 

i oOOO 
/ o o o o °  

0.6 . . . . . . . . .  

• 0.4 "- 0.8 1.1 t 4  1.7 O~Nst x 

377 34 31 28 25 22 19 16 t3 10 77 
Total F04 per stage 

Figure 11. BIPS3/W varying L, atchGrowthFactor  

Figure 11 quantifies the dependence of  the optimal 
pipeline depth on LGF using the BIPS3/W metric. It shows 
that the optimal pipeline FO4 tends to increase as LGF 
increases above the value of 1.1, assumed in the baseline 
model. As a point of reference, our estimate for the latch 
growth factor for the 10 FO4 vs. 19 FO4 Booth recoder and 
Wallace tree is LGF = 1.9, while for the entire FPU LGF 
is slightly less than 1.7. 

6 . 2  L a t c h  P o w e r  R a t i o  

Latch, clock, and array power are the primary com- 
ponents of power dissipation in current generation CPUs. 
This is especially true in high-performance, superscalar 
processors with speculative execution which require the 
CPU to maintain an enormous amount of architectural 
and non-architectural state. One possible reason why the 
LatchRatio could be smaller than the base value of 0.7 
chosen in Section 4, is if more energy-efficient SRAM ar- 
rays are used in high-power memory structures instead of 
latches to reduce the data independent array power (which 
we include as part of  hold power). 
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Figure 12. BIPSa/W varying LatchRatio 

Figure 12 shows the optimal FO4 design point while 
varying the LatchRatio of the machine from 80% to 40%. 
We see that while the optimal FO4 point remains 18 FO4, it 
is less prohibitive to move to deeper pipelines with smaller 

341 



latch-to-logic ratios. For example, with a LatchRatio of 
0.4, the 13 FO4 design point is only 19% worse than the 
optimal one while it is 27% worse than optimal with a 
LatchRatio of 0.6. 

6.3 L a t c h  I n s e r t i o n  D e l a y  

Latch FO4 2 3 4 5 
Relative Latch Energy 1.0 0.53 0.36 0.29 
Relative Clocking Energy 1.0 0.62 0.49 0.43 

Table 2. Latch Insertion Delay (excluding skew and 
jitter) vs. Relative Latch Energy 

With the large amount of power spent in latches and 
clocking, designers may consider the tradeoff between latch 
delay and power dissipation as a means to design more 
energy-efficient CPUs. Researchers have investigated latch 
power vs. delay tradeoff curves both within a given latch 
family and across latch families [25, 10]. Table 2, derived 
from [25], shows latch FO4-delay vs. latch energy across 
several latch styles. The first row of Table 2 shows the latch 
insertion delay, excluding clock skew and jitter overhead 
which is assumed to be constant for all latches. The second 
row shows the relative latch energy, excluding energy dis- 
sipated in the clock distribution. The third row shows the 
relative energy of the clock system, including both energy 
of latches (70% of the total) and clock distribution system 
(30%). It is assumed that the clock distribution energy can- 
not be completely scaled with reduced latch load. There is 
significant overhead simply from driving the wires neces- 
sary to distribute the clock over a large area. 
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Figure 13. BIPS varying latch power-delay 

Replacing the baseline fast 2 FO4 latches with slower, 
lower power latches increases the latch insertion delay 
overhead, which impacts both the performance-optimal 
and power-performance-optimal pipeline depth. Figure 13 
shows the processor performance versus pipeline depth for 
four latches from Table 2. We see that the performance 
maxima shift towards shallower pipelines as the latch in- 
sertion delay increases. For example, with a 3 FO4 latch 
the performance-optimal FO4-depth is 11 FO4 and with a 4 
FO4 latch it becomes 16 FO4. , 
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Figure 14. BIPS3/W varying latch power-delay 

Figure 14 shows the impact of the latch insertion de- 
lay on the BIPSZ/W rating of the processor for the same 
range of pipeline depths. In this figure, all of the data points 
are shown relative to the 10 FO4 design with the base 5 
FO4 latch. Unlike curves on all previous sensitivity graphs, 
curves in Figure 14 do not intersect at the base design point, 
because different curves represent different designs, with 
different power and performance levels. 

Figure 14 shows that using the fastest 2 FO4 latch results 
in the best BIPS3/W rating for processors with stages less 
than 14 FO4. For processors with pipelines ranging from 
15 FO4 to 24 FO4 a lower power 3 FO4 latch is the most 
energy efficient, whereas for shallower pipelines (25 FO4 
or more) the highest BIPSS/W is achieved with even slower 
4 FO4 latches. 

The use of the 3 FO4 latch, combined with the choice 
of the pipeline depth in the range from 15 FO4 to 24 FO4 
improves the BIPS3/W rating of the processor by more than 
10%, compared to the base case of 2 FO4 latches. The graph 
also shows that the optimal BIPS3/W design point shifts to- 
wards shallower pipelines as high-performance latches are 
replaced with lower power ones. For example, the 18 FO4 
design point is optimal for a processor using 2 FO4 latches, 
whereas the 19 FO4, 20 FO4, and 21 FO4 design points are 
optimal for processors using 3 FO4 latches, 4 FO4, and 5 
FO4 latches, respectively. 

6.4  G l i t c h  F a c t o r  

In this subsection we quantify the sensitivity of the op- 
timal pipeline depth to the glitching factor. There are no 
practical means for accurately measuring the actual value of 
flb~se/a, averaged over the whole microprocessor. Instead 
we measured the glitching factor for a selected set of func- 
tional units and used the averaged value o f /3b~e /a  = 0.3 
throughout the analysis. In this section we analyze the sen- 
sitivity of the optimal pipeline depth to the value of flb~e/C~. 

