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Abstract
GPUs have recently attracted the attention of many application
developers as commodity data-parallel coprocessors. The newest
generations of GPU architecture provide easier programmability
and increased generality while maintaining the tremendous mem-
ory bandwidth and computational power of traditional GPUs. This
opportunity should redirect efforts in GPGPU research from ad hoc
porting of applications to establishing principles and strategies that
allow efficient mapping of computation to graphics hardware. In
this work we discuss the GeForce 8800 GTX processor’s organiza-
tion, features, and generalized optimization strategies. Key to per-
formance on this platform is using massive multithreading to uti-
lize the large number of cores and hide global memory latency.
To achieve this, developers face the challenge of striking the right
balance between each thread’s resource usage and the number of si-
multaneously active threads. The resources to manage include the
number of registers and the amount of on-chip memory used per
thread, number of threads per multiprocessor, and global memory
bandwidth. We also obtain increased performance by reordering
accesses to off-chip memory to combine requests to the same or
contiguous memory locations and apply classical optimizations to
reduce the number of executed operations. We apply these strate-
gies across a variety of applications and domains and achieve be-
tween a 10.5X to 457X speedup in kernel codes and between 1.16X
to 431X total application speedup.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming

General Terms Design, Performance, Languages

Keywords parallel computing, GPU computing

1. Introduction
As a result of continued demand for programmability, modern
graphics processing units (GPUs) such as the NVIDIA GeForce
8 Series are designed as programmable processors employing a
large number of processor cores [20]. With the addition of new
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hardware interfaces, programming them does not require special-
ized programming languages or execution through graphics appli-
cation programming interfaces (APIs), as with previous GPU gen-
erations. This makes an inexpensive, highly parallel system avail-
able to a broader community of application developers.

The NVIDIA CUDA programming model [3] was created for
developing applications for this platform. In this model, the system
consists of a host that is a traditional CPU and one or more com-
pute devices that are massively data-parallel coprocessors. Each
CUDA device processor supports the Single-Program Multiple-
Data (SPMD) model [8], widely available in parallel processing
systems, where all concurrent threads are based on the same code,
although they may not follow exactly the same path of execution.
All threads share the same global address space.

CUDA programming is done with standard ANSI C extended
with keywords that designate data-parallel functions, called ker-
nels, and their associated data structures to the compute devices.
These kernels describe the work of a single thread and typically
are invoked on thousands of threads. These threads can, within
developer-defined bundles termed thread blocks, share their data
and synchronize their actions through built-in primitives. The
CUDA runtime also provides library functions for device memory
management and data transfers between the host and the compute
devices. One can view CUDA as a programming environment that
enables software developers to isolate program components that are
rich in data parallelism for execution on a coprocessor specialized
for exploiting massive data parallelism. An overview of the CUDA
programming model can be found in [5].

The first version of CUDA programming tools and runtime for
the NVIDIA GeForce 8 Series GPUs has been available through
beta testing since February 2007. To CUDA, the GeForce 8800
GTX1 consists of 16 streaming multiprocessors (SMs), each with
eight processing units, 8096 registers, and 16KB of on-chip mem-
ory. It has a peak attainable multiply-add performance of 345.6
single-precision GFLOPS2, features 86.4 GB/s memory bandwidth,
contains 768MB of main memory, and incurs little cost in creating
thousands of threads. The architecture allows efficient data sharing
and synchronization among threads in the same thread block [18].

A unique aspect of this architecture relative to other parallel
platforms is the flexibility in the assignment of local resources,
such as registers or local memory, to threads. Each SM can run
a variable number of threads, and the local resources are divided
among threads as specified by the programmer. This flexibility

1 There are several versions of the GeForce 8800 GPU. References of
GeForce 8800 are implied to be the GTX model.
2 Particular mixes of instructions can achieve higher throughput, as will be
explained in Section 3.



allows more tuning of application performance but changes the
assumptions developers can make when performing optimizations.
We discuss these issues in further detail.

Another question we address is how well applications can ex-
ecute on the GeForce 8800 and what are the design features that
contribute to or limit performance. As a collaborative effort be-
tween industry and academia, a set of complete numerical appli-
cations was ported and evaluated on the CUDA platform. Several
application research groups in the areas of medical imaging, molec-
ular dynamics, computational chemistry, electromagnetic analysis,
and scientific visualization contributed to this effort. The following
are the major principles when choosing code to be executed on this
platform:

1. Leverage zero-overhead thread scheduling to hide memory la-
tency. On the GeForce 8800 there are 128 execution units avail-
able for use, requiring hundreds of threads to completely oc-
cupy them. In addition, threads can be starved of data due to
the long latency to global memory. The general philosophy of
CUDA for tolerating this latency is to generate and maintain
thousands of threads in flight. This is in contrast with the use
of large caches to hide memory latencies in CPU designs. De-
velopers used to traditional multicore systems may need to de-
fine threads at a finer granularity in order to generate enough
threads. In addition, a high compute-to-memory-access ratio is
necessary to avoid saturation of memory channels.

2. Optimize use of on-chip memory to reduce bandwidth usage and
redundant execution. Working memory within a group of cores
consists primarily of a register file and a software-managed on-
chip memory called shared memory. These are high fan-out,
low latency, limited-capacity memories which are partitioned
among thread blocks that are assigned to the same SM at run-
time. The data in shared memory can be shared among threads
in a thread block, enabling interthread data reuse. An incre-
mental increase in the usage of registers or shared memory
per thread can result in a substantial decrease in the number
of threads that can be simultaneously executed.

3. Group threads to avoid SIMD penalties and memory port/bank
conflicts. CUDA is based on the SPMD model, but its cur-
rent implementation on the GeForce 8800 imposes Single-
Instruction, Multiple-Data (SIMD) mode among subsets of
threads. The latter differs from the short-vector SIMD present
in most contemporary processors. This is a cost-effective hard-
ware model for exploiting data parallelism and allows the
GeForce 8800 to share one instruction issue unit among eight
execution units. However, it can be ineffective for algorithms
that require diverging control flow decisions in data-parallel
sections. In some algorithms, threads can be reorganized to
avoid divergent control flow. Appropriate thread grouping can
also preserve performance by avoiding port and bank conflicts
in memories.

