
Queue Septem
ber 2005 Vol. 3 No. 7

KV the Konqueror

Debating the
 Fuzzy Boundaries

Multiprocessors
Scaling with CMPs

Performance at What Price?

Multicore Programming

w
w
w
.a
cm
qu
eu
e.
co
m

September 2005

Vol. 3 No. 7

Multiprocessors
Make Way for

http://www.microsoft.com/connectedsystems

2 September 2005 QUEUE rants: feedback@acmqueue.com

SEPTEMBER 2005

The Future of Microprocessors 26
Kunle Olukotun and Lance Hammond, Stanford University
The transition to chip multiprocessors is inevitable.
Are you prepared to leverage their power?

The Price of Performance 48
Luiz André Barroso, Google
The question is not, “Can you afford to switch to
multicore CPUs?” but rather, “Can you afford not to?”

Extreme Software Scaling 36
Richard McDougall, Sun Microsystems

Scaling with multiprocessors is no longer
 just for boutique, high-end servers.

Software and the Concurrency Revolution 54
Herb Sutter and James Larus, Microsoft

Multicore hardware architectures are blazing
 into the future. What’s the next step for

 the software community?

VOL. 3 NO. 7
CONTENTSCONTENTS

FO
CU

S

MULTIPROCESSORS

Massive scalability on minimal hardware

Caché is the first multidimensional database for transaction processing and real-time
analytics. Its post-relational technology combines robust objects and robust SQL, thus
eliminating object-relational mapping. It delivers massive scalability on minimal hardware,
requires little administration, and incorporates a rapid application development environment.

These innovations mean faster time-to-market, lower cost of operations, and higher
application performance. We back these claims with this money-back guarantee: Buy Caché
for new application development, and for up to one year you can return the license for a full
refund if you are unhappy for any reason.* Caché is available for Unix, Linux, Windows, Mac
OS X, and OpenVMS – and it's deployed on more than 100,000 systems ranging from two to
over 50,000 users. We are InterSystems, a global software company with a track record of
innovation for more than 25 years.

Database With Multidimensional Appeal.

Rapid development with robust objects Lightning speed with a multidimensional engine

Easy database administration

Try an innovative database for free: Download a fully functional, non-expiring copy of Caché, or request it on CD, at www.InterSystems.com/Cache15S
* Read about our money-back guarantee at the web page shown above.

© 2005 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 8-05 CacheInno15Queue

http://www.intersystems.com/Cache15S

4 September 2005 QUEUE rants: feedback@acmqueue.com

CONTENTS

INTERVIEW

A CONVERSATION WITH

 ROGER SESSIONS AND TERRY COATTA 16

Queue board member Terry Coatta and
“Fuzzy Boundaries” author Roger Sessions

 spar on the differences between objects,
 components, and Web services.

DEPARTMENTS
NEWS 2.0 8

Taking a second look at the news
so that you don’t have to.

WHAT’S ON YOUR HARD DRIVE? 10

Visitors to our Web site are invited to tell us about
the tools they love—and the tools they hate.

