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Performance-oriented Computing is Everywhere
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Providing Rich Immersive Experiences
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Addressing Societal Challenges

Product Design and Simulation Alternative Fuels

Climate Change

Medical Diagnosis

Understanding VirusesMaterials Design
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Insatiable Demand for Performance

Battlefield 1942
(2002)

Battlefield 3
(2011)

> 1 TFlop
~1KW

1W
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Which of These are Power Constrained?

~1W
~3W

~100W
~30W

1KW 100KW-20MW
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Silicon Scaling – the end of the easy ride

Where Does Processor Energy Go?

Strategies for Energy Efficiency

Challenges
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Moore’s Law is Only Part of the Story

2001: 42M Tx

2004: 275M Tx

1993: 3M Tx

2010: 3B Tx

2007: 580M Tx

1997: 7.5M Tx
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Classic Dennard Scaling 
2.8x chip capability in same power
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Scale chip features down 0.7x per process generation
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Post Dennard Scaling
2x chip capability at 1.4x power
1.4x chip capability at same power
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Transistors are no faster
Static leakage limits reduction in Vth => Vdd stays constant
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Implications

End of clock-rate scaling => need more parallelism

Capability drops down to 1.4 per generation.

Optimistic because wires scale worse than transistors

32x gap in a decade from what continued Dennard scaling would give

Scaling up conventional core count is not feasible

Best case – 40% more cores per generation

Far cry from 2x performance per generation

Need better materials, devices, circuits, architectures, and SW
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Clock + 
Control 
Logic
24%

Instruction 
Supply

42%

Register 
File
11%

ALU
6%

Data Supply
17%

How is power spent in a CPU?

Dally [2008] (Embedded in-order CPU)

Clock + 
Pins
45%

Fetch
11%

Rename
10%

Issue
11%

RF
14%

ALU
4% Data 

Supply
5%

Natarajan [2003] (Alpha 21264)

In-order embedded OOO Hi-perf
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Fundamental Energy Costs

Today’s high perf CPUs

1-2 nJ/instruction

20-40x energy overhead

Instruction control

Data movement

20mm
64-bit DP FMA

50pJ
31 pJ 310 pJ

1.2 nJ

1.3 nJ

40nm technology

10 nJ

Efficient
off-chip

link

256-bit
buses

DRAM
Rd/Wr

256-bit access
8 kB SRAM

56 pJ
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Energy Shopping List

Processor Technology 40 nm 10nm

Vdd (nominal) 0.9 V 0.7 V

DFMA energy 50 pJ 7.6 pJ

64b 8 KB SRAM Rd 14 pJ 2.1 pJ

Wire energy 
(256 bits, 10mm)

310 pJ 174 pJ

Memory Technology 45 nm 16nm

DRAM interface pin bandwidth 4 Gbps 50 Gbps

DRAM interface energy 20-30 pJ/bit 2 pJ/bit

DRAM access energy 8-15 pJ/bit 2.5 pJ/bit

Vogelsang [Micro 2010]

FP Op lower bound
=

8 pJ
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Strategies for Energy Reduction

Simpler processor architectures

Reduce waste

Improve physical locality of data

Exploit heterogeneity and specialization

Signaling and packaging

Inch down voltage
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Simpler/Slower Cores = Energy Efficiency

Azizi [PhD 2010]
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CPU
1.7 nJ/flop

Optimized for Latency

Caches

Westmere
32 nm

GPU
225 pJ/flop

Optimized for Throughput

Explicit Management
of On-chip Memory

Fermi
40 nm
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Throughput 
Processor

Latency
Processor

PC

PC

Branch 
Predict

I$

Register 
Rename

Register File

ALU 1 ALU 2 ALU 4ALU 3

Reorder Buffer

Instruction
Window

I$

ALU 1 ALU 2 ALU 4ALU 3

Select

Register File

PCs
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Throughput Processors at Petascale

#2 : Tianhe-1A
7K Tesla GPUs

2.6 PFLOPS, 4MW

#4 : Nebulae
4K Tesla GPUs

1.3 PFLOPS, 2.5MW  

#5 : Tsubame 2.0
4K Tesla GPUs 

1.2 PFLOPS, 1.3MW  
(most efficient PF system)

#3 : Jaguar
36K AMD Opteron 

CPUs

1.8 PFLOPS, 6.9MW  

#1 : K Computer
68K Fujitsu Sparc CPUs

10.5 PFLOPS, 12.6MW  

Titan
18K Tesla GPUs

>20 PFLOPS, 8.6MW
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2012

EXAFLOPS

PETAFLOPS

2035

The Road to Exascale

70 PF, 20 MW

100 PF, 20 MW

1 EF, 20 MW

CPU-only
“Titan”
6 PF, 8.6 MW

GPU-Accelerated
“Titan”

20 PF, 8.6 MW

1 EF, 20 MW

20222019

ZETTAFLOPS
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Throughput Processor Optimizations

Hierarchical hardware thread scheduling

Register File caching

SIMT and Temporal SIMT execution
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Streaming Multiprocessor (SM)

Multithreading with:

32 threads per Warp

48 Warps/SM

Large register files

1500+ threads/SM

Fermi: 128KB of RF

Heavily banked to provide high 
bandwidth

Large operand read/write energy

~15% of power of SM

SIMT Lanes

SFU MEMALU

Warp Scheduler

Main Register File
32 banks

Shared Memory
32 KB

TEX
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Optimization Opportunities