4. Threads within a thread block can communicate via synchro-
nization, but there is no built-in global communication mecha-
nism for all threads. This avoids the need for virtualization of
hardware resources, enables the execution of the same CUDA
program across processor family members with a varying num-
ber of cores, and makes the hardware scalable. However, it also
limits the kinds of parallelism that can be utilized within a sin-
gle kernel call.

We first discuss related work in Section 2. Section 3 introduces
the threading model and execution hardware. Section 4 demon-
strates the optimization process with in-depth performance anal-
ysis, using matrix multiplication kernels. Section 5 presents several
studied applications with performance and optimization informa-

tion. We conclude with some final statements and suggestions for
future work.

2. Related Work
Data parallel programming languages are considered an intermedi-
ate approach between automatic parallelization efforts [7, 28] and
explicit parallel programming models such as OpenMP [19] to sup-
port parallel computing. Fortran 90 [6] was the first widely used
language and influenced following data parallel languages by intro-
ducing array assignment statements. Similar to array assignments
in Fortran 90 is the lock step execution of each single instruction
in threads executing simultaneously on a streaming multiprocessor
in CUDA programming model. Later, High Performance Fortran
(HPF) [15] was introduced as an standard data parallel language to
support programs with SPMD. However, complexity of data dis-
tribution and communication optimization techniques, as discussed
in the final two chapters of [13], were a hard-to-solve challenge.
As a result application developers became more involved in explic-
itly handling data distribution and communication; message pass-
ing libraries such as [23] became a popular programming model for
scalable parallel systems. Similarly in CUDA, the developer explic-
itly manages data layout in DRAM memory spaces, data caching,
thread communication within thread blocks and other resources.

The interest in GPGPU programming has been driven by rel-
atively recent improvements in the programmability of graphics
hardware. The release of Cg [16] signified the recognition that
GPUs were programmable processors and that a higher-level lan-
guage was needed to develop applications on them. Others felt that
the abstractions provided by Cg and other shading languages were
insufficient and built higher-level language constructs. Brook [9]
enables the usage of the GPU as a streaming coprocessor. Acceler-
ator [26] is another system that uses data-parallel arrays to perform
general-purpose computation on the GPU. A Microsoft C# library
provides data types and functions to operate on data-parallel ar-
rays. Data-parallel array computation is transparently compiled to
shader programs by the runtime. Other efforts to provide a more
productive stream processing programming environment for devel-
oping multi-threaded applications include the RapidMind Stream-
ing Execution Manager [17] and PeakStream Virtual Machine [4].
These mainly target HPC applications that are amenable to stream
processing. The achieved performance may be behind customized
GPU/CPU code due to the virtual machine and dynamic compila-
tion overhead. We refer the reader to a review of the main body of
work done to map general purpose computation to GPUs by Owens
et al. in [21].

In general, previous GPU programming systems limit the size
and complexity of GPU code due to their underlying graphics API-
based implementations. CUDA supports kernels with much larger
code sizes with a new hardware interface and instruction caching.

Previous GPU generations and their APIs also restricted the al-
lowed memory access patterns, usually allowing only sequential
writes to a linear array. This is due primarily to limits in graph-
ics APIs and corresponding limits in the specialized pixel and ver-
tex processors. Accelerator does not allow access to an individual
element in parallel arrays: operations are performed on all array
elements. Brook also executes its kernel for every element in the
stream, with some exceptions. The GeForce 8800 allows for gen-
eral addressing of memory via a unified processor model, which
enables CUDA to perform unrestricted scatter-gather operations.

Traditional GPUs also provided limited cache bandwidth. Fata-
halian et al. discuss in [11] that low bandwidth cache designs on
GPUs limit the types of applications from benefiting from the com-
putational power available on these architectures. Work discussed
in [12] uses an analytical cache performance prediction model for
GPU-based algorithms. Their results indicate that memory opti-



mization techniques designed for CPU-based algorithms may not
be directly applicable to GPUs. With the introduction of reasonably
sized low-latency, on-chip memory in new generations of GPUs,
this issue and its optimizations have become less critical.

A programming interface alternative to CUDA is available for
the AMD Stream Processor, using the R580 GPU, in the form
of the Close to Metal (CTM) compute runtime driver [1]. Like
CUDA, CTM can maintain the usage of the GPU as a graphics
engine; however, instead of abstracting away architecture-level in-
structions, CTM completely exposes the ISA to the programmer for
fine-grained control. Furthermore, the R580 continues to resemble
previous generation GPUs with their divided architecture for ver-
tex and pixel processing, whereas the GeForce 8800 has a more
general, unified model. This is presented in the next section.

Intel’s C for Heterogeneous Integration (CHI) programming en-
vironment [27] is a different approach to tightly integrate accelera-
tors such as GPUs and general purpose CPU cores together based
on the proposed EXOCHI [27] model. EXOCHI supports a shared
virtual memory heterogeneous multi-threaded programming model
with minimal OS intrusion. In CUDA execution model, GPU is a
device with a separate address space from CPU. As a result, all
data communication and synchronization between CPU and GPU
is explicitly performed through the GPU device driver.

3. Architecture Overview
The GeForce 8800 GPU is effectively a large set of processor cores
with the ability to directly address into a global memory. This al-
lows for a more general and flexible programming model than pre-
vious generations of GPUs, making it easier for developers to im-
plement data-parallel kernels. In this section we discuss NVIDIA’s
Compute Unified Device Architecture (CUDA) and the major mi-
croarchitectural features of the GeForce 8800. A more complete
description can be found in [3, 18]. It should be noted that this
architecture, although more exposed than previous GPU architec-
tures, still has details which have not been publicly revealed.

