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Providing Rich Immersive Experiences

Howmay | helpyou, =

human?
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Addressing Societal Challenges >

NVIDIA

Product Design and Simulation Alternative Fuels

Climate Change Materials Design Understanding Viruses
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Insatiable Demand for Performance

e

Battlefield 1942
(2002)

© NVIDIA 2011




'

NVIDIA

100KW-20MW
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Silicon Scaling — the end of the easy ride

Where Does Processor Energy Go?

Strategies for Energy Efficiency

Challenges
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Moore’s Law is Only Part of the Story

| e 2010: 3B Tx
2007: 580M Tx

” 2001: 42M Tx

7 1997: 7.5M Tx
1993: 3M Tx
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Classic Dennard Scaling rf,%
2.8x chip capability in same power

Scale chip features down 0.7x per process generation

0.7x
capacitance

1.4x faster
transistors
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transistors voltage
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Post Dennard Scaling
2x chip capability at 1.4x power
1.4x chip capability at same power
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Implications

End of clock-rate scaling => need more parallelism

Capability drops down to 1.4 per generation.
Optimistic because wires scale worse than transistors
32x gap in a decade from what continued Dennard scaling would give

Scaling up conventional core count is not feasible
Best case — 40% more cores per generation
Far cry from 2x performance per generation

Need better materials, devices, circuits, architectures, and SW
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How is power spent in a CPU?

In-order embedded OO0O Hi-perf

Clock +
Control
Logic
24%

Data Supply
17%

Clock +
Pins
45%
Register
File
1%

Instruction

Supply
42% Fetch
1%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)
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Fundamental Energy Costs

64-bit DP FMA

50pJ ™ DRAM
S Rd/Wr

256-bit Efficient
buses = off-chip

link
256-bit access

8 kB SRAM

40nm technology

© NVIDIA 2011
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Today’s high perf CPUs
* 1-2 nd/instruction

20-40x energy overhead
® |Instruction control
* Data movement




Energy Shopping List N>
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Processor Technology
Vdd (nominal)
DFMA energy
64b 8 KB SRAM Rd

FP Op lower bound

Wire energy
(256 bits, 10mm) o

8 pJ
Memory Technology 45 nm 16nm
DRAM interface pin bandwidth 4 Gbps 50 Gbps

DRAM interface energy 20-30 pJ/bit 2 pJ/bit

DRAM access energy 8-15 pJ/bit 2.5 pd/bit
Vogelsang [Micro 2010]
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Strategies for Energy Reduction

Simpler processor architectures
* Reduce waste
Improve physical locality of data
* Exploit heterogeneity and specialization
* Signaling and packaging
* Inch down voltage
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Simpler/Slower Cores = Energy Efficiency
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CPU
1.7 nd/tlop

Optimized for Latency
Caches
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32 nm

GPU
225 pJ/flop

Optimized for Throughput

Explicit Management
of On chlp IVIemory
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Latency Throughput
Processor Processor

l | PCs

-
Predict |

Select

Register
Rename
Instruction
Window

1 I Register File

T i g g

ALU 1 ALU 2 ALU 3 ALU 4
Reorder Buffer i
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Throughput Processors at Petascale

7

s

#1 : K Computer
68K Fujitsu Sparc CPUs
10.5 PFLOPS, 12.6 MW

#3 : Jaguar
36K AMD Opteron
CPUs

1.8 PFLOPS, 6.9MW
© NVIDIA 2011

Titan
18K Tesla GPUs
>20 PFLOPS, 8.6MW

o

NVIDIA

#2 : Tianhe-1A
7K Tesla GPUs
2.6 PFLOPS, 4AMW

#4 : Nebulae
4K Tesla GPUs
1.3 PFLOPS, 2.5MW

#5 : Tsubame 2.0
4K Tesla GPUs

1.2 PFLOPS, 1.3MW
(most efficient PF system)




The Road to Exascale (f%.

ZETTAFLOPS

EXAFLOPS

PETAFLOPS

2012

© NVIDIA 2011




<3

NVIDIA

Throughput Processor Optimizations

Hierarchical hardware thread scheduling
Register File caching

* SIMT and Temporal SIMT execution

© NVIDIA 2011




Streaming Multiprocessor (SM) >
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Multithreading with: Main Register File
32 threads per Warp 32 banks
48 Warps/SM

* 1500+ threads/SM

Fermi: 128KB of RF SIMT Lanes

Heavily banked to provide high
bandwidth

e isotpouoratSH
* ~15% of power of SM 32 KB

© NVIDIA 2011
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Optimization Opportunities rf%,

Large number of threads hide two types of latency
Long: global memory access (~400 cycles)
Short: ALU and shared memory access (8-20 cycles)