Large number of threads hide two types of latency
Long:  global memory access (~400 cycles)
Short:  ALU and shared memory access (8-20 cycles)

40% of values are read once, within 3 instructions of being produced

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

t 
o

f 
A

ll
 V

a
lu

e
s
 P

ro
d

u
c
e
d Read >2 Times

Read 2 Times

Read 1 Time

Read 0 Times

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

t 
o

f 
A

ll
 V

a
lu

e
s
 P

ro
d

u
c
e
d

Lifetime >3

Lifetime 3

Lifetime 2

Lifetime 1



 NVIDIA 2011
24

Two-Level Scheduling

Active warps used to tolerate short 
latency events

Simplified instruction scheduler only 
considers active warps each cycle

8 active warps (of 48) is enough to 
sustain full SM throughput

Gebhart, et. al [ISCA 2011, Micro 2011]

Select
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Register File Caching (RFC)

Private RFC per SIMT lane

4-6 entries per thread 

Operand routing when results are needed 
by shared units

48x smaller than MRF

When combined with 2-level scheduling

Reduces up to 80% of RF reads/writes

SM Cluster - replicated 8 
times to form SM

S
F
U

M
E
M

T
E
X

ALU

Operand Routing

MRF
4x128-bit Banks (1R1W)

Operand Buffering

RFC 4x32-bit
(3R1W) Banks
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SIMD versus MIMD versus SIMT?

SIMD: Single Instruction 
Multiple Data

SIMT: Single Instruction 
Multiple Thread

MIMD: Multiple Instruction 
Multiple Data

VLD

VADD

VST

LD

ADD

ST

BR

ADD

ST

BR

LD

LD

ADD

ST

BR

SIMT = MIMD Programming Model with
SIMD Implementation Efficiencies
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ADD
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SUB
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Temporal SIMT

32-wide datapath
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Temporal SIMT Optimizations

Control divergence – hybrid MIMD/SIMT

Scalarization

Factor common instructions from multiple threads

Execute once – place results in common registers

32-wide
(41%)

4-wide
(65%)

1-wide
(100%)
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Strategies for Energy Reduction

Simpler processor architectures

Reduce waste

Improve physical locality of data

Exploit heterogeneity and specialization

Signaling and packaging

Inch down voltage
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Heterogeneity and Specialization

Programmable processor heterogeneity

CPU + GPU in same system/chip

Functional specialization

Fixed/limited programmability accelerators

Power specialization

Same function, different power/performance profile
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NVIDIA Tegra3 Mobile SOC

5 ARM Cortex A9 Cores

Range of accelerators

Some programmable

Some fixed function

1-5W power envelope
HD Video
Decoder

HD Video
Encoder

Audio ISP

GPU

MEM I/O

HDMI

Security
Engine

Display

Core 1

Core 3

Core 2

Core 4

Core 0
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Variable SMP

Same CPU core design

Optimized for different 
voltage/frequency range

Different transistors

Different synthesis

Low Power Process: inefficient 
at high performance ranges

Fast Process: higher 
leakage in active standby
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Power Savings on Tegra3 due to vSMP
Tegra3Tegra2
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Typical Power Breakdown

NVIDIA M2070
Module

GPU

DRAM

Other

Leakage

Core
Dynamic

DRAM
Signaling

225W

130W
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Packaging/Signaling/Architecture

Micron Hybrid Memory Cube

Silicon Interposer Packaging (Xilinx)
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Voltage Scaling – is there any left?

Answer #1: Hard – scale Vdd down toward 2*Vt

Answer #2: Harder – scale down to near Vt

Principle challenges

Slow transistors 

Reliability

Process variation
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Aggressive Voltage Scaling
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Energy Efficiency Potential at 10nm

Energy efficient chip architecture 3-5x

Circuits/Packaging 2-2.5x Includes on-chip ckts

Slower clock frequency 2x

Aggressive voltage scaling 1.5x

Total: 20-40x ~3x area penalty

Natural process scaling 6x Assuming 0.9=>0.7V

Architecture specialization ~10x
On compute limited 

applications

Near-threshold Voltage
4x

(theoretical)
~30x area penalty
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2012

EXAFLOPS

PETAFLOPS

2035

The Road to Exascale

70 PF, 20 MW

100 PF, 20 MW

1 EF, 20 MW

CPU-only
“Titan”
6 PF, 8.6 MW

GPU-Accelerated
“Titan”

20 PF, 8.6 MW

1 EF, 20 MW

20222019

ZETTAFLOPS
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5 Watts“Teraflops”

1997 2019

ASCI Red @ Sandia Labs
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100 Watts“Tens” of Teraflops

2004 2019

Red Storm @ Sandia Labs
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1000 Watts

2006 2019

“Hundreds” of Teraflops

Blue Gene @ LLNL
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Fundamentally energy efficient architectures

Core, memory system, interconnect, system

Low voltage

Clocking, RAM, signaling, variation tolerant

Specialization

In general purpose system – what are the “accelerators”?

Emerging and important workloads are throughput

Challenges for Research Community
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‘Super’ Computing
From Super Computers to Super Phones