3.1 Threading Model

The CUDA programming model is ANSI C extended by several
keywords and constructs. The GPU is treated as a coprocessor
that executes data-parallel kernel code. The user supplies a single
source program encompassing both host (CPU) and kernel (GPU)
code. These are separated and compiled as shown in Figure 1. Each
CUDA program consists of multiple phases that are executed on
either the CPU or the GPU. The phases that exhibit little or no
data parallelism are implemented in host (CPU) code, which is ex-
pressed in ANSI C and compiled with the host C compiler as shown
in Figure 1. The phases that exhibit rich data parallelism are im-
plemented as kernel functions in the device (GPU) code. A kernel
function defines the code to be executed by each of the massive
number of threads to be invoked for a data-parallel phase. These
kernel functions are compiled by the NVIDIA CUDA C compiler
and the kernel GPU object code generator. There are several re-
strictions on kernel functions: there must be no recursion, no static
variable declarations, and a non-variable number of arguments. The
host code transfers data to and from the GPU’s global memory us-
ing API calls. Kernel code is initiated by performing a function
call.

Threads executing on the GeForce 8800 are organized into a
three-level hierarchy. At the highest level, all threads in a data-
parallel execution phase form a grid; they all execute the same ker-
nel function. Each grid consists of many thread blocks. A grid can
be at most 2

16 − 1 blocks in either of two dimensions, and each
block has unique coordinates. In turn, each thread block is a three-
dimensional array of threads, explicitly defined by the application
developer, that is assigned to an SM. The invocation parameters of
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Figure 1. CUDA Compilation Flow

a kernel function call define the organization of the sizes and di-
mensions of the thread blocks in the grid thus generated. Threads
also have unique coordinates and up to 512 threads can exist in a
block. Threads in a block can share data through a low-latency, on-
chip shared memory and can perform barrrier synchronization by
invoking the syncthreads primitive. Threads are otherwise in-
dependent; synchronization across thread blocks can only be safely
accomplished by terminating a kernel. Finally, the hardware groups
threads in a way that affects performance, which is discussed in
Section 3.2.

An application developer for this platform can compile CUDA
code to an assembly-like representation of the code called PTX.
PTX is not natively executed, but is processed by a run-time en-
vironment, making it uncertain what instructions are actually exe-
cuted on a cycle-by-cycle basis. Two examples we have observed
are simple cases of loop-invariant code that can be easily moved
and branches which are split into condition evaluations and predi-
cated jump instructions. However, PTX is generally sufficient in the
initial stages of estimating resource requirements of an application
and optimizing it.

3.2 Base Microarchitecture

Figure 2 depicts the microarchitecture of the GeForce 8800. It
consists of 16 streaming multiprocessors (SMs), each containing
eight streaming processors (SPs), or processor cores, running at
1.35GHz. Each core executes a single thread’s instruction in SIMD
(single-instruction, multiple-data) fashion, with the instruction unit
broadcasting the current instruction to the cores. Each core has one
32-bit, single-precision floating-point, multiply-add arithmetic unit
that can also perform 32-bit integer arithmetic. Additionally, each
SM has two special functional units (SFUs), which execute more
complex FP operations such as reciprocal square root, sine, and
cosine with low multi-cycle latency. The arithmetic units and the
SFUs are fully pipelined, yielding 388.8 GLOPS (16 SMs * 18
FLOPS/SM * 1.35GHz) of peak theoretical performance for the
GPU.

Each SM has 8192 registers which are dynamically partitioned
among the threads running on it. Non-register memories with dis-
tinctive capabilities and uses are described in Table 1 and depicted
in Figure 2. Variables in the source code can be declared to reside
in global, shared, local, or constant memory. Texture memory is
accessed through API calls which compile to special instructions.
Bandwidth to off-chip memory is very high at 86.4 GB/s, but mem-
ory bandwidth can saturate if many threads request access within
a short period of time. In addition, this bandwidth can be obtained
only when accesses are contiguous 16-word lines; in other cases the
achievable bandwidth is a fraction of the maximum. Optimizations
to coalesce accesses into 16-word lines and reuse data are generally
necessary to achieve good performance.

There are several non-storage limits to the number of threads
that can be executed on the system. First, a maximum of 768 si-
multaneously active thread contexts is supported per SM. Second,
an integral number of up to eight thread blocks can be run per SM
at one time. The number of thread blocks that are simultaneously
resident on an SM is limited by whichever limit of registers, shared
memory, threads, or thread blocks is reached first. This has two con-



Table 1. Properties of GeForce 8800 Memories
Memory Location Size Hit

Latency
Read-
Only

Program
Scope

Description

Global off-chip 768MB
total

200-300
cycles

no global Large DRAM. All data reside here at the beginning of execution. Directly addressable from a kernel
using pointers. Backing store for constant and texture memories. Used more efficiently when multiple
threads simultaneously access contiguous elements of memory, enabling the hardware to coalesce
memory accesses to the same DRAM page.

Local off-chip up to
global

same as
global

no function Space for register spilling, etc.

Shared on-chip 16KB
per
SM

'register
latency

no function Local scratchpad that can be shared between threads in a thread block. Organized into 16 banks. Does
not appear to have error detection. If instructions issued in the same cycle access different locations
in the same bank, a bank conflict stall occurs. It is possible to organize both threads and data such that
bank conflicts seldom or never occur.

Constant on-chip
cache

64KB
total

'register
latency

yes global 8KB cache per SM, with data originally residing in global memory. The 64KB limit is set by the
programming model. Often used for lookup tables. The cache is single-ported, so simultaneous
requests within an SM must be to the same address or delays will occur.

