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ABSTRACT
As GPUs have become increasingly general purpose, ap-
plications with more general sharing patterns and fine-
grained synchronization have started to emerge. Un-
fortunately, conventional GPU coherence protocols are
fairly simplistic, with heavyweight requirements for syn-
chronization accesses. Prior work has tried to resolve
these inefficiencies by adding scoped synchronization to
conventional GPU coherence protocols, but the result-
ing memory consistency model, heterogeneous-race-free
(HRF), is more complex than the common data-race-
free (DRF) model. This work applies the DeNovo co-
herence protocol to GPUs and compares it with conven-
tional GPU coherence under the DRF and HRF consis-
tency models. The results show that the complexity of
the HRF model is neither necessary nor sufficient to ob-
tain high performance. DeNovo with DRF provides a
sweet spot in performance, energy, overhead, and mem-
ory consistency model complexity.

Specifically, for benchmarks with globally scoped fine-
grained synchronization, compared to conventional GPU
with HRF (GPU+HRF), DeNovo+DRF provides 28%
lower execution time and 51% lower energy on average.
For benchmarks with mostly locally scoped fine-grained
synchronization, GPU+HRF is slightly better – how-
ever, this advantage requires a more complex consis-
tency model and is eliminated with a modest enhance-
ment to DeNovo+DRF. Further, if HRF’s complexity
is deemed acceptable, then DeNovo+HRF is the best
protocol.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures – Cache mem-
ories; Shared memory; C.1.2 [Processor Architec-
tures]: Single-instruction-stream, multiple-data-stream
processors (SIMD); I.3.1 [Computer Graphics]: Graph-
ics processors

Keywords
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1. INTRODUCTION
GPUs are highly multithreaded processors optimized

for data-parallel execution. Although initially used for
graphics applications, GPUs have become more general-
purpose and are increasingly used for a wider range of
applications. In an ongoing effort to make GPU pro-
gramming easier, industry has integrated CPUs and
GPUs into a single, unified address space [1, 2]. This
allows GPU data to be accessed on the CPU and vice
versa without an explicit copy. While the ability to
access data simultaneously on the CPU and GPU has
the potential to make programming easier, GPUs need
better support for issues such as coherence, synchro-
nization, and memory consistency.

Previously, GPUs focused on data-parallel, mostly
streaming, programs which had little or no sharing or
data reuse between Compute Units (CUs). Thus, GPUs
used very simple software-driven coherence protocols
that assume data-race-freedom, regular data accesses,
and mostly coarse-grained synchronization (typically at
GPU kernel boundaries). These protocols invalidate the
cache at acquires (typically the start of the kernel) and
flush (writethrough) all dirty data before the next re-
lease (typically the end of the kernel) [3]. The dirty
data flushes go to the next level of the memory hier-
archy shared between all participating cores and CUs
(e.g., a shared L2 cache). Fine-grained synchroniza-
tion (implemented with atomics) was expected to be
infrequent and executed at the next shared level of the
hierarchy (i.e., bypassing private caches).

Thus, unlike conventional multicore CPU coherence
protocols, conventional GPU-style coherence protocols
are very simple, without need for writer-initiated inval-
idations, ownership requests, downgrade requests, pro-
tocol state bits, or directories. Further, although GPU
memory consistency models have been slow to be clearly
defined [4, 5], GPU coherence implementations were
amenable to the familiar data-race-free model widely
adopted for multicores today.

However, the rise of general-purpose GPU (GPGPU)
computing has made GPUs desirable for applications
with more general sharing patterns and fine-grained syn-
chronization [6, 7, 8, 9, 10, 11]. Unfortunately, con-
ventional GPU-style coherence schemes involving full
cache invalidates, dirty data flushes, and remote execu-
tion at synchronizations are inefficient for these emerg-
ing workloads. To overcome these inefficiencies, recent
work has proposed associating synchronization accesses
with a scope that indicates the level of the memory hi-
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erarchy where the synchronization should occur [8, 12].
For example, a synchronization access with a local scope
indicates that it synchronizes only the data accessed by
the thread blocks within its own CU (which share the
L1 cache). As a result, the synchronization can execute
at the CU’s L1 cache, without invalidating or flushing
data to lower levels of the memory hierarchy (since no
other CUs are intended to synchronize through this ac-
cess). For synchronizations that can be identified as
having local scope, this technique can significantly im-
prove performance by eliminating virtually all sources
of synchronization overhead.

Although the introduction of scopes is an efficient
solution to the problem of fine-grained GPU synchro-
nization, it comes at the cost of programming complex-
ity. Data-race-free is no longer a viable memory con-
sistency model since locally scoped synchronization ac-
cesses potentially lead to “synchronization races” that
can violate sequential consistency in non-intuitive ways
(even for programs deemed to be well synchronized by
the data-race-free memory model). Recently, Hower et
al. addressed this problem by formalizing a new mem-
ory model, heterogeneous-race-free (HRF), to handle
scoped synchronization. The Heterogeneous System Ar-
chitecture (HSA) Foundation [1], a consortium of sev-
eral industry vendors, and OpenCL 2.0 [13] have re-
cently adopted a model similar to HRF with scoped
synchronization.

Although HRF is a very well-defined model, it cannot
hide the inherent complexity of using scopes. Intrinsi-
cally, scopes are a hardware-inspired mechanism that
expose the memory hierarchy to the programmer. Us-
ing memory models to expose a hardware feature is con-
sistent with the past evolution of memory models (e.g.,
the IBM 370 and total store order (TSO) models es-
sentially expose hardware store buffers), but is discour-
aging when considering the past confusion generated
by such an evolution. Previously, researchers have ar-
gued against such a hardware-centric view and proposed
more software-centric models such as data-race-free [14].
Although data-race-free is widely adopted, it is still a
source of much confusion [15]. Viewing the subtleties
and complexities associated even with the so-called sim-
plest models, we argue GPU consistency models should
not be even more complex than the CPU models.

We therefore ask the question – can we develop co-
herence protocols for GPUs that are close to the sim-
plicity of conventional GPU protocols but give the per-
formance benefits of scoped synchronization, while en-
abling a memory model no more complex than data-
race-free?