KODE VICIOUS 12

KV the Konqueror
George V. Neville-Neil, Consultant

CURMUDGEON 64

Multicore CPUs for the Masses
Mache Creeger, Emergent Technology Associates

http://www.techexcel.com

6 September 2005 QUEUE rants: feedback@acmqueue.com

Editorial Staff

Executive Editor

Jim Maurer

jmaurer@acmqueue.com

Associate Managing Editor

John Stanik

jstanik@acmqueue.com

Copy Editor

Susan Holly

Art Director

Sharon Reuter

Production Manager

Lynn D’Addesio-Kraus

Copyright

Deborah Cotton

Editorial Advisory Board

Eric Allman

Charles Beeler

Steve Bourne

David J. Brown

Terry Coatta

Mark Compton

Stu Feldman

Ben Fried

Jim Gray

Randy Harr

Wendy Kellogg

Marshall Kirk McKusick

George Neville-Neil

Sales Staff

National Sales Director

Ginny Pohlman

415-383-0203

gpohlman@acmqueue.com

Regional Eastern Manager

Walter Andrzejewski

207-763-4772

walter@acmqueue.com

Regional Midwestern/

Southern Manager

Sal Alioto

843-236-8823

salalioto@acmqueue.com

Contact Points

Queue editorial

queue-ed@acm.org

Queue advertising

queue-ads@acm.org

Copyright permissions

permissions@acm.org

Queue subscriptions

orders@acm.org

Change of address

acmcoa@acm.org

ACM Headquarters

Executive Director and CEO: John White

Director, ACM U.S. Public Policy Office: Jeff Grove

Deputy Executive Director and COO: Patricia Ryan

Director, Office of Information Systems: Wayne Graves

Director, Financial Operations Planning: Russell Harris

Director, Office of Membership: Lillian Israel

Director, Office of Publications: Mark Mandelbaum

Deputy Director, Electronic Publishing: Bernard Rous

Deputy Director, Magazine Development: Diane Crawford

Publisher, ACM Books and Journals: Jono Hardjowirogo

Director, Office of SIG Services: Donna Baglio

Assistant Director, Office of SIG Services: Erica Johnson

Executive Committee

President: Dave Patterson

Vice-President: Stuart Feldman

Secretary/Treasurer: Laura Hill

Past President: Maria Klawe

Chair, SIG Board: Robert A. Walker

For information from Headquarters: (212) 869-7440

ACM U.S. Public Policy Office: Cameron Wilson, Director

1100 17th Street, NW, Suite 507, Washington, DC 20036 USA

+1-202-659-9711–office, +1-202-667-1066–fax, wilson_c@acm.org

ACM Copyright Notice: Copyright © 2005 by Association for

Computing Machinery, Inc. (ACM). Permission to make

digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and full citation on the first page. Copyright for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires prior specific permission

and/or fee. Request permission to republish from: Publications Dept.

ACM, Inc. Fax +1 (212) 869-0481 or e-mail <permissions@acm.org>

For other copying of articles that carry a code at the bottom of the

first or last page or screen display, copying is permitted provided that the

per-copy fee indicated in the code is paid through the Copyright Clear-

ance Center, 222 Rosewood Drive, Danvers, MA 01923, 508-750-8500,

508-750-4470 (fax).

mca mca

ACM Queue (ISSN 1542-7730) is published ten times per year by the

ACM, 1515 Broadway, New York, NY, 10036-5701. POSTMASTER: Please

send address changes to ACM Queue, 1515 Broadway, New York, NY

10036-5701 USA Printed in the U.S.A.

The opinions expressed by ACM Queue authors are their own, and

are not necessarily those of ACM or ACM Queue.

Subscription information available online at www.acmqueue.com.

BPA Worldwide Membership applied for October 2004

Publisher and Editor

Charlene O’Hanlon

cohanlon@acmqueue.com

http://www.ftpoint.com

8 September 2005 QUEUE rants: feedback@acmqueue.com

news 2.0
Taking a

second look AT

THE NEWS SO YOU

DON’T HAVE TO

Open Source/2
IBM recently announced that it would discontinue sup-
port for its once-fl agship operating system, OS/2, begin-
ning in late 2006. Developed in the 1980s during an early
alliance with Microsoft, OS/2 eventually became OS/2
Warp and had some success during the ’90s, particularly
in the server market. But its desktop counterpart failed to
take off, and IBM eventually ceded victory to Microsoft.
IBM is now urging OS/2 users to switch to Linux, which
it supports. Switch to Linux? If only it were that easy.
Though gone from the spotlight, OS/2 continues to run
on servers around the globe, especially on those linked
to ATMs. Accordingly, there remains an active commu-
nity of OS/2 users, many of whom believe that OS/2 is
superior to more popular alternatives in some areas (e.g.,
security, fi le system). Emblematic of this support is a peti-
tion recently signed by nearly 10,000 OS/2 users, urging
IBM to make OS/2 open source.

The problem? In addition to the fact that IBM initially
co-developed OS/2 with Microsoft, the operating system
contains thousands of lines of code owned by third par-
ties, so unraveling the intellectual property rights would
be daunting. But loyal OS/2 users feel that, if nothing
else, releasing even portions of the code would yield a
useful educational resource. Whether that means learning
what to do or what not to do when building an operating
system is open for debate.
WANT MORE?
http://news.zdnet.co.uk/0,39020330,39209811,00.htm

Anti-spam Activism … or Vigilantism?
By now it’s clear that current legislation enacted to crack
down on spam is ineffective by itself. We also need sound
technological solutions to the spam problem. Much work
is being done on this front. Spam-fi ltering tools have
become ubiquitous, and promising new innovations such
as SMTP Path Analysis, which uses IP information in the
message header to determine the legitimacy of e-mail
messages, are expanding our arsenal in the anti-spam war.