Texture on-chip
cache

up to
global

>100
cycles

yes global 16KB cache per two SMs, with data originally residing in global memory. Capitalizes on 2D locality.
Can perform hardware interpolation and have configurable returned-value behavior at the edges of
textures, both of which are useful in certain applications such as video encoders.
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Figure 2. Basic Organization of the GeForce 8800

sequences. First, optimization may have negative effects in some
cases because small changes have multiplicative resource usage ef-
fects (due to the large number of threads) that cause fewer thread
blocks and thus threads to be simultaneously executed. Second, it
is relatively easy to be “trapped” in a local maximum when hand-
optimizing code. Developers may need to try widely varying con-
figurations to find one with satisfactory performance.

During execution, threads within a block are grouped into warps
of 32 parallel threads, which are the granular multi-threading
scheduling unit. Warps are formed from continuous sections of
threads in a thread block: the first 32 threads in a block form the
first warp, etc. Although warps are not explicitly declared in CUDA
code, knowledge of them can enable useful code and data optimiza-
tions on the GeForce 8800. A scoreboard indicates when all of a
warp’s operands are ready for execution. It then executes the same
instruction for the 32 threads in the warp. An SM issues only one
instruction at a time for all threads in a warp; when threads in a
warp take different control paths, it is assumed that multiple passes
with suppression of threads on divergent paths are required to com-
plete execution. It is generally desirable to group threads to avoid
this situation. If a thread block is not evenly divisible by the warp
size, any remaining issue slots are wasted.

An SM can perform zero-overhead scheduling to interleave
warps and hide the latency of global memory accesses and long-
latency arithmetic operations. When one warp stalls, the SM can

quickly switch to a ready warp resident in the SM. The SM stalls
only if there are no warps with ready operands available. Schedul-
ing freedom is high in many applications because threads in dif-
ferent warps are independent with the exception of explicit barrier
synchronizations among threads in the same thread block.

In summary, there are hard limits to the memories, threads,
and total bandwidth available to an application running on the
GeForce 8800. Managing these limits is critical when optimizing
applications, but strategies for avoiding one limit can cause other
limits to be hit. They can also reduce the number of thread blocks
that can run simultaneously. In addition, managing the behavior of
threads so that those in the same warp follow the same control paths
and load contiguous values from global memory can also improve
performance.

4. Performance and Optimization
This section uses a microbenchmark to demonstrate how the proper
balancing of shared resource usage is critical to achieving efficient
execution resource utilization and thus high performance on the
GeForce 8800. There are three basic principles to consider when
optimizing an application for the platform. First, the floating point
throughput of an application depends on the percentage of its in-
structions that are floating point operations. The GPU is capable
of issuing 172.8 billion operations per second on the SPs. These
include fused multiply-add operations, which we count as two op-
erations for throughput calculations. If 1/4 of an application’s in-
struction mix are fused multiply-adds, then its performance can
be at most 2 * 1/4 FP * 172.8 billion ops per second = 86.4
GFLOPS. This performance is reached when the SPs are fully oc-
cupied, which is achievable in an application that has many threads,
does not have many synchronizations, and does not stress global
memory bandwidth. In this situation, reducing the number of in-
structions that do not contribute to data computation generally re-
sults in kernel speedup. However, maximizing computational effi-
ciency can be challenging, due to discontinuities in the optimization
space [22].

Second, when attempting to achieve an application’s maximum
performance, the primary concern often is managing global mem-
ory latency. This is done by creating enough threads to keep SPs oc-
cupied while many threads are waiting on global memory accesses.
As previously stated, threads may need to of a finer granularity
than those for traditional multicore execution to generate enough
threads. The required number of threads depends on the percentage
of global accesses and other long-latency operations in an appli-
cation: applications consisting of a small percentage of these op-
erations require fewer threads to achieve full SP occupancy. The



limit on registers and shared memory available per SM can con-
strain the number of active threads, sometimes exposing memory
latency. We show one example where the use of additional regis-
ters in an attempted optimization allows one fewer thread block to
be scheduled per SM, reducing performance.

Finally, global memory bandwidth can limit the throughput
of the system. Increasing the number of threads does not help
performance in this situation. Alleviating the pressure on global
memory bandwidth generally involves using additional registers
and shared memory to reuse data, which in turn can limit the
number of simultaneously executing threads. Balancing the usage
of these resources is often non-intuitive and some applications
will run into resource limits other than instruction issue on this
architecture.

The example we use to illustrate these principles is a matrix
multiplication kernel. In matrix multiplication, the value of an ele-
ment in the result matrix is calculated by computing the dot product
of the corresponding row of the first matrix and column of the sec-
ond matrix. For this example we assume densely populated input
matrices. We analyze several code versions and their sustained per-
formance when multiplying two square matrices with a height and
width of 4096 elements. The stated resource usage is for CUDA
version 0.8; later versions of CUDA may have different usages.

4.1 Initial Code Version

We begin with a simple version of matrix multiplication. The ma-
trix multiplication kernel creates a thread for each result element
for the multiplication, for a total of 4K*4K threads. Many threads
are created in an attempt to hide the latency of global memory by
overlapping execution. These threads loop through a sequence that
loads two values from global memory, multiplies them, and accu-
mulates the value. Figure 3(a) shows the core loops of the dot-
product computation kernel; starting values for indexA, indexB,
and indexC are determined by block and thread coordinates, which
the hardware supports. This code uses ten registers per thread, al-
lowing the maximum of 768 threads to be scheduled per SM. For
convenience, we group them as three thread blocks of 256 threads
each.

Performance for this code is 10.58 GFLOPS, which is lower
than highly optimized libraries executing on a CPU using SIMD
extensions. By examining the PTX for this code, we find that
there is approximately3 one fused multiply-add out of eight op-
erations in the inner loop, for a estimated potential throughput of
43.2 GFLOPS. Because we have the maximum number of threads
scheduled per SM, the bottleneck appears to be global memory
bandwidth. 1/4 of the operations executed during the loop are loads
from off-chip memory, which would require a bandwidth of 173
GB/s (128 SPs * 1/4 instructions * 4 B/instruction * 1.35GHz) to
fully utilize the SPs.4 Thus, the strategy for optimizing this kernel
is to improve data reuse and reduce global memory access.