We show that this is possible by considering a recent
hardware-software hybrid protocol, DeNovo [16, 17, 18],
originally proposed for CPUs. DeNovo does not require
writer-initiated invalidations or directories, but does ob-
tain ownership for written data. The key additional
overhead for DeNovo over GPU-style coherence with
HRF is 1 bit per word at the caches (previous work on
DeNovo uses software regions [16] for selective invalida-
tions; our baseline DeNovo protocol does not use these

to minimize overhead). Specifically, this paper makes
the following contributions:

• We identify DeNovo (without regions) as a viable
coherence protocol for GPUs. Due to its use of
ownership on writes, DeNovo is able to exploit
reuse of written data and synchronization vari-
ables across synchronization boundaries, without
the additional complexity of scopes.

• We compare DeNovo with the DRF consistency
model (i.e., no scoped synchronization) to GPU-
style coherence with the DRF and HRF consis-
tency models (i.e., without and with scoped syn-
chronization). As expected, GPU+DRF performs
poorly for applications with fine-grained synchro-
nization. However, DeNovo+DRF provides a sweet
spot in terms of performance, energy, implemen-
tation overhead, and memory model complexity.

Specifically, we find the following when comparing
the performance and energy for DeNovo+DRF and
GPU+HRF. For benchmarks with no fine-grained
synchronization, DeNovo is comparable to GPU.
For microbenchmarks with globally scoped fine-
grained synchronization, DeNovo is better than
GPU (on average 28% lower execution time and
51% lower energy). For microbenchmarks with
mostly locally scoped synchronization, GPU does
better than DeNovo – on average 6% lower execu-
tion time, with a maximum reduction of 13% (4%
and 10% lower, respectively, for energy). However,
GPU+HRF’s modest benefit for locally scoped syn-
chronization must be weighed against HRF’s higher
complexity and GPU’s much lower performance
for globally scoped synchronization.

• For completeness, we also enhance DeNovo+DRF
with selective invalidations to avoid invalidating
valid, read-only data regions at acquires. The ad-
dition of a single software (read-only) region does
not add any additional state overhead, but does re-
quire the software to convey the read-only region
information. This enhanced DeNovo+DRF proto-
col provides the same performance and energy as
GPU+HRF on average.

• For cases where HRF’s complexity is deemed ac-
ceptable, we develop a version of DeNovo for the
HRF memory model. We find that DeNovo+HRF
is the best performing protocol – it is either com-
parable to or better than GPU+HRF for all cases
and significantly better for applications with glob-
ally scoped synchronization.

Although conventional hardware protocols such as
MESI support fine-grained synchronization with DRF,
we do not compare to them here because prior research
has observed that they incur significant complexity (e.g.,
writer-initiated invalidations, directory overhead, and
many transient states leading to cache state overhead)
and are a poor fit for conventional GPU applications [3,
19] (also evidenced by HSA’s adoption of HRF). Addi-
tionally, the DeNovo project has shown that for CPUs,
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DeNovo provides comparable or better performance than
MESI at much less complexity [16, 17, 18].

This work is the first to show that GPUs can support
fine-grained synchronization efficiently without resort-
ing to the complexity of the HRF consistency model
at modest hardware overhead. DeNovo with DRF pro-
vides a sweet spot for performance, energy, overhead,
and memory model complexity, questioning the recent
move towards memory models for GPUs that are more
complex than those for CPUs.

2. BACKGROUND: MEMORY CONSISTENCY
MODELS

Depending on whether the coherence protocol uses
scoped synchronization or not, we assume either data-
race-free (DRF) [14] or heterogeneous-race-free (HRF) [8]
as our memory consistency model.

DRF ensures sequential consistency (SC) to data-
race-free programs. A program is data-race-free if its
memory accesses are distinguished as data or synchro-
nization, and, for all its SC executions, all pairs of con-
flicting data accesses are ordered by DRF’s happens-
before relation. The happens-before relation is the ir-
reflexive, transitive closure of program order and syn-
chronization order, where the latter orders a synchro-
nization write (release) before a synchronization read
(acquire) if the write occurs before the read.

HRF is defined similar to DRF except that each syn-
chronization access has a scope attribute and HRF’s
synchronization order only orders synchronization ac-
cesses with the same scope. There are two variants
of HRF: HRF-Direct, which requires all threads that
synchronize to use the same scope, and HRF-Indirect,
which builds on HRF-Direct by providing extra support
for transitive synchronization between different scopes.
One key issue is the prospect of synchronization races –
conflicting synchronization accesses to different scopes
that are not ordered by HRF’s happens-before. Such
races are not allowed by the model and cannot be used
to order data accesses.

Common implementations of DRF and HRF enforce
a program order requirement: an access X must com-
plete before an access Y if X is program ordered before
Y and either (1) X is an acquire and Y is a data access,
(2) X is a data access and Y is a release, or (3) X and Y
are both synchronization. For systems with caches, the
underlying coherence protocol governs the program or-
der requirement by defining what it means for an access
to complete, as discussed in the next section.

3. A CLASSIFICATION OF COHERENCE
PROTOCOLS

The end-goal of a coherence protocol is to ensure that
a read returns the correct value from the cache. For
the DRF and HRF models, this is the value from the
last conflicting write as ordered by the happens-before
relation for the model. Following the observations made
for the DeNovo protocol [16, 17], we divide the task of
a coherence protocol into the following:

Invalidation Tracking Different
Initiator up-to-date copy scopes?

Conv HW writer ownership yes
SW reader writethrough yes

Hybrid reader ownership yes

Table 1: Classification of protocols covering conven-
tional HW (e.g., MESI), SW (e.g., GPU), and Hybrid
(e.g., DeNovo) coherence protocols.

(1) No stale data: A load hit in a private cache should
never see stale data.

(2) Locatable up-to-date data: A load miss in a private
cache(s) must know where to get the up-to-date copy.

Table 1 classifies three classes of hardware coherence
protocols in terms of how they enforce these require-
ments. Modern coherence protocols accomplish the first
task through invalidation operations, which may be ini-
tiated by the writer or the reader of the data. The
responsibility for the second task is usually handled by
the writer, which either registers its ownership (e.g., at a
directory) or uses writethroughs to keep a shared cache
up-to-date. The HRF consistency model adds an addi-
tional dimension of whether a protocol can be enhanced
with scoped synchronization.