Figure 15 shows the dependence of the BIps3/w rating 
of the processor on the pipeline depth for three values of 
f lbase/~.  From this figure we see that higher glitching fac- 
tors favor deeper pipelines. However, in the base design the 
decrease in power dissipation related to reduced glitching 
in deeper pipelines did not have a substantial impact on the 
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Figure 15. BIPS3/W varying/~b~/OL 

optimal pipeline depth, primarily because of the relatively 
small fraction of power dissipated in combinatorial switch- 
ing. For designs which have smaller LatchRatio values, 
this effect could be more significant. 

6.5 Leakage Factor 

As explained earlier, the leakage power component 
grows more slowly with the pipeline depth than the dy- 
namic component. Therefore, the optimum pipeline depth 
depends on the LeakageFactor. Throughout the analy- 
sis we assumed that for the base 19 FO4 microprocessor 
t he  LeakageFactor ( p b a s e  / p b a s e  "~ ~," |eakuge/~ dynamic/ to be  0.1. H o w -  
ever, as the technology feature size scales down and the 
power supply and transistor threshold voltages scale ac- 
cordingly, the leakage power component becomes more and 
more significant. To study the effect of the growing frac- 
tion of the leakage power component we measured the sen- 
sitivity of the optimal pipeline depth to the value of the 
LeakageFactor. 
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Figure 16. B I P S 3 / W  v a r y i n g  LeakageFactor 

Figure 16 shows the BIPS3/W rating of the pro- 
cessor versus pipeline depth for three values of the 
LeakageFactor: a value of 0 that represents older CMOS 
technologies, a value of 0.1, assumed in the current model, 
and values of 0.5 and 1.0, projected for future generation 
CMOS technologies (arguably, extreme values). The results 
in Figure 16 show that unless leakage reduction techniques 
become the standard practice in the design of high-end 
microprocessors, the high values of the LeakageFactor 
projected for future generations of CMOS technologies 

may tend to shift the optimum pipeline depth towards 
slightly deeper pipelines. For current generation tech- 
nologies the result for the optimal pipeline depth is suffi- 
ciently stable with respect to reasonable variations in the 
LeakageFactor. 

Summary of the Sensitivity Analysis: In this section we 
considered the sensitivity of optimal pipeline length to five 
key parameters in the power models using the BIPS3/W 
metric. We did not observe a strong dependence of the re- 
sults on the assumptions and choices of any of these param- 
eters, which demonstrates the stability of the model, and 
its applicability to a wide range of designs. To summarize 
the results, higher values of the LatchGrowthFactor favor 
shallower pipelines, lower values of the LatchRatio favor 
deeper pipelines, the use of lower-power latches favors shal- 
lower pipelines, higher values of the GlitchFactor favors 
deeper pipelines, and, finally, higher leakage currents favor 
deeper pipelines. 

7 Conclusions 

In this paper, we have demonstrated that it is impor- 
tant to consider both power and performance while opti- 
mizing pipelines. For this purpose, we derived detailed 
energy models using circuit-extracted power analysis for 
microarchitectural structures. We also developed detailed 
equations for how the energy functions scale with pipeline 
depth. Based on the combination of power and perfor- 
mance modeling performed, our results show that a purely 
performance-driven, power-unaware design may lead to the 
selection of an overly deep pipelined microprocessor oper- 
ating at an inherently power-inefficient design point. 

As this work is the first quantitative evaluation of power 
and performance optimal pipelines, we also performed a 
detailed sensitivity analysis of the optimal pipeline depth 
against key parameters such as latch growth factor, latch ra- 
tio, latch insertion delay, glitch, and leakage currents. Our 
analysis shows that there is a range of pipeline depth for 
which performance increases can be achieved at a mod- 
est sacrifice in power-performance efficiency. Pipelining 
beyond that range leads to drastic reduction in power- 
performance efficiency with little or no further performance 
improvement. 

Our results show that for a current generation, out-of- 
order superscalar processor, the optimal delay per stage is 
about 18 FO4 (consisting of a logic delay of 15 FO4 and 3 
FO4 latch insertion delay) when the objective function is a 
power-performance efficiency metric like BIPS3/W; this is 
in contrast to an optimal delay of 10 FO4/stage when con- 
sidering the BIPS metric alone. We used a broad suite of 
SPEC2000 benchmarks to arrive at this conclusion. 

The optimal pipeline depth depends on a number of pa- 
rameters in the power models which we have derived from 
current state-of-the-art microprocessor design methodolo- 
gies. Also, as already established through recent prior work, 
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such optimal design points generally depend on the in- 
put workload characteristics. Our simulation-based experi- 
ments on a typical commercial application (TPC-C) shows 
that although the optimal pipeline depth is around 10-14 
FO4 for performance-only optimization, it increases to 24- 
28 FO4 when we consider power and performance opti- 
mizations. 

In future work, we would like to consider other architec- 
tural options than those available in the base model, for ex- 
ample, single- versus multi-threading, wide versus narrow 
issue machines, and inorder versus out-of-order designs. In 
addition, we would also like to consider more circuit-level 
power-performance tradeoffs opportunities and factor that 
into the analysis of optimal pipelines. Finally, there are nu- 
merous circuit and technology techniques which affect leak- 
age and therefore power-performance optimality; we hope 
to consider all of these factors in our future work. 
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