4.2 Use of Local Storage

In Figure 3(a), although the computations of two result elements
in the same row or column share half their input data (the same
indexA or indexB values), the previous code accesses global
memory for each datum in every thread. A common optimiza-
tion for this type of access pattern is to enhance data sharing via
tiling [14]. In the GeForce 8800, developers can utilize shared
memory to amortize the global latency cost when values are reused.

3 As previously mentioned, PTX code does not necessarily translate to
executed instructions, so instruction counts are estimates.
4 This is also an estimate. Threads can simultaneously load the same value
from memory and the memory system may be able to combine these into a
single request.

Using low-overhead block synchronization values, can be shared
between threads: one thread loads a datum and then synchronizes
so that other threads in the same block can use it. Finally, we can
also take advantage of contiguity in main memory accesses when
loading in values as a block, reducing the cycles needed to access
the data.

Figure 3(b) shows the code for a tiled matrix multiplication,
with a tile size of 16x16, or 256 result elements and threads.
During execution, the threads work within two input tiles that
stride across 16 contiguous rows or columns in the input matrices.
Each of the 256 threads is tied to a specific coordinate in a tile.
It loads the element at that coordinate from the two input tiles
into shared memory, so cooperatively the threads load the complete
tiles. These loads are organized to take advantage of global access
coalescing. The threads then synchronize to establish consistency,
which enables each thread to load all of its inputs contained in the
tiles from shared memory. Finally, the threads calculate the partial
dot product for the inputs in shared memory within a loop.

The choice of tile shape and size is a key decision. For a given
size, square tiles generally improve the computation to memory ac-
cess ratio by improving data locality among threads. Larger tile
sizes increase data sharing and thus global memory efficiency.
The tiling support code adds several overhead instructions per tile,
which also makes larger sizes more efficient. On this architec-
ture, developers also need to consider whether a tile size provides
enough threads to have good occupancy. Figure 4 shows the re-
sults of experimenting with different tile sizes. 4x4 tiles use only
16 threads, so half of the issue slots in a warp would go unused.
This inefficiency, coupled with the 8 thread block limit, causes
performance to be worse than the non-tiled code. 8x8 tiles create
thread blocks that occupy two warps, but would still need 12 thread
blocks to fully occupy an SM, 50% more than the supported limit.
12x12 tiles use 144 threads, which is also not an integral number
of warps, and also requires padding of the arrays to prevent over-
run. 16x16 is the largest convenient size for this platform, and we
can schedule three thread blocks of 8 warps each, for the maximum
of 768 threads. Global memory coalescing also happens naturally
with this configuration. Other applications may have higher perfor-
mance with smaller tile sizes when they allow a larger number of
threads to be scheduled.

The use of 16x16 tiles reduces global loads by a factor of 16
over the non-tiled configuration, so instead of the bandwidth re-
quirement being twice what is available, it is now approximately
an eighth, removing it as the bottleneck to performance. The ad-
ditional instructions reduce the potential throughput slightly below
that of the original code. The 16x16 tiled version of matrix multi-
plication achieves 46.49 GFLOPS, or approximately 4.5X the exe-
cution throughput of the initial version. This is slightly higher than
the estimated potential throughput of the original code, so it appears
that the application achieves full usage of the SPs.

Register usage must also be managed to avoid performance
losses. Some versions of this code use 11 registers per thread
instead of 10. To run three thread blocks, this requires 3 blocks/SM
* 256 threads/block * 11 registers = 8488 registers, which is larger
than an SM’s register file. Thus, each SM executes only two blocks
simultaneously, which reduces performance.

4.3 Executed Instruction Reduction

As noted in the previous example, tiling reduces the global mem-
ory accesses at the expense of additional instructions. Now that our
code achieves its potential throughput, we can examine whether
the same work can be done with fewer instructions to improve ef-
ficiency and performance. The obvious targets for reduction are
those operations which are not part of the core data computation,
such as branches and address calculations. Common subexpres-
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Figure 3. Partial Kernel Codes for Matrix Multiplication. CUDA keywords are bold.
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Figure 4. Performance of Matrix Multiplication Kernels

sion elimination and loop unrolling are two classical compiler op-
timizations that can achieve this goal. What is less clear is whether
these operations increase or reduce the number of registers used
per thread and thus affect the number of thread blocks that can be
scheduled per SM. The compiler’s scheduler further complicates
matters, as it may attempt to improve the execution speed of each
thread at the cost of extra registers.

For tiled matrix multiplication, the innermost loop that com-
putes the partial dot product has a small body and constant itera-
tion count. This can be unrolled by several different factors, each
removing some test and branch instructions. However, the best per-
formance can be achieved by completely unrolling the loop. This
has the effect of removing all loop branches, induction variable in-
crements, and inner loop address calculation instructions, since the
offsets are now constants. It also reduces the register usage by one,
to 9 registers, by eliminating an induction variable. The PTX code
for the unrolled 16x16 tiled version shows that approximately 16
out 59 instructions, slightly higher than 1/4, are fused multiply-
adds. From that, we can calculate potential throughput of this code
at 93.72 GFLOPS, with memory bandwidth requirements still be-
low the amount available. The achieved performance of the code
is 91.14 GFLOPS, similar to highly-optimized CUDA 0.8 libraries
provided by NVIDIA.

In general the unrolling of small inner loops will produce pos-
itive gain when memory bandwidth is not already an issue and
scheduling does not trigger extra register usage that reduces the
number of active thread blocks. Unrolling outer loops is less likely
to provide benefit because they contribute fewer branches to over-

all execution and have more effect on instruction cache efficiency.
In this case, shared memory usage is not affected and a register is
saved by removing the unrolled loop’s induction variable, although
it is not used for anything else. The performance of other tile sizes
is only marginally improved by unrolling.