Although our taxonomy is by no means comprehen-
sive, it covers the space of protocols commonly used
in CPUs and GPUs as well as recent work on hybrid
software-hardware protocols. We next describe example
implementations from each class. Without loss of gener-
ality, we assume a two level cache hierarchy with private
L1 caches and a shared last-level L2 cache. In a GPU,
the private L1 caches are shared by thread blocks [20]
executing on the corresponding GPU CU.
Conventional Hardware Protocols used in CPUs

CPUs conventionally use pure hardware coherence
protocols (e.g., MESI) that rely on writer-initiated in-
validations and ownership tracking. They typically use
a directory to maintain the list of (clean) sharers or
the current owner of (dirty) data (at the granularity of
a cache line). If a core issues a write to a line that
it does not own, then it requests ownership from the
directory, sending invalidations to any sharers or the
previous owner of the line. For the purpose of invalida-
tions and ownership, data and synchronization accesses
are typically treated uniformly. For the program order
constraint described in Section 2, a write is complete
when its invalidations reach all sharers or the previous
owner of the line. A read completes when it returns its
value and that value is globally visible.

Although such protocols have not been explored with
the HRF memory model, it is possible to exploit scoped
synchronization with them. However, the added bene-
fits, are unclear. Furthermore, as discussed in Section 1,
conventional CPU protocols are a poor fit for GPUs and
are included here primarily for completeness.
Software Protocols used in GPUs

GPUs use simple, primarily software-based coherence
mechanisms, without writer-initiated invalidations or
ownership tracking. We first consider the protocols
without scoped synchronization.
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GPU protocols use reader-initiated invalidations – an
acquire synchronization (e.g., atomic reads or kernel
launches) invalidates the entire cache so future reads do
not return stale values. A write results in a writethough
to a cache (or memory) shared by all the cores partic-
ipating in the coherence protocol (the L2 cache with
our assumptions) – for improved performance, these
writethroughs are buffered and coalesced until the next
release (or until the buffer is full). Thus, a (correctly
synchronized) read miss can always obtain the up-to-
date copy from the L2 cache.

Since GPU protocols do not have writer-initiated in-
validations, ownership tracking, or scoped synchroniza-
tion, they perform synchronization accesses at the shared
L2 (more generally, the closest memory shared by all
participating cores). For the program order require-
ment, preceding writes are now considered complete by
a release when their writethroughs reach the shared L2
cache. Synchronization accesses are considered com-
plete when they are performed at the shared L2 cache.

The GPU protocols are simple, do not require proto-
col state bits (other than valid bits), and do not incur
invalidation and other protocol traffic overheads. How-
ever, synchronization operations are expensive – the op-
erations are performed at the L2 (or the closest shared
memory), an acquire invalidates the entire cache, and a
release must wait until all previous writethroughs reach
the shared L2. Scoped synchronizations reduce these
penalties for local scopes.

In our two level hierarchy, there are two scopes – pri-
vate L1 (shared by thread blocks on a CU) and shared
L2 (shared by all cores and CUs). We refer to these as
local and global scopes, respectively. A locally scoped
synchronization does not have to invalidate the L1 (on
an acquire), does not have to wait for writethroughs to
reach the L2 (on a release), and is performed locally at
the L1. Globally scoped synchronization is similar to
synchronization accesses without scopes.

Although scopes reduce the performance penalty, they
complicate the programming model, effectively expos-
ing the memory hierarchy to the programmer.
DeNovo: A Hybrid Hardware-Software Protocol

DeNovo is a recent hybrid hardware-software protocol
that uses reader-initiated invalidations with hardware
tracked ownership. Since there are no writer-initiated
invalidations, there is no directory needed to track shar-
ers lists. DeNovo uses the shared L2’s data banks to
track ownership – either the data bank has the up-to-
date copy of the data (no L1 cache owns it) or it keeps
the ID of the core that owns the data. DeNovo refers to
the L2 as the registry and the obtaining of ownership
as registration. DeNovo has three states – Registered,
Valid, and Invalid – similar to the Modified, Shared, and
Invalid states of the MSI protocol. The key difference
with MSI is that DeNovo has precisely these three states
with no transient states, because DeNovo exploits data-
race-freedom and does not have writer-initiated invali-
dations. A consequence of exploiting data-race-freedom
is that the coherence states are stored at word granu-
larity (although tags and data communication are at a

larger conventional line granularity, like sector caches).1

Like GPU protocols, DeNovo invalidates the cache on
an acquire; however, these invalidations can be selective
in several ways. Our baseline DeNovo protocol exploits
the property that data in registered state is up-to-date
and thus does not need to be invalidated (even if the
data is accessed globally by multiple CUs). Previous
DeNovo work has also explored additional optimizations
such as software regions and touched bits. We explore
a simple variant where we identify read-only data re-
gions and do not invalidate those on acquires (for sim-
plicity, we do not explore more comprehensive regions
or touched bits). The read-only region is a hardware
oblivious, program level property and is easier to deter-
mine than annotating all synchronization accesses with
(hardware- and schedule-specific) scope information.

For synchronization accesses, we use the DeNovoSync0
protocol [18] which registers both read and write syn-
chronizations. That is, unless the location is in regis-
tered state in the L1, it is treated as a miss for both
(synchronization) reads and writes and requires a reg-
istration operation. This potentially provides better
performance than conventional GPU protocols, which
perform all synchronization at the L2 (i.e., no synchro-
nization hits).

DeNovoSync0 serves racy synchronization registra-
tions immediately at the registry, in the order in which
they arrive. For an already registered word, the reg-
istry forwards a new registration request to the reg-
istered L1. If the request reaches the L1 before the
L1’s own registration acknowledgment, it is queued at
the L1’s MSHR. In a high contention scenario, multi-
ple racy synchronizations from different cores will form
a distributed queue. Multiple synchronization requests
from the same CU (from different thread blocks) are
coalesced within the CU’s MSHR and all are serviced
before any queued remote request, thereby exploiting
locality even under contention. As noted in previous
work, the distributed queue serializes registration ac-
knowledgments from different CUs – this throttling is
beneficial when the contending synchronizations will be
unsuccessful (e.g., unsuccessful lock accesses) but can
add latency to the critical path if several of these syn-
chronizations (usually readers) are successful. As dis-
cussed in [18], the latter case is uncommon.

DeNovoSync optimizes DeNovoSync0 by incorporat-
ing a backoff mechanism on registered reads when there
is too much read-read contention. We do not explore it
for simplicity.

To enforce the program order requirement, DeNovo
considers a data write and a synchronization (read or
write) complete when it obtains registration. As before,
data reads are complete when they return their value.

DeNovo has not been previously evaluated with scoped
synchronization, but can be extended in a natural way.
Local acquires and releases do not invalidate the cache
or flush the store buffer. Additionally, local synchro-

1This does not preclude byte granularity accesses as dis-
cussed in [16]. None of our benchmarks, however, have byte
granularity accesses.
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nization operations can delay obtaining ownership.