But for those who believe in taking more drastic
measures, there is Blue Frog. Currently a free anti-spam
solution offered by Blue Security, Blue Frog works by
inviting users to add their e-mail addresses to a “do not
spam” list. For each person added to the list, several fake

e-mail addresses are cre-
ated, resulting in a “honey
pot” that lures spammers.
Spammers who send mes-
sages to those addresses are
fi rst warned to cease doing

so. If the warnings are ignored, the software triggers each
user on the list to send a complaint to the URL contained
in the spam. Thousands of simultaneous complaints will
cripple the spammer’s Web server. Honest community
activism? Illegal denial of service? We’ll let you decide.
Slippery terrain, indeed.
WANT MORE?
http://www.linuxinsider.com/story/44867.html

Ride, Robot, Ride
Don’t say you didn’t see it coming. The latest generation
of robotic technology has fi nally arrived: robotic camel
jockeys. Oh, you’re not from the United Arab Emirates?
Well, let us fi ll you in. Camel racing, an ancient and,
according to one UAE offi cial, “indispensable” specta-
tor sport (i.e., lots of wagering), has long been met with
derision by human rights activists who criticize the sport
for allowing young children to participate. They further
allege that the child camel jockeys, sometimes as young
as 4 years old, have been kidnapped and deliberately
starved to make them as lean and mean as possible.

An answer to the critics came from a Swiss company
contracted to build humanoid robots that are set to take
the place of their imperiled child predecessors. The robots
“sit” near the rear of the camel (post-hump) and balance
with short, mechanical legs. They hold the reins with
mechanical arms and hands. What might disappoint
robotics enthusiasts is that these robot jockeys are not
entirely autonomous; they are operated from the sidelines
via remote control. This is just the beginning, though,
and who knows whether more autonomous models even-
tually will make their way onto the sandy tracks.

No comment yet from the U.S. horse racing com-
munity, whose jockeys have been similarly criticized for
having to endure grueling privations to make weight.
Churchill Downs, look out!
WANT MORE?
http://www.newscientist.com/article.ns?id=dn7705 Q

http://www.mkp.com

10 September 2005 QUEUE rants: feedback@acmqueue.com

reader files

What’s on Your
Hard Drive?

Who: Jeff Price
What industry: Not-for-profi t
Job title: Software engineer
Flavor: Develops on Windows for Unix

Tool I love! Eclipse. Eclipse allows me to be
much more productive by assisting with
syntax and generating many standard,

repetitive code blocks. The refactoring
tools make otherwise unthinkable-to-tackle

tasks (such as renaming/repackaging a frequently
used class) almost trivial.
Tool I hate! PVCS Version Manager. The X interface
is slow, clunky, and unstable. Open projects some-
times disappear, many error messages
inaccurately represent the cause of the
problem…and did I mention that it’s
slow? It represents the antithesis of the
productivity gains I get by using Eclipse.

Who: Guilherme Mauro Germoglio Barbosa
What industry: Education
Job title: Software developer
Flavor: Develops on Linux for Linux

Tool I love! XMMS. I simply cannot focus
on my work without any music. Pro-
gramming is a bit of a lonely task, and
listening to music helps combat

this loneliness. 24/7 listening to music =
24/7 programming!
Tool I hate! CTTE. This tool is a bit buggy—only fi ve
minutes of use produced six exceptions. I hope they
improve it. Maybe it will be very useful in the future.
But there’s another problem: programming
is fun—crafting artifacts that no one
really cares about (such as those created
by CTTE) is not.

Who: Chris Bellini
What industry: Manufacturing
Job title: Software developer
Flavor: Develops on Windows for Windows

Tool I love! Python. I’m still a newbie to
Python but I’m quite impressed with
it thus far. As a scripting language, it

can quickly test an idea or an algorithm,
even if the project I’m working on doesn’t

use Python. Also, with free tools such as wxPython
and py2exe, a Python script can easily become a full-
blown distributable application with a robust UI.
Tool I hate! Microsoft Visual Studio .NET. It’s a
love/hate relationship. On the one hand,
it’s my bread and butter and I’ve learned
to use many of its features. On the other
hand, it has become a bloated resource
hog that makes things sluggish while a large
app, such as CAD/CAM, is running simultaneously.