4.4 Balancing Applications and Optimization Interaction

At this point, the matrix multiplication code appears to be well-
optimized, with actual performance near that of the estimated po-
tential. A large portion of the non-data computation instructions
have been removed. Registers and threads are fully utilized. There
is still a significant amount of shared memory available, but there
is no obvious way to use it to increase performance.

In an effort to further improve performance, a developer can at-
tempt to improve SP occupancy by reducing exposed intrathread
global memory latency. We implemented a prefetching optimiza-
tion that initiates loads to the next tiles prior to performing com-
putation for the current tile. The optimization also increases the
number of registers required by each thread by two, to 11. As pre-
viously mentioned, this reduces the number of blocks that can be
scheduled per SM by 1, reducing simultaneous thread count by a
third. This version was capable of 87.10 GFLOPS performance, in-
ferior to performing only tiling and unrolling.

In this case, intra-thread latency reduction is insufficient to
make up for the reduction of simultaneously executed threads.
However, the difference between the performances of the two con-
figurations is only 5%. Although we have reduced the number of
simultaneously active threads by a third, these threads take nearly
a third less time to execute because the prefetching optimization
eliminates much of the time threads wait on global memory. This
illustrates the principle that although many threads are generally
desirable, full utilization of execution resources is achieved when
there are enough threads to avoid being stalled on global mem-
ory access. These kinds of optimization interactions, plus the un-
certainty of the architecture features and code executed, make it
challenging to find the peak performance of an application on this
architecture.

5. Application Study
We performed an application study with the intent of testing the
applicability and effectiveness of the principles in Section 4 on real
applications. We have selected a suite of applications acquired from
various sources that have different purposes and code behavior but
are also reasonably well-suited for execution on the GeForce 8800.



These applications, even ones with kernels of a few hundred lines,
often have a large variety of instructions, operate on larger data sets,
and have more control flow than microbenchmarks. Many of these
contribute to bottlenecks other than instruction issue bandwidth on
this platform, enabling a better evaluation of the system. To our
knowledge, this is the first study of this breadth on a GPU.

Table 2 lists some of the applications that have been ported to
CUDA, along with source and kernel lines of code (excluding com-
ments and whitespace). Benchmark versions of the applications are
available [2]. The larger codes often required more modification
to port to CUDA; the most extreme case was H.264, which in-
volved a large-scale code transformation to extract the motion esti-
mation kernel from non-parallel application code. The percentage
of single-thread CPU execution time spent in kernels is given to
show the total application speedup that can be achieved as limited
by Amdahl’s Law. For example, FDTD’s kernel takes only 16.4%
of execution time, limiting potential application speedup to 1.2X. In
general, kernel execution occupied the vast majority of CPU-only
execution for these applications.

Table 3 shows characteristics of the optimized application im-
plementations. The data for matrix multiplication is listed for com-
parison.5 The maximum number of simultaneously active threads
shows the amount of thread parallelism available on the hardware
at a given time, taking resource constraints into account, with a
maximum of 12288 across the 16 SMs. There is a wide range of
values, with little correlation to actual speedup. The total threads
in a given application often numbers in the millions. The number
of registers and the amount of shared memory per thread show the
degree of local resource utilization.

Other information in the table includes the ratio of global mem-
ory cycles to computation cycles after shared memory and caches
are utilized to their fullest extent, expressing the global memory
bandwidth requirements of the most time-consuming kernel of each
application. We discuss how this correlates to performance in Sec-
tion 5.1. GPU execution time expresses how much of the total ex-
ecution time the application kernels occupy after being ported to
the GPU. CPU-GPU transfer time is shown for comparison with
the computation time. One interesting case is H.264, which spends
more time in data transfer than GPU execution. Finally, we list the
architectural bottleneck(s) that appear to be limiting these imple-
mentations from achieving higher performance.

The two rightmost columns of Table 3 list the performance of
ported applications. The baseline, single-thread CPU performance
is measured on an Opteron 248 system running at 2.2GHz with
1GB main memory. The choice was made with the intent of hav-
ing a high-performance, single-core processor; similar CPU perfor-
mance is found with newer, high clock rate multicore architectures.
For applications with outstanding GPU speedup, we applied opti-
mizations such as SIMD instructions and fast math libraries to the
CPU-only versions to ensure that comparisons were reasonable. We
measure both the speedup of CUDA kernel execution over single-
thread CPU kernel execution and total application speedup, with all
floating point numbers set to single-precision. Measurements were
made with typical long-running inputs; e.g., for SPEC CPU bench-
marks the reference inputs were used.

5.1 Performance Trends of Optimized Applications

In general, we obtain significant kernel and application speedup
across our suite, as shown in Table 3. Compute-intensive kernels
with relatively few global memory accesses achieve very high

5 The GPU speedup for matrix multiplication uses a highly optimized li-
brary with SSE2 support as comparison. Kernel speedup compared to a
CPU binary without SIMD support and optimized only for cache usage is
on the order of 100X.

performance. Even kernels which are not as compute-intensive still
achieve respectable performance increases because of the GeForce
8800’s ability to run a large number of threads simultaneously.
Low-latency floating-point execution is a major factor in speedup,
as is the use of caches and shared memory to reduce latencies and
global bandwidth usage. Loop unrolling is effective in improving
performance for some applications. Careful organization of threads
and data reduces or eliminates conflicts in shared memory and
caches, most notably in the MRI applications.

The applications in Table 3 with the highest performance gains,
namely TPACF, RPES, MRI-Q, MRI-FHD, and CP, have low
global access ratios and spend most of their execution time per-
forming computation or accessing low-latency memories. They
also generate enough threads to hide potential stalls on long-latency
operations and maintain high pipelined floating point throughput.