4. QUALITATIVE ANALYSIS OF THE PRO-
TOCOLS

4.1 Qualitative Performance Analysis
We study the GPU and DeNovo protocols, with and

without scopes, as described in Section 3. In order to
understand the advantages and disadvantages of each
protocol, Table 2 qualitatively compares coherence pro-
tocols across several key features that are important for
emerging workloads with fine-grained synchronization:
exploiting reuse of data across synchronization points
(in L1), avoiding bursty traffic (especially for writes),
decreasing network traffic by avoiding overheads like in-
validations and acknowledgment messages, only trans-
ferring useful data by decoupling the coherence and
transfer granularity, exploiting reuse of synchronization
variables (in L1), and efficient support for dynamic shar-
ing patterns such as work stealing. The coherence pro-
tocols have different advantages and disadvantages based
on their support for these features:
GPU coherence, DRF consistency (GPU-D): Con-
ventional GPU protocols with DRF do not require inval-
idation or acknowledgment messages because they self-
invalidate all valid data at all synchronization points
and write through all dirty data to the shared, back-
ing LLC. However, there are also several inefficiencies
which stem from poor support for fine-grained synchro-
nization and not obtaining ownership. Because GPU
coherence protocols do not obtain ownership (and don’t
have writer-initiated invalidations), they must perform
synchronization accesses at the LLC, they must flush all
dirty data from the store buffer on releases, and they
must self-invalidate the entire cache on acquires. As
a result, GPU-D cannot reuse any data across syn-
chronization points (e.g., acquires, releases, and ker-
nel boundaries). Flushing the store buffer at releases
and kernel boundaries also causes bursty writethrough
traffic. GPU coherence protocols also transfer data
at a coarse granularity to exploit spatial locality; for
emerging workloads with fine-grained synchronization
or strided accesses, this can be sub-optimal. Further-
more, algorithms with dynamic sharing must synchro-
nize at the LLC to prevent stale data from being ac-
cessed.
GPU coherence, HRF consistency (GPU-H ): Chang-
ing the memory model from DRF to HRF removes sev-
eral inefficiencies from GPU coherence protocols while
retaining the benefit of no invalidation or acknowledg-
ment messages. Although globally scoped synchroniza-
tion accesses have the same behavior as GPU-D, lo-
cally scoped synchronization accesses occur locally and
do not require bursty writebacks, self-invalidations, or
flushes, improving support for fine-grained synchroniza-
tion and allowing data to be reused across synchroniza-
tion points. However, scopes do not provide efficient
support for algorithms with dynamic sharing because
programmers must conservatively use a global scope for
these algorithms to prevent stale data from being ac-

cessed.
DeNovo coherence, DRF consistency (DeNovo-
D): The DeNovo coherence protocol with DRF has sev-
eral advantages over GPU-D. DeNovo-D ’s use of own-
ership enables it to provide several of the advantages
of GPU-H without exposing the memory hierarchy to
the programmer. For example, DeNovo-D can reuse
written data across synchronization boundaries since it
does not self-invalidate registered data on an acquire.
With the read-only optimization, this benefit also ex-
tends to read-only data. DeNovo-D also sees hits on
synchronization variables with temporal locality both
within a thread block and across thread blocks on the
same CU. Obtaining ownership also allows DeNovo-D
to avoid bursty writebacks at releases and kernel bound-
aries. Unlike GPU-H, obtaining ownership specifically
provides efficient support for applications with dynamic
sharing and also transfers less data by decoupling the
coherence and transfer granularity.

Although obtaining ownership usually results in a
higher hit rate, it can sometimes increase miss latency;
e.g., an extra hop if the requested word is in a remote
L1 cache or additional serialization for some synchro-
nization patterns with high contention (Section 3). The
benefits, however, dominate in our results.
DeNovo coherence, HRF consistency (DeNovo-
H ): Using the HRF memory model with the DeNovo
coherence protocol combines all the advantages of own-
ership that DeNovo-D enjoys with the advantages of
local scopes that GPU-H enjoys.

4.2 Protocol Implementation Overheads
Each of these protocols has several sources of imple-

mentation overhead:
GPU-D: Since GPU-D does not track ownership, the
L1 and L2 caches only need 1 bit (a valid bit) per line
to track the state of the cache line. GPU coherence also
needs support for flash invalidating the entire cache on
acquires and buffering writes until a release occurs.
GPU-H: GPU coherence with the HRF memory model
additionally requires a bit per word in the L1 caches to
keep track of partial cache block writes (3% overhead
compared to GPU-D ’s L1 cache). Like GPU-D, GPU-
H also requires support for flash invalidating the cache
for globally scoped acquires and releases and has an L2
overhead of 1 valid bit per cache line.
DeNovo-D and DeNovo-H: DeNovo needs per-word
state bits for the DRF and HRF memory models be-
cause DeNovo tracks coherence at the word granularity.
Since DeNovo has 3 coherence states, at the L1 cache
we need 2 bits per-word (3% overhead over GPU-H ). At
the L2, DeNovo needs one valid and one dirty bit per
line and one bit per word (3% overhead versus GPU-H ).
DeNovo-D with read-only optimization (DeNovo-
D+RO): Logically, DeNovo needs an additional bit per
word at the L1 caches to store the read-only informa-
tion. However, to avoid incurring additional overhead,
we reuse the extra, unused state from DeNovo’s coher-
ence bits. There is some overhead to convey the region
information from the software to the hardware. We pass
this information through an opcode bit for memory in-
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Feature Benefit GD GH DD DH
Reuse Written Data Reuse written data across synch points � � (if local scope) � �

Reuse Valid Data Reuse cached valid data across synch points � � (if local scope) �2 � (if local scope)
No Bursty Traffic Avoid bursts of writes � � (if local scope) � �
No Invalidations/ACKs Decreased network traffic � � � �
Decoupled Granularity Only transfer useful data � � � �
Reuse Synchronization Efficient support for fine-grained synch � � (if local scope) � �
Dynamic Sharing Efficient support for work stealing � � � �

Table 2: Comparison of studied coherence protocols.
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Figure 1: Baseline heterogeneous architecture [21].

structions.

5. METHODOLOGY
Our work is influenced by previous work on DeN-

ovo [16, 17, 18, 21]. We leverage the project’s exist-
ing infrastructure [21] and extend it to support GPU
synchronization operations based on the DeNovoSync0
coherence protocol for multicore CPUs [18].