40% of values are read once, within 3 instructions of being produced
100%

Read >2 Times
Read 2 Times
Read 1 Time
Read 0 Times

80% Lifetime >3
Lifetime 3
60% - bttt Lifetime 2
Lifetime 1

40% -

20% -

Percent of All Values Produced
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Two-Level Scheduling f,%\

Pending Warps
A

4 I
WEGHE --- &

Active warps used to tolerate short
latency events

* Simplified instruction scheduler only
considers active warps each cycle

>
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* 8 active warps (of 48) is enough to
sustain full SM throughput

lllllllllllllllll
SIMT Lanes
HEEEEEENENNEEEREEN

Gebhart, et. al [ISCA 2011, Micro 2011]
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Register File Caching (RFC) >
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Private RFC per SIMT lane MRF
4-6 entries per thread

* Operand routing when results are needed
by shared units Operand Buffering
48x smaller than MRF

4x128-bit Banks (1R1W)

; i S Operand Routing
When combined with 2-level scheduling

* Reduces up to 80% of RF reads/writes

SM Cluster - replicated 8
times to form SM

© NVIDIA 2011




SIMD versus MIMD versus SIMT? <3
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SIMD: Single Instruction
Multiple Data

* MIMD: Multiple Instruction
Multiple Data

* SIMT: Single Instruction
Multiple Thread

SIMT = MIMD Programming Model with
1 SIMD Implementation Efficiencies




Temporal SIMT <A
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Spatial SIMT (current GPUs) Pure Temporal SIMT
32-wide datapath :
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Temporal SIMT Optimizations

Control divergence — hybrid MIMD/SIMT

32-wide (NN [N N N NN [N N N N N N Y Y [N N O O O B 4-wide

(41%) (65%)

Scalarization
Factor common instructions from multiple threads
Execute once — place results in common registers

© NVIDIA 2011
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Strategies for Energy Reduction

* Exploit heterogeneity and specialization
* Signaling and packaging
* Inch down voltage
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Heterogeneity and Specialization

Programmable processor heterogeneity
* CPU + GPU in same system/chip

Functional specialization
Fixed/limited programmability accelerators

* Power specialization
* Same function, different power/performance profile

© NVIDIA 2011




NVIDIA Tegra3 Mobile SOC <

5 ARM Cortex A9 Cores

Range of accelerators
Some programmable

Some fixed function e - _ Security

| i * Engine
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Variable SMP <A
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Same CPU core design Low Power Process: inefficient
at high performance ranges

Optimized for different /

voltage/frequency range 7
Different transistors

: : Fast Process: higher
Different synthesis leakage in active standby
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Power Savings on Tegra3 due to vSMP
M Tegra2 M Tegra3

14% 15%
28% ) - lower lower
lower
61%
lower

MP3 Playback HD Video Playback Gaming



Typical Power Breakdown <X
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225W

DRAM
Signaling

Core
Dynamic

NVIDIA M2070
Leakage Module
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Packaging/Signaling/Architecture rf%n

TSV

connections High-bandwidth,
low-latency connections

Microbumps
Through-Silicon Vias (TSV)

C4 Bumps

+——— 28nm FPGA Die

Silicon Interposer Packaging (Xilinx)
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Voltage Scaling — is there any left?

Answer #1: Hard — scale V , down toward 2*V,

Answer #2: Harder — scale down to near V,

* Principle challenges
* Slow transistors
* Reliability
* Process variation

© NVIDIA 2011




Aggressive Voltage Scaling rf,%
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H. Kaul et al. ISSCCO08; Motion Estimator Accelerator
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Energy Efficiency Potential at 10nm

© NVIDIA 2011

Natural process scaling

Energy efficient chip architecture
Circuits/Packaging
Slower clock frequency
Aggressive voltage scaling

Total:

Architecture specialization

Near-threshold Voltage

~10x

4x
(theoretical)

Assuming 0.9=>0.7V

Includes on-chip ckis

~3x area penalty

On compute limited
applications

~30x area penalty
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The Road to Exascale (f%.

ZETTAFLOPS

EXAFLOPS

PETAFLOPS

2012
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“Teraflops™

ASCI Red @ Sandia Labs

1997
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“Tens” of Teraflops 100 Watts

Red Storm @ Sandia Labs

2004
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“Hundreds” of Teraflops 1000 Watts
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Challenges for Research Community

Fundamentally energy efficient architectures
Core, memory system, interconnect, system

Low voltage
Clocking, RAM, signaling, variation tolerant

* Specialization
In general purpose system — what are the “accelerators”?

Emerging and important workloads are throughput
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‘Super’ Computing

From Super Computers to Super Phones