Who: John Styles
What industry: Technology vendor
Job title: Chief architect
Flavor: Develops on Windows for Windows

Tool I love! Awk. Within its chosen
problem domain, nothing can beat
Awk’s elegance and simplicity. It is easy

to deploy, and its syntax is simpler and
more rational than certain other scripting

languages I could mention. I often try other tools but
come back to the one that always does the job.
Tool I hate! OLE DB. If OLE DB were just another
bizarre, overly complex, overly abstract,
poorly documented API, then I could just
happily ignore it. Unfortunately, it is the
native data access API for Microsoft SQL
Server, so it cannot be avoided. If only
there were a decent simple C language API
for it, such as Oracle’s OCI.

W
OYHD is a forum for expressing your opinions
on the tools you love and loathe. Tools, as we’ve
made clear, can be anything from programming

languages to IDEs to database products. This month we’ve
taken liberties with the defi nition to include the Linux
music software praised below. Listening to music can help

us get through those long hours spent unraveling lines
of spaghetti code (someone else’s, of course). It can also
make some people completely unproductive, but cannot
the same be said of many other, more obvious “tools”?
Don’t get us wrong, though—never, under any circum-
stances, will Minesweeper be considered a tool!

Tool I love!

Tool I love!

to deploy, and its syntax is simpler and

Tool I love!

But there’s another problem: programming

Tool I love!

can quickly test an idea or an algorithm,

GET YOUR STAFF TO WRITE BETTER CODE, FASTER.

IF THAT MAKES YOU GIGGLE WITH EXCITEMENT,
YOU AIN’T SEEN NOTHIN’ YET.

BIGGER BRAINS = BIGGER BOTTOM LINE. TURN YOUR TEAM INTO WINTELLECTUALS TODAY. FOR SUPERIOR .NET

CONSULTING, TRAINING, DEBUGGING, CALL 877.968.5528 OR VISIT WINTELLECT.COM

http://www.wintellect.com

12 September 2005 QUEUE rants: feedback@acmqueue.com

I
t’s been a couple of months, and Kode Vicious has
fi nally returned from his summer vacation. We asked
him about his travels and the only response we got was

this: “The South Pole during winter ain’t all it’s cracked
up to be!” Fortunately, he made it back in one piece and
is embracing the (Northern hemisphere’s) late summer
balminess with a fresh installment of koding kwestions.
This month, KV follows up on a security question from a
previous column and then revisits one of koding’s most
divisive issues: language choice. Welcome back!

Dear KV,
Suppose I’m a customer of Sincere-and-Authentic’s (“Kode
Vicious Battles On,” April 2005:15-17), and suppose the
sysadmin at my ISP is an unscrupulous, albeit music-lov-
ing, geek. He fi gured out that I have an account with
Sincere-and-Authentic. He put in a fi lter in the access
router to log all packets belonging to a session between
me and S&A. He would later mine the logs and retrieve
the music—without paying for it.

I know this is a far-fetched scenario, but if S&A wants
his business secured as watertight as possible, shouldn’t
he be contemplating addressing it, too? Yes, of course,
S&A will have to weigh the risk against the cost of miti-
gating it, and he may well decide to live with the risk. But
I think your correspondent’s suggestion is at least worthy
of a summary debate—not something that should draw
disgusted looks!

There is, in fact, another advantage to encrypting the
payload, assuming that IPsec (Internet Protocol security)
isn’t being used: decryption will require special clients,
and that will protect S&A that much more against the
theft of merchandise.

Balancing is the Best Defense

Dear Balancing,
Thank you for reading my
column in the April 2005
issue of Queue. It’s nice
to know that someone is

paying attention. Of course, if you had been paying closer
attention, you would have noticed that S&A said, “In the
design meeting about this I suggested we just encrypt
all the connections from the users to the Web service
because that would provide the most protection for them
and us.” That phrase, “just encrypt all the connections,”
is where the problem lies.