5.1 Baseline Heterogeneous Architecture
We model a tightly coupled CPU-GPU architecture

with a unified shared memory address space and co-
herent caches. The system connects all CPU cores and
GPU Compute Units (CUs) via an interconnection net-
work. Like prior work, each CPU core and each GPU
CU (analogous to an NVIDIA SM) is on a separate net-
work node. Each network node has an L1 cache (local
to the CPU core or GPU CU) and a bank of the shared
L2 cache (shared by all CPU cores and GPU CUs).3

The GPU nodes also have a scratchpad. Figure 1 illus-
trates this baseline system which is similar to our prior
work [21]. The coherence protocol, consistency model,
and write policy depend on the system configuration
studied (Section 5.3).

5.2 Simulation Environment and Parameters
We simulate the above architecture using an inte-

grated CPU-GPU simulator built from the Simics full-
system functional simulator to model the CPUs, the
Wisconsin GEMS memory timing simulator [22], and
2Mitigated by the read-only enhancement.
3HRF [8] uses a three-level cache hierarchy; we use two lev-
els because the GEMS simulation environment (Section 5.2)
only supports two levels. We believe our results are not
qualitatively affected by the depth of the memory hierarchy.

CPU Parameters
Frequency 2 GHz

Cores 1
GPU Parameters

Frequency 700 MHz
CUs 15

Memory Hierarchy Parameters
L1 Size (8 banks, 8-way assoc.) 32 KB
L2 Size (16 banks, NUCA) 4 MB

Store Buffer Size 256 entries
L1 hit latency 1 cycle

Remote L1 hit latency 35−83 cycles
L2 hit latency 29−61 cycles
Memory latency 197−261 cycles

Table 3: Simulated heterogeneous system parameters.

GPGPU-Sim v3.2.1 [23] to model the GPU (the GPU
is similar to an NVIDIA GTX 480). The simulator also
uses Garnet [24] to model a 4x4 mesh interconnect with
a GPU CU or a CPU core at each node. We use CUDA
3.1 [20] for the GPU kernels in the applications since
this is the latest version of CUDA that is fully supported
in GPGPU-Sim. Table 3 summarizes the common key
parameters of our system.

For energy modeling, GPU CUs use GPUWattch [25]
and the NoC energy measurements use McPAT v.1.1 [26]
(our tightly coupled architecture more closely resembles
a multicore system’s NoC than the NoC modeled in
GPUWattch). We do not model the CPU core or CPU
L1 energy since the CPU is only functionally simulated
and not the focus of this work.

We provide an API for manually inserted annotations
for region information (for DeNovo-D+RO) and distin-
guishing synchronization instructions and their scope
(for HRF).

5.3 Configurations
We evaluate the following configurations with GPU

and DeNovo coherence protocols combined with DRF
and HRF consistency models, using the implementa-
tions described in Section 3. The CPU always uses the
DeNovo coherence protocol. For all configurations we
assume 256 entry coalescing store buffers next to the
L1 caches. We also assume support for performing syn-
chronization accesses (using atomics) at the L1 and L2.
We do not allow relaxed atomics [12] since precise se-
mantics for them are under debate and their use is dis-
couraged [15, 27].
GPU-D (GD): GD combines the baseline DRF mem-
ory model (no scopes) with GPU coherence and per-
forms all synchronization accesses at the L2 cache.
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Benchmark Input
No Synchronization

Backprop (BP)[28] 32 KB
Pathfinder (PF)[28] 10 x 100K matrix

LUD[28] 256x256 matrix
NW[28] 512x512 matrix

SGEMM[29] medium
Stencil (ST)[29] 128x128x4, 4 iters
Hotspot (HS)[28] 512x512 matrix

NN[28] 171K records
SRAD v2 (SRAD)[28] 256x256 matrix
LavaMD (LAVA)[28] 2x2x2 matrix

Global Synchronization
FA Mutex (FAM G),
Sleep Mutex (SLM G), 3 TBs/CU,
Spin Mutex (SPM G), 100 iters/TB/kernel,

Spin Mutex+backoff (SPMBO G), 10 Ld&St/thr/iter
Local or Hybrid Synchronization

FA Mutex (FAM L),
Sleep Mutex (SLM L),
Spin Mutex (SPM L), 3 TBs/CU,

Spin Mutex+backoff (SPMBO L), 100 iters/TB/kernel,
Tree Barr+local exch (TBEX LG), 10 Ld&St/thr/iter

Tree Barr (TB LG),
3 TBs/CU,

Spin Sem (SS L), 100 iters/TB/kernel,
Spin Sem+backoff (SSBO L)[6] readers: 10 Ld/thr/iter

writers: 20 St/thr/iter
UTS[8] 16K nodes

Table 4: Benchmarks with input sizes. All thread blocks
(TBs) in the synchronization microbenchmarks execute
the critical section or barrier many times. Microbench-
marks with local and global scope are denoted with a
’ L’ and ’ G’, respectively.

GPU-H (GH): GH uses GPU coherence and HRF’s
HRF-Indirect memory model. GH performs locally scoped
synchronization accesses at the L1s and globally scoped
synchronization accesses at the L2.
DeNovo-D (DD): DD uses the DeNovoSync0 coher-
ence protocol (without regions), a DRF memory model,
and performs all synchronization accesses at the L1 (af-
ter registration).
DeNovo-D with read-only optimization (DD+RO):
DD+RO augments DD with selective invalidations to
avoid invalidating valid read-only data on acquires.
DeNovo-H (DH): DH combines DeNovo-D with the
HRF-Indirect memory model. Like GH, local scope syn-
chronizations always occur at the L1 and do not require
invalidations or flushes.

5.4 Benchmarks
Evaluating our configurations is challenging because

there are very few GPU application benchmarks that
use fine-grained synchronization. Thus, we use a combi-
nation of application benchmarks and microbenchmarks
to cover the space of use cases with (1) no synchroniza-
tion within a GPU kernel, (2) synchronization that re-
quires global scope, and (3) synchronization with mostly
local scope. All codes execute GPU kernels on 15 GPU
CUs and use a single CPU core. Parallelizing the CPU
portions is left for future work.

5.4.1 Applications without Intra-Kernel Synchroniza-
tion

We examine 10 applications from modern heteroge-
neous computing suites such as Rodinia [28, 30] and
Parboil [29]. None of these applications use synchro-
nization within the GPU kernel and are also not writ-
ten to exploit reuse across kernels. These applications
therefore primarily serve to establish DeNovo as a viable
protocol for today’s use cases. The top part of Table 4
summarizes these applications and their input sizes.