The MRI applications achieve particularly high performance
and require additional explanation. One major reason for their
performance is that a substantial number of executed operations are
trigonometry functions; the SFUs execute these much faster than
even CPU fast math libraries. This accounts for approximately 30%
of the speedup. We also spent significant effort improving the CPU
versions (approximately 4.3X over the original code) to ensure that
these comparisons were reasonable. The opposite effect, where the
native instruction set must emulate functionality, exists in RC-5:
the GeForce 8800 lacks a modulus-shift operation. Performance of
the code if a native modulus-shift were available is estimated to be
several times higher.

LBM, FEM, and FDTD are notable for being time-sliced sim-
ulators, where a portion of the simulation area is processed per
thread. For each time step, updates must propagate through the sys-
tem, requiring global synchronization. Since there is no efficient
means to share data and perform barrier synchronization across
thread blocks, a kernel is invoked for each time step to ensure that
all data writes to global memory in the previous time step are re-
liably visible to the next time step. This places high demand on
global memory bandwidth since the kernel must fetch from and
store back the entire system to global memory after performing
only a small amount of computation. PNS does not have this issue
because a separate simulation is performed per thread. One pos-
sible solution to this issue is to relax the global synchronization
requirement by changing application algorithms.

Memory-related bottlenecks appeared in LBM, FEM, PNS,
SAXPY, and FDTD, all of which have high memory-to-compute
ratios. This causes bottlenecks in two ways. First, LBM and PNS
are limited in the number of threads that can be run due to memory
capacity constraints: shared memory for the former, global memory
for the latter. Second, FEM, SAXPY, and FDTD saturate memory
bandwidth. Even though the latter two have the highest number of
simultaneously active threads of the suite, this does not help the
large memory to compute ratio, which is the primary performance
bottleneck.

5.2 Optimizations

In this section we discuss some of the optimizations that have sig-
nificant effects on performance and the corresponding applications.
In general, shared memory is useful for reducing redundant loads
and thus pressure on memory bandwidth. Its use is straightforward
when there are either no shared values between threads (each thread
effectively has its own private space) or when neighboring threads
share data in a simple pattern, similar to matrix multiplication. Care
must be taken so that threads in the same warp access different
banks of the shared memory. In addition, more complex applica-
tions often use more sophisticated data structures.

One use of shared memory is buffering to improve the access
pattern of global memory. As stated previously, memory band-



Table 2. Application Suite
Application Description Source

Lines
Kernel
Lines

CPU
Execution

Parallelized
H.264 A modified version of the 464.h264ref benchmark from SPEC CPU2006. This is an H.264 (MPEG-4

AVC) video encoder. A serial dependence between motion estimation of macroblocks in a video frame is
removed to enable parallel execution of the motion estimation code. Although this modification changes
the output of the program, it is allowed within the H.264 standard.

34811 194 35%

LBM A modified version of the 470.lbm benchmark from SPEC CPU2006. This uses the Lattice-Boltzman
Method for simulating 3D fluid dynamics. The program has been changed to use single-precision floating
point and print fewer status reports.

1481 285 > 99%

RC5-72 This application accelerates distributed.net’s RSA RC5-72 bit challenge, which performs brute-force
encryption key generation and matching.

1979 218 > 99%

FEM Finite Element Modeling. Simulation of dynamic behavior of 3D graded materials. 1874 146 99%
RPES Rys Polynomial Equation Solver. Calculates 2-electron repulsion integrals, which are a sub-problem of

molecular dynamics.
1104 281 99%

PNS Petri Net Simulation. Simulation of a mathematical representation of a distributed system. 322 160 > 99%

SAXPY Single-precision floating-point implementation of saxpy from High-Performance LINPACK, used as
part of a Gaussian elimination routine.

952 31 > 99%

TPACF Implementation of Two Point Angular Correlation Function, used to find the probability of finding an
astronomical body at a given angular distance from another astronomical body.

536 98 96%

FDTD Finite-Difference Time-Domain. 2D electromagnetic wave propagation simulation in an arbitrary, user-
defined medium.

1365 93 16.4%

MRI-Q Computation of a matrix Q, representing the scanner configuration, used in a 3D magnetic resonance
image reconstruction algorithm in non-Cartesian space.

490 33 > 99%

MRI-
FHD

Computation of an image-specific matrix F Hd, used in a 3D magnetic resonance image reconstruction
algorithm in non-Cartesian space.

343 39 > 99%

CP Computation of electric potential in a volume containing point charges. Based on direct Coulomb
summation, as described in [24].

409 47 > 99%

Table 3. Application Implementation Performance For Typical, Long-Running Execution Profiles
Application Max Simul-

taneously
Active

Threads

Registers
per

Thread

Shared
Mem per
Thread

(B)

Global
Memory to

Computation
Cycles Ratio

GPU
Exec

%

CPU-
GPU

Transfer
%

Architectural
Bottleneck(s)

Kernel
Speedup
on GPU

Application
Speedup

Mat Mul 12288 9 8.1 0.276 16.2% 4% Instruction issue 7.0X 2.0X
H.264 3936 30 55.1 0.006 2.6% 4.5% Register file capacity and

cache latencies
20.2X 1.47X

LBM 3200 32 84.2 0.415 98.3% 0.4% Shared memory capacity 12.5X 12.3X
RC5-72 3072 42 0.3 '0 64.3% 0.5% Instruction issue 17.1X 11.0X
FEM 4096 18 61 1.135 91.4% � 1% Global memory bandwidth 11.0X 10.1X
RPES 4096 23 24.8 0.01 37.5% 1% Instruction issue 210X 79.4X
PNS 2048 32 9.9 0.241 98% � 1% Global memory capacity 24.0X 23.7X
SAXPY 12288 7 0.3 0.375 88% 4.5% Global memory bandwidth 19.4X 11.8X
TPACF 4096 24 52.2 0.0002 34.3% � 1% Shared memory capacity 60.2X 21.6X
FDTD 12288 11 8.1 0.516 1.8% 0.9% Global memory bandwidth 10.5X 1.16X
MRI-Q 8192 11 20.1 0.008 > 99% � 1% Instruction issue 457X 431X
MRI-FHD 8192 12 20.1 0.006 99% 1% Instruction issue 316X 263X
CP 6144 20 0.4 0.0005 > 99% � 1% Instruction issue 102X 102X