Your scenario is not so far-fetched, but S&A’s sugges-
tion of encrypting all the connections would not address
the problem. Once users have gotten the music without
their evil ISPs sniffi ng it, they would still be able to redis-
tribute the music themselves. Or, the evil network admin
would sign up for the service and simply split the cost
with, say, 10 of his music-loving friends, thereby getting
the goods at a hefty discount. What S&A really needs is
what is now called digital rights management. It’s called
this because for some reason we let the lawyers and the
marketing people into the industry instead of doing with
them what was suggested in Shakespeare’s Henry VI.

What S&A failed to realize was that the biggest risk of
revenue loss was not in the network, where only a small
percentage of people can play tricks as your ISP network
administrator can, but at the distribution and reception
points of the music. Someone who works for you walking
off with your valuable information is far more likely than
someone trying to sniff packets from the network. Since
computers can make perfect copies of data (after all, that’s
how we designed these things in the fi rst place), it is the
data itself that must be protected, from one end of the
system to the other, in order to keep from losing revenue.

All too often, people do not consider the end-to-end
design of their systems and instead try to fi x just one part.

KV

Dear KV,
Since there was some debate in my company over the
following issue, I’m curious to see what you believe: put-

KV the Konqueror

Got a question for Kode Vicious? E-mail him at
kv@acmqueue.com—if you dare! And if your letter
appears in print, he may even send you a Queue coffee
mug, if he’s in the mood. And oh yeah, we edit letters for
content, style, and for your own good!

A koder with

attitude, KV ANSWERS

YOUR QUESTIONS.

MISS MANNERS HE AIN’T.

kode vicious

Download a free copy of Perforce, no questions asked, from
www.perforce.com. Free technical support is available throughout
your evaluation.
All trademarks used herein are either the trademarks or registered trademarks of their respective owners.

[Fast]

[Scalable]

[Distributed]

Perforce's lock on performance rests firmly on three pillars of design.

A carefully keyed relational database ensures a rapid response time for

small operations plus high throughput when the requests get big -

millions of files big. An efficient streaming network protocol minimizes

the effects of latency and maximizes the benefits of bandwidth. And

an intelligent, server-centric data model keeps both the database and

network performing at top speed.

It's your call. Do you want to work, or do you want to wait?

Tired of using a software configuration management system that stops you
from checking in your files? Perforce SCM is different: fast and powerful,
elegant and clean. Perforce works at your speed.

Perforce.
The fast SCM system.

For developers who don’t like to wait.

http://www.perforce.com

14 September 2005 QUEUE rants: feedback@acmqueue.com

ting aside performance issues (which I think are relatively
minor on modern PCs), when would you recommend
using C++ for development, and when would you recom-
mend C? Do you think it is always better to use C++?

My feeling is that unless your application is inher-
ently object oriented (e.g., user interfaces), C++ will tend
to make the implementation worse instead of making it
better (e.g., constructors and operators doing funny unex-
pected things; C++ experts trying to “use their expertise”
and writing C++ code that is very effi cient but extremely
hard to read and not portable; huge portability—and
performance—issues when using templates; incompre-
hensible compiler/linker error messages; etc., etc.). I also
think that although people can write bad C code (gotos
out of macros was a nice one), typically people can write
awful C++ code. Where do you stand on this dispute?

Wondering How Much + There is in ++

Dear Wondering,
Choosing a language is something I’ve addressed before
in other letters, but the C vs. C++ debate has raged as
long as the two languages have been in existence, and,
really, it’s getting a bit tiring. I mean, we all know that
assembler is the language that all red-blooded program-
mers use! Oh, no, wait, that’s not it.

I’m glad you ask this question, though, because it gives
me license to rant about it—and to dispel a few myths.

The fi rst, and most obvious, myth in your letter is that
user interfaces are inherently object oriented. Although
many introductory textbooks on object-oriented pro-
gramming have user interfaces as their examples, this has
a lot more to do with the fact that humans like pretty
pictures. It is far easier to make a point graphically than
with text. I have worked on object-oriented device driv-
ers, which are about as far as you’ll ever get from a user
interface.

Another myth that your letter could promulgate is
that C is not an object-oriented language. A good exam-
ple of object-oriented software in C is the vnode fi lesystem
interface in BSD Unix and other operating systems. So,
if you want to write a piece of object-oriented software,
you can certainly do it in C or C++, or assembler for that
matter.