5.4.2 (Micro)Benchmarks with Intra-Kernel Synchro-
nization

Most GPU applications do not use fine-grained syn-
chronization because it is not well supported on current
GPUs. Thus, to examine the performance for bench-
marks with various kinds of synchronization we use a
set of synchronization primitive microbenchmarks, de-
veloped by Stuart and Owens [6] – these include mutex
locks, semaphores, and barriers. We also use the Un-
balanced Tree Search (UTS) benchmark [8], the only
benchmark that uses fine-grained synchronization in the
HRF paper.4 The microbenchmarks include centralized
and decentralized algorithms with a wide range of stall
cycles and scalability characteristics. The amount of
work per thread also varies: the mutex and tree barrier
algorithms access the same amount of data per thread
while UTS and the semaphores access different amounts
of data per thread. The bottom part of Table 4 sum-
marizes the benchmarks and their input sizes.

We modified the original synchronization primitive
microbenchmarks to perform data accesses in the criti-
cal section such that the mutex microbenchmarks have
two versions: one performs local synchronization and
accesses unique data per CU while the other uses global
synchronization because the same data is accessed by all
thread blocks. We also changed the globally synchro-
nized barrier microbenchmark to use local and global
synchronization with a tree barrier: all thread blocks
on a CU access unique data and join a local barrier
before one thread block from each CU joins the global
barrier. After the global barrier, thread blocks exchange
data for the subsequent iteration of the compute phase.
We also added a version of the tree barrier where each
CU exchanges data locally before joining the global bar-
rier. Additionally, we changed the semaphores to use a
reader-writer format with local synchronization: each
CU has one writer thread block and two reader thread
blocks. Each reader reads half of the CU’s data. The
writer shifts the reader thread block’s data to the right
such that all elements are written except for the first ele-
ment of each thread block. To ensure that no stale data
is accessed, the writers obtain the entire semaphore.
The working set fits in the L1 cache for all microbench-
marks except TBEX LG and TB LG, which have larger
working sets because they repeatedly exchange data
across CUs.

4RemoteScopes [11] uses several GPU benchmarks with fine-
grained synchronization from Pannotia [10] but these bench-
marks are not publicly available.
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(c) Network traffic
Figure 2: G* andD*, normalized toD*, for benchmarks
without synchronization.

Similar to the tree barrier, the UTS benchmark uti-
lizes both local and global synchronization. By perform-
ing local synchronization accesses, UTS quickly com-
pletes its work. However, since the tree is unbalanced,
it is likely that some thread blocks will complete before
others. To mitigate load imbalance, CU’s push to and
pull from a global task queue when their local queues
become full or empty, respectively.

6. RESULTS
Figures 2, 3, and 4 show our results for the appli-

cations without fine-grained synchronization, for mi-
crobenchmarks with globally scoped fine-grained syn-
chronization, and for codes with locally scoped or hy-
brid synchronization, respectively. Parts (a)-(c) in each
figure show execution time, energy consumed, and net-
work traffic, respectively. Energy is divided into multi-
ple components based on the source of energy: GPU
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(a) Execution time
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(c) Network traffic
Figure 3: G* and D*, normalized to G*, for globally
scoped synchronization benchmarks.

core+,5 scratchpad, L1, L2, and network. Network
traffic is measured in flit crossings and is also divided
into multiple components: data reads, data registra-
tions (writes), writebacks/writethroughs, and atomics.

In Figures 2 and 3, we only show the GPU-D and
DeNovo-D configurations because HRF does not affect
these cases (there is no local synchronization) – we de-
note the systems as G* to indicate that GPU-D and
GPU-H obtain the same results and D* to indicate
that DeNovo-D and DeNovo-H obtain the same re-
sults.6 For Figure 4, we show all five configurations,
denoted as GD, GH, DD, DD+RO, and DH.

Overall, compared to the best GPU coherence proto-
col (GPU-H ), we find that DeNovo-D is comparable for

5GPU core+ includes the instruction cache, constant cache,
register file, SFU, FPU, scheduler, and the core pipeline.
6We do not show the read-only enhancement here because
D* is significantly better than G*.
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applications with no fine-grained synchronization and
better for microbenchmarks that employ synchroniza-
tion with only global scopes (average of 28% lower exe-
cution time, 51% lower energy). For microbenchmarks
with mostly locally scoped synchronization, GPU-H is
better (on average 6% lower execution time and 4%
lower energy) than DeNovo-D. This modest benefit of
GPU-H comes at the cost of a more complex memory
model – adding a read-only region enhancement with
DeNovo-D removes most of this benefit and using HRF
with DeNovo makes it the best performing protocol.

6.1 GPU-D vs. GPU-H
Figure 4 shows that when locally scoped synchroniza-

tion can be used, GPU-H can significantly improve per-
formance over GPU-D, as noted in prior work [8]. On
average GPU-H decreases execution time by 46% and
energy by 42% for benchmarks that use local synchro-
nization. There are two main sources of improvement.
First, the latency of locally scoped acquires is much
smaller because they are performed at L1 (which re-
duces atomic traffic by an average of 94%). Second,
local acquires do not invalidate the cache and local re-
leases do not flush the store buffer. As a result, data
can be reused across local synchronization boundaries.
Since accesses hit more frequently in the L1 cache, ex-
ecution time, energy, and network traffic improve. On
average, the L1, L2, and network energy components
decrease by 71% for GPU-H while data (non-atomic)
network traffic decreases by an average of 78%.

6.2 DeNovo-D vs. GPU Coherence
6.2.1 Traditional GPU Applications
For the ten applications studied that do not use fine-

grained synchronization, Figure 2 shows there is gener-
ally little difference between DeNovo* and GPU*. De-
Novo* increases execution time and energy by 0.5% on
average and reduces network traffic by 5% on average.

For LavaMD, DeNovo* significantly decreases net-
work traffic because LavaMD overflows the store buffer,
which prevents multiple writes to the same location
from being coalesced in GPU*. As a result, each of
these writes has to be written through separately to
the L2. Unlike GPU*, after DeNovo* obtains owner-
ship to a word, all subsequent writes to that word hit
and do not need to use the store buffer.

For some other applications, obtaining ownership causes
DeNovo* to slightly increase network traffic and energy.
First, multiple writes to the same word may require
multiple ownership requests if the word is evicted from
the cache before the last write. GPU* may be able
to coalesce these writes in the store buffer and incur a
single writethrough to the L2. Second, DeNovo* may
incur a read or registration miss for a word registered
at another core, requiring an extra hop on the network
compared to GPU* (which always hits in the L2). In
our applications, however, these sources of overheads
are minimal and do not affect performance. In general,
the first source (obtaining ownership) is not on the criti-
cal path for performance and the second source (remote

L1 miss) can be partly mitigated (if needed) using direct
cache to cache transfers as enabled by DeNovo [16].

