

Slides © IBM Corp.

Motivation

- Systematic methodology needed to incorporate circuit power in the concept phase of a microarchitecture
 - Estimate and refine cycle time targets and power costs
- Parameterized power-performance models needed to:
 - Allow progressive refinements
 - Be useful in the pre-simulation phase
- One of the most critical concept-phase design decisions is to choose a pipeline depth (FO4 per pipe stage)

Background/Definitions

Fanout-of-4 inverter metric (Horowitz)

- Delay of an inverter with C_{load}/C_{in}=4
- More or less stable for process, voltage, temperature
- We use this to measure amount of logic per stage of the pipeline

Our Contribution

- (Recent) Prior Work -- ISCA2002
 - Three research groups studied performance-optimal pipeline depth
 - Different ISAs, different microarchitectures, different benchmarks, different simulators
 - Optimal Performance-Depth is 7-10FO4
- Our focus:
 - Intuitively, complexity/power concerns will favor shallower pipes
 - But how to quantify?

Outline

- Power-Performance modeling methodology
- Scaling Energy Models for Pipeline Depth
- Sensitivity Analysis
- Impact and Conclusions

Overall Methodology

- Start with a simple analytical pipeline model
 - Study Pipeline Optimization using workload characterization
 - Useful in the pre-simulation concept phase design
- Validate the analytical model with detailed cycle accurate simulation
- Develop energy models based on detailed circuit-level power analysis of macros
- Develop energy scaling equations for pipeline depth
- Study the sensitivity of the energy model parameters to the optimal pipeline depth

- Energy models based on circuit-level power analysis of structures in current high-performance PowerPC processor
- Power analysis
 - For each macro collect ungated power (ckt sim)
 - Clocking power (latches, LCBs, array clocking)
 - Active power (Logic, data-dependent array)
 - Leakage power
 - Clock gating factors determined based on utilization and macro-level clock gating eligibility

Factors Affecting Choice of Pipeline Depth

- Cycles-Per-Instruction (CPI)
- Clock Frequency
- Clock Gating Effects
- Latch-to-Logic Dynamic Power Ratio
- Latch Growth Factor
- Glitching Activity
- Leakage Power Scaling
- Power-Delay Ratios for Latches and Logic

Energy Model Scaling: CPI, Frequency, Clock Gating

- CPI impacts performance only (workload dependent)
- Clock Gating impacts power only (workload dependent)
- Frequency impacts both

Energy Model Scaling: Glitching and Leakage

- Glitching *reduces* with deeper pipelines
 - More pipeline latches stop glitch propagation
- Leakage power component grows more slowly than dynamic power component with deeper pipelines
 - Leakage does not scale with frequency
 - Leakage growth is proportional to overall width of latches rather than overall power of latches
 - Overall Latch width % << Overall Latch power %</p>

Sensitivity Analysis

- Baseline model discussed
- Now we consider sensitivity of the results to uncertainty in the parameters
 - Either difficult to measure (LGF, glitching, etc)
 - May vary from processor to processor (latch vs. logic power, leakage ratio)

Backup Sildes: Default Latency values							
Fetch Latencies		Decode Latencies		Exe Pipe Latencies		Mem Latencies	
Parameter	Cycles	Parameter	Cycles	Parameter	Cycles	Parameter	Cycles
NFA Predictor	1	Multiple Decode	2	Integer Execute	1	L1 D-Load	3
L2 Icache	11	Millicode Decode	2	Float Execute	4	L2 D-Load	9
L3 (Instr.)	85	Expand String	2	Branch Execute	1	L3 (Data)	77
I-TLB Miss	10	Mispredict Cycles	3	Float Divide	12	Load Float	2
L2 I-TLB Miss	50	Register Read	1	Integer Multiply	7	D-TLB Miss	7
				Integer Divide	35	L2 D-TLB Miss	50
				Retire Delay	2	StoreQ Forward	4

(Backup) Analytical Model (pre-simulation)