One fi nal myth, which was actually dispelled by Donn
Seeley in “How Not To Write Fortran in Any Language”
(ACM Queue, December/January 2004-2005:58-65), is that
C++ leads to less understandable code than C. Over the
past 20 years I have seen C code that was spaghetti and
C++ code that was a joy to work on, and vice versa.

So, after all that myth bashing, what are we left with?

Well, the things that are truly important in picking a
language are:
• What language is most of the team experienced in?

If you’re working with a team and six out of eight of
them are well versed in C but only two know C++, then
you’re putting your project, and job, at risk in picking
C++. Perhaps the two C++ koders can teach the C folks
enough C++ to be effective but it’s unlikely. To estimate
the amount of work necessary for a task, you have to
understand your tools. If you don’t normally use a nail
gun, then you’re likely to take someone’s toe off with it.
Losing toes is bad, as you need them for balance.

• Does the application require any of the features of
the language you’re using? C and C++ are a lot alike
as languages (i.e., in syntax), but they have different
libraries of functions and different ways of working that
may or may not be relevant to your application. Often
realtime constraints require the use of C because of the
control it can provide over the data types. If type safety
is of paramount importance, then C++ is a better choice
because that is a native part of the language that is not
present in C.

• Does the application require services from other
applications or libraries that are hard to use or debug
from one or the other language? Creating shim layers
between your code and the libraries you depend on is
just another way of adding useless, and probably buggy,
code to your system. Shim layers should be avoided
like in-laws. They’re OK to talk about, and you might
consider keeping them around for a week, but after that,
out they go as so much excess, noisy baggage.

There are lots of other reasons to choose one language
over another, but I suspect that the three listed here
should be enough for you and your team to come to
some agreement. You’ll notice that none of them has to
do with how easy it is to understand templates or how
hard it is to debug with exceptions.

KV

KODE VICIOUS, known to mere mortals as George V.
Neville-Neil, works on networking and operating system
code for fun and profi t. He also teaches courses on various
subjects related to programming. His areas of interest are
code spelunking, operating systems, and rewriting your bad
code (OK, maybe not that last one). He earned his bachelor’s
degree in computer science at Northeastern University in
Boston, Massachusetts, and is a member of ACM, the Usenix
Association, and IEEE. He is an avid bicyclist and traveler who
has made San Francisco his home since 1990.
© 2005 ACM 1542-7730/05/0900 $5.00

kode vicious

igrep.com

Developer Search Engine? COOL.

Powered by Developer Shed, Inc.
(www.DeveloperShed.com)

http://www.igrep.com

16 September 2005 QUEUE rants: feedback@acmqueue.com

interview

A Conversation with
Roger Sessions and Terry Coatta

The difference

BETWEEN OBJECTS AND

COMPONENTS?

THAT’S DEBATABLE.I
n the December/January 2004-2005 issue of Queue,
Roger Sessions set off some fi reworks with his article
about objects, components, and Web services and

which should be used when (“Fuzzy Boundaries,” 40-47).
Sessions is on the board of directors of the International
Association of Software Architects, the author of six
books, writes the Architect Technology Advisory, and
is CEO of ObjectWatch. He has a very object-oriented
viewpoint, not necessarily shared by Queue editorial board
member Terry Coatta, who disagreed with much of what
Sessions had to say in his article. Coatta is an active devel-
oper who has worked extensively with component frame-

works. He is vice president
of products and strategy
at Silicon Chalk, a startup
software company in
Vancouver, British Colum-

bia. Silicon Chalk makes extensive use of Microsoft COM
for building its application. Coatta previously worked at
Open Text, where he architected CORBA-based infrastruc-
tures to support the company’s enterprise products.

We decided to let these two battle it out in a forum
that might prove useful to all of our readers. We enlisted
another Queue editorial board member, Eric Allman, CTO

PH
O

TO
G

R
A

PH
 B

Y
 T

O
M

 U
PT

O
N

PH
O

TO
G

R
A

PH
 B

Y
 G

EO
R

G
E

B
R

A
IN

A
R

D

terry roger

18 September 2005 QUEUE rants: feedback@acmqueue.com

of Sendmail Inc., to moderate what we expected to be
quite a provocative discussion. Our expectations were
dead on.
ERIC ALLMAN I’ve talked to people who work on object-
oriented stuff, who have read your “Fuzzy Boundaries”
article, Roger, and every single one of them starts off by
disagreeing that the difference between objects, compo-
nents, and Web services is location-based.