6.2.2 Global Synchronization Benchmarks
Figure 3 shows the execution time, energy, and net-

work traffic for the four benchmarks that use only glob-
ally scoped fine-grained synchronization. For these bench-
marks, HRF has no effect because there are no synchro-
nizations with local scope.
The main difference between GPU* and DeNovo* is

that DeNovo* obtains ownership for written data and
global synchronization variables, which gives the follow-
ing key benefits for our benchmarks with global syn-
chronization. First, once DeNovo* obtains ownership
for a synchronization variable, subsequent accesses from
all thread blocks on the same CU incur hits (until an-
other CU is granted ownership or the variable is evicted
from the cache). These hits reduce average synchroniza-
tion latency and network traffic for DeNovo*. Second,
DeNovo* also benefits because owned data is not in-
validated on an acquire, resulting in data reuse across
synchronization boundaries for all thread blocks on a
CU. Finally, release operations require getting owner-
ship for dirty data instead of writing through the data
to L2, resulting in less traffic.
As discussed in Section 4.1, obtaining ownership can

incur overheads relative to GPU coherence in some cases.
However, for our benchmarks with global synchroniza-
tion, these overheads are compensated by the reuse ef-
fects mentioned above. As a result, on average, DeN-
ovo* reduces execution time, energy, and network traf-
fic by 28%, 51%, and 81%, respectively, relative toGPU*.

6.2.3 Local Synchronization Benchmarks
For the microbenchmarks with mostly locally scoped

synchronization, we focus on comparingDeNovo-D with
GPU-H since Figure 4 shows that the latter is the best
GPU protocol.

DeNovo-D and GPU-H both increase reuse and syn-
chronization efficiency relative to GPU-D for applica-
tions that use fine-grained synchronization, but they do
so in different ways. GPU-H enables data reuse across
local synchronization boundaries, and can perform lo-
cally scoped synchronization operations at L1. There-
fore, these benefits can only be achieved if the applica-
tion can explicitly define locally scoped synchronization
points. In contrast, DeNovo enables reuse implicitly
because owned data can be reused across any type of
synchronization point. In addition, DeNovo-D obtains
ownership for all synchronization operations, so even
global synchronization operations can be performed lo-
cally. Like the globally scoped benchmarks, obtaining
ownership for atomics also improves reuse and locality
for benchmarks like TB LG and TBEX LG that have
both global and local synchronization.

Since GPU-H does not obtain ownership, on a glob-
ally scoped release, it must flush and downgrade all
dirty data to the L2. As a result, if the store buffer
is too small, then GPU-H may see limited coalescing
of writes to the same location, as described in Sec-
tion 6.2.1. TB LG and TBEX LG exhibit this effect.
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(b) Dynamic energy
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(c) Network traffic

Figure 4: All configurations with synchronization benchmarks that use mostly local synchronization, normalized to
GD.
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DeNovo-D also occasionally suffers from full store buffers
for these benchmarks, but its cost for flushing is lower –
each dirty cache line only needs to send an ownership re-
quest to L2. Furthermore, once DeNovo-D obtains own-
ership, any additional writes will hit and do not need
to use the store buffer, effectively reducing the number
of flushes of a full store buffer. By obtaining ownership
for the data, DeNovo-D is able to exploit more reuse.
In doing so, DeNovo reduces network traffic and energy
relative to GPU-H for these applications.

Conversely, DeNovo only enables reuse for owned data;
i.e., there is no reuse across synchronization boundaries
for read-only data. performance and increases network
traffic with locally scoped synchronization. SS L is also
hurt by the order that the readers and writers enter
the critical section: many readers enter first, so read-
write data is invalidated until the writer enters and ob-
tains ownership for it. DeNovo-D also performs slightly
worse than GPU-H for UTS because DeNovo-D uses
global synchronization and must frequently invalidate
the cache and flush the store buffer. Although owner-
ship mitigates many disadvantages of global synchro-
nization, frequent invalidations and store buffer flushes
limit the effectiveness of DeNovo-D.

On average, GPU-H shows 6% lower execution time
and 4% lower energy than DeNovo-D, with maximum
benefit of 13% and 10% respectively. However, GPU-
H ’s advantage comes at the cost of increased memory
model complexity.

6.3 DeNovo-D with Selective (RO) Invalidations
DeNovo-D ’s inability to avoid invalidating read-only

data is a key reason GPU-H outperforms it for the lo-
cally scoped microbenchmarks. Using the read-only re-
gion enhancement for DeNovo-D, however, removes any
performance and energy benefit from GPU-H on aver-
age. In some cases, GPU-H is better, but only up to
7% for execution time and 4% for energy. Although
DeNovo-D+RO needs more program information, un-
like HRF, this information is hardware agnostic.

6.4 Applying HRF to DeNovo
DeNovo-H enjoys the benefits of ownership for data

accesses and globally scoped synchronization accesses as
well as the benefits of locally scoped synchronization.
Reuse in L1 is possible for owned data across global
synchronization points and for all data across local syn-
chronization points. Local synchronization operations
are always performed locally, and global synchroniza-
tion operations are performed locally once ownership is
acquired for the synchronization variable.

Compared to DeNovo-D, DeNovo-H provides some
additional benefits. With DeNovo-D many synchro-
nization accesses that would be locally scoped already
occur at L1 and much data locality is already exploited
through ownership. However, by explicitly defining lo-
cal synchronization accesses, DeNovo-H is able to reuse
read-only data and data that is read multiple times be-
fore it is written across local synchronization points. It
is also able to delay obtaining ownership for both lo-

cal writes and local synchronization operations. As a
result, compared to DeNovo-D, DeNovo-H reduces ex-
ecution time, energy, and network traffic for all appli-
cations with local scope.

Although DeNovo-D+RO allows reuse of read-only
data, DeNovo-H ’s additional advantages described above
also provide it a slight benefit over DeNovo-D+RO in
a few cases.

Compared to GPU-H, DeNovo-H is able to exploit
more locality because owned data can be reused across
any synchronization scope and because registration for
synchronization variables allows global synchronization
requests to also be executed locally.