width is easily saturated when requests are not performed at 16-
word granularities. LBM, FEM, FDTD, and other lattice compu-
tations use arrays of small structures in global memory. Threads
simultaneously read or write a given field of multiple elements, but
these fields are not contiguous in memory. Each non-contiguous
access is a separate DRAM access request, overwhelming the de-
vice’s memory bandwidth. In LBM we alleviated the problem us-
ing contiguous accesses to prefetch the arrays into shared memory.
Figure 5 illustrates the access patterns before and after the opti-
mization. Before computation, threads cooperatively load blocks of
memory into shared memory, as shown in Figure 5(b). They then
synchronize, after which each thread operates on its own data. The
buffering optimization may also be possible with FDTD if a sub-
stantial amount of data reorganization is performed, but FEM uses

an irregular mesh data structure that has few contiguous accesses
even with data reorganization.

On-chip caches are useful in several applications; we focus on
two here. For the MRI applications, we placed data in constant
memory, which reduced average access time [25]. We also per-
formed a loop interchange to make all threads in a warp simultae-
nously access the same value in the table to remove conflicts. Con-
stant memory is generally intended for small lookup tables, but any
data that is read-only and has the same location simultaneously read
by all threads is appropriate for it. Our implementation of H.264
uses texture memory for part of the input data, since the data use
has 2D locality and the hardware provides boundary-value calcu-
lation support that would otherwise need to be calculated in soft-
ware. However, a lack of registers restricts the number of threads
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Figure 5. LBM Global Load Access Patterns

that could be scheduled, exposing the latency of texture memory.
Even so, kernel performance improves by 2.8X over global-only
access by the use of texture memory.

Loop unrolling and other “classic” compiler optimizations can
have unexpected results, but in general local optimizations on the
most frequently executed parts of the code has beneficial effects.
Benefit is due to the reduction in the number of operations or
strength reduction of individual operations such as integer mul-
tiply, thus increasing overall computational efficiency. In H.264,
complete unrolling of the innermost loop obtains significant perfor-
mance increase, as did register tiling [10] for the next two higher-
level loops.

The common case of compiler optimizations having negative
effects is when they increase the number of registers per thread as
a side effect, forcing the GeForce 8800 to schedule fewer thread
blocks per SM and thus degrading performance. The cases where
this is most often seen are common subexpression elimination and
redundant load elimination, the latter often storing thread and block
coordinates in registers. Even relatively simple instruction schedul-
ing can change the live ranges of variables and increase the reg-
ister usage. Register pressure-sensitive code scheduling algorithms
and optimization strategies have been investigated in the context
of instruction-level parallelism compilers. Additional research is
needed to apply these strategies to massively threaded environ-
ments like CUDA. We will address the control of register usage
in future work.

6. Conclusion and Future Work
We present a performance evaluation of the GeForce 8800 GTX
architecture using CUDA. Although its primary market is graph-
ics processing, this GPU is also capable of impressive performance
on a set of disparate non-graphics applications. This work presents
general principles for optimizing applications for this type of archi-
tecture, namely having efficient code, utilizing many threads to hide
latency, and using local memories to alleviate pressure on global
memory bandwidth. We also present an application suite that has
been ported to this architecture, showing that application kernels
that have low global memory access after optimization have sub-
stantial speedup over CPU execution if they are not limited by local
resource availability.

We are currently performing research on automated optimiza-
tions for this architecture. Although many of the optimizations are
classical ones, the effects they have on this architecture can be dif-
ferent from the effects on traditional superscalar processors. It is
also possible to get stuck in local maximums of performance when
attempting to follow a particular optimization strategy. These max-
imums may be significantly lower than the peak achievable per-
formance. Better tools and compilers that allow programmers to
specify the types of reorganizations desired and automatically ex-
periment with their performance effects would greatly reduce the

optimization effort. In addition, two updated versions of CUDA
have been released between the original and final submission of
this paper, changing resource usages and optimal configurations of
many applications. We are exploring methods to preserve or en-
hance performance of applications when shifts in the underlying
architecture or runtime occur.
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Lefohn, and T. J. Purcell. A survey of general-purpose computation
on graphics hardware. Computer Graphics Forum, 26(1):80–113,
2007.

[22] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng,
and W. W. Hwu. Program optimization study on a 128-core GPU.
In The First Workshop on General Purpose Processing on Graphics
Processing Units, October 2007.

[23] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-
Lederman. MPI: The Complete Reference. MIT Press, 1995.

[24] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten. Accelerating molecular modeling applications
with graphics processors. Journal of Computational Chemistry,
28(16):2618–2640, December 2007.

[25] S. S. Stone, H. Yi, W. W. Hwu, J. P. Haldar, B. P. Sutton, and Z.-P.
Liang. How GPUs can improve the quality of magnetic resonance
imaging. In The First Workshop on General Purpose Processing on
Graphics Processing Units, October 2007.

[26] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using data parallelism
to program GPUs for general-purpose uses. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 325–335, 2006.

[27] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,
N. Y. Yang, G.-Y. Lueh, and H. Wang. EXOCHI: architecture
and programming environment for a heterogeneous multi-core
multithreaded system. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 156–166, 2007.

[28] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. MIT
Press, 1990.


	Introduction
	Related Work
	Architecture Overview
	Threading Model
	Base Microarchitecture

	Performance and Optimization
	Initial Code Version
	Use of Local Storage
	Executed Instruction Reduction
	Balancing Applications and Optimization Interaction

	Application Study
	Performance Trends of Optimized Applications
	Optimizations

	Conclusion and Future Work