Many of them speak of object-oriented RPCs (remote
procedure calls), which aren’t quite components. They are
components that live together in a process and so forth.
Since that was the fundamental point of your article,
could you comment?
ROGER SESSIONS Unfortunately, none of these terms is
very well defi ned. We’re all using the terms as they make
sense to us. Some of our disagreement may be simply
semantic.

The component industry started with CORBA. The
developers of CORBA were trying to solve one problem:
distribution. They weren’t trying to get objects to work
together within the same process. Yes, you could have
CORBA objects live together on the same machine, even
in the same process, but that was not the main problem
that CORBA cared about solving.

As far as Web services go, we could say that, yes, Web
services could be in the same process or on the same
machine. They could be in the same environment. But
what was the essential problem Web services were trying
to solve? It is about heterogeneous environments. It is
about getting a .NET system to work with a WebSphere
system, for example, not getting a .NET system to work
with another .NET system.
TERRY COATTA It strikes me that it’s hard to distinguish
Web services from CORBA from EJB using that kind of
rationale, because all three systems have open or at least
standardized and available protocols. I can certainly
make my WebSphere interoperate with an appropriate
CORBA implementation that has the mappings for doing
EJB. I can cross technology boundaries with all kinds of
different standards.
RS If you’re using the J2EE standards such as RMI (remote
method invocation) over IIOP (Internet Inter-ORB Pro-
tocol), you are primarily going to be doing that within
a single vendor’s system, such as a WebSphere system.
If you’re going from a WebSphere system to a WebLogic
system, your best shot at interoperability is through Web
services. Why? Because you’re crossing a technology
boundary.
TC You’re claiming that RMI over IIOP doesn’t actually
work?

RS It doesn’t work for interoperability across technology
boundaries.
TC There seem to be people out there getting it to work.
Certainly, back in the days when I worked with CORBA
there was no problem having different vendors’ ORBs
(object request brokers) interoperate with one another.

PH
O

TO
G

R
A

PH
 B

Y
 G

EO
R

G
E

B
R

A
IN

A
R

D

interview

 QUEUE September 2005 19 more queue: www.acmqueue.com

We used three or four of them at Open Text and had no
difficulty at all with those environments interoperating
with one another.
RS As long as you’re going CORBA to CORBA, it works
fine. But not when you are trying to get a CORBA system
to work with a non-CORBA system.

TC But going from WebSphere to one of the other EJB
vendors (e.g., WebLogic) in the CORBA space, there were
probably five or six different major ORB vendors float-
ing around, not to mention a couple of open source
efforts, and all of those interoperated really well with one
another.

20 September 2005 QUEUE rants: feedback@acmqueue.com

RS CORBA to CORBA. They’re all running on the same
basic core of CORBA technology. The difference between
that and Web services is that for Web services, unlike
CORBA, there is no assumption whatsoever about what
the underlying technology is.
TC That’s not true. There’s an assumption that one is
using a certain set of protocols; otherwise, it doesn’t
work, and I mean CORBA was the same thing—a standard
set of protocols. Nobody said that you had to actually
implement the server-side aspect of the CORBA stuff to
interoperate over the Internet. Everybody did because
that’s the way they defi ned the standards.
RS You could say the same thing about DCOM or RMI.
While all of them support communications protocols,
they, like CORBA, are about much more than communica-
tions protocols. They are about a platform. CORBA was
95 percent API, 5 percent interoperability. Web services is
zero API and 100 percent interoperability.
TC That part I agree with, absolutely. That was probably
the downfall of CORBA.
RS It’s exactly the downfall of CORBA, and it will also be
the downfall of J2EE. They didn’t learn from that mistake.
EA Isn’t Web services just essentially another standard for
how to interact? The world has settled on CORBA proto-
cols, not CORBA implementations. Wouldn’t it have had
exactly the same effect and maybe even better had the
world agreed to use only the CORBA protocols?
RS It’s quite possible, but the world didn’t. CORBA lacked
focus. The Web services effort has a lot of focus beyond
interoperability.

The big difference between Web services and CORBA is
that the Web services people said right from the begin-
ning: there is no API. The only thing that we standard-
ize is how messages go from one system to another and
the coordination around that. CORBA was 95 percent