These results show that DeNovo-H is the best config-
uration of those studied because it combines the advan-
tages of ownership (from DeNovo-D) and scoped syn-
chronization (from GPU-H ) to minimize synchroniza-
tion overhead and maximize data reuse across all syn-
chronization points. However, DeNovo-H significantly
increases memory model complexity and does not pro-
vide significantly better results than DeNovo-D+RO,
which uses a simpler memory model but has some over-
head to identify the read-only data.

7. RELATED WORK
7.1 Consistency
Previous work on memory consistency models for GPUs

found that the TSO and relaxed memory models did not
significantly outperform SC in a system with MOESI
coherence and writeback caches [31, 32]. However, the
work does not measure the coherence overhead of the
studied configurations or evaluate alternative coherence
protocols. The DeNovo coherence protocol also has sev-
eral advantages over an ownership-based MOESI proto-
col, as discussed in Section 2.

7.2 Coherence Protocols
There has also been significant prior work on optimiz-

ing coherence protocols for standalone GPUs or CPU-
GPU systems. Table 5 compares DeNovo-D to the most
closely related prior work across the key features from
Table 2:
HSC[33]: Heterogeneous System Coherence (HSC) is a
hierarchical, ownership-based CPU-GPU cache coher-
ence protocol. HSC provides the same advantages as
the ownership-based protocols we discussed in Section 2.
By adding coarse-grained hardware regions to MOESI,
HSC aggregates coherence traffic and reduces MOESI’s
network traffic overheads when used with GPUs. How-
ever, HSC’s coarse regions restrict data layout and the
types of communication that can effectively occur. Fur-
thermore, HSC’s coherence protocol is significantly more
complex than DeNovo.
Stash[21], TemporalCoherence[19], FusionCoher-
ence[34]: Stash uses an extension of DeNovo for CPU-
GPU systems, but focuses on integrating specialized,
private memories like scratchpads into the unified ad-
dress space. It does not provide support for fine-grained
synchronization and does not draw any comparisons
with conventional GPU style coherence or comment on
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Feature Benefit HSC Stash[21], Quick Remote DD
[33] TC[19], Release[3] Scopes[11]

FC[34]
Reuse Written Data Reuse written data across synchs � � � � �
Reuse Valid Data Reuse cached valid data across synchs � � � � �
No Bursty Traffic Avoid bursts of writes � � � � �
No Invalidations/ACKs Decreased network traffic � � � � �
Decoupled Granularity Only transfer useful data � � � (for STs) � (for STs) �
Reuse Synchronization Efficient support for fine-grained synch � � � � �
Dynamic Sharing Efficient support for work stealing � � � � �

Table 5: Comparison of DeNovo to other GPU coherence schemes. The read-only region enhancement to DeNovo
also allows valid data reuse for read-only data.

consistency models. By extending the cache’s coherence
protocol used in this work to support local and global
GPU synchronization operations, DeNovo-D reuses writ-
ten data across synchronization points. We also ex-
plore DRF and HRF consistency models, while the stash
assumes a DRF consistency model. FusionCoherence
and TemporalCoherence use timestamp-based protocols
that utilize self-invalidations and self-downgrades and
thus provide many of the same benefits as DeNovo-D.
However, this work does not consider fine-grained syn-
chronization or impact on consistency models.
QuickRelease[3]: QuickRelease reduces the overhead
of synchronization operations in conventional GPU co-
herence protocols and allows data to be reused across
synchronization points. However, QuickRelease requires
broadcast invalidations to ensure that no stale data can
be accessed. Additionally, QuickRelease does not have
efficient support for algorithms with dynamic sharing.
RemoteScopes[11]: RemoteScopes improves on Quick-
Release by providing better support for algorithms with
dynamic sharing. In the common case, dynamically
shared data synchronizes with a local scope and when
data is shared, RemoteScopes “promotes” the scope of
the synchronization access to a larger common scope
to synchronize properly. Although RemoteScopes im-
proves performance for applications with dynamic shar-
ing, because it does not obtain ownership, it must use
heavyweight hardware mechanisms to ensure that no
stale data is accessed. For example, RemoteScopes flushes
the entire cache on acquires and uses broadcast invali-
dations and acknowledgments to ensure data is flushed.

Overall, while each of the coherence protocols in pre-
vious work provides some of the same benefits asDeNovo-
D, none of them provide all of the benefits of DeNovo-D.
Furthermore, none of the above work explores the im-
pact of ownership on consistency models.

8. CONCLUSION
GPGPU applications with more general sharing pat-

terns and fine-grained synchronization have recently emerged.
Unfortunately, conventional GPU coherence protocols
do not provide efficient support for them. Past work
has proposed HRF, which uses scoped synchronization,
to address the inefficiencies of conventional GPU coher-
ence protocols. In this work, we choose instead to re-
solve these inefficiencies by extending DeNovo’s software-
driven, hardware coherence protocol to GPUs. DeNovo
is a hybrid coherence protocol that provides the best

features of ownership-based and GPU-style coherence
protocols. As a result, DeNovo provides efficient sup-
port for applications with fine-grained synchronization.
Furthermore, the DeNovo coherence protocol enables a
simple SC-for-DRF memory consistency model. Unlike
HRF, SC-for-DRF does not expose the memory hier-
archy or require programmers to carefully annotate all
synchronization accesses with scope information.

Across 10 CPU-GPU applications, which do not use
fine-grained synchronization or dynamic sharing, DeN-
ovo provides comparable performance to a conventional
GPU coherence protocol. For applications that utilize
fine-grained, globally scoped synchronization, DeNovo
significantly outperforms a conventional GPU coher-
ence protocol. For applications that utilize fine-grained,
locally scoped synchronization, GPU coherence with
HRF modestly outperforms the baseline DeNovo pro-
tocol, but at the cost of a more complex consistency
model. Augmenting DeNovo with selective invalida-
tions for read-only regions allows it to obtain the same
average performance and energy as GPU coherence with
HRF. Furthermore, if HRF’s complexity is deemed ac-
ceptable, then a (modest) variant of DeNovo under HRF
provides better performance and energy than conven-
tional GPU coherence with HRF. These findings show
that DeNovo with DRF provides a sweet spot for perfor-
mance, energy, hardware overhead, and memory model
complexity – HRF’s complexity is not needed for ef-
ficient fine-grained synchronization on GPUs. Mov-
ing forward, we will analyze full-sized applications with
fine-grained synchronization, once they become avail-
able, to ensure that DeNovo with DRF provides similar
benefits for them. We will also examine what additional
benefits we can obtain by applying additional optimiza-
tions, such as direct cache to cache transfers [16], to
DeNovo with DRF.
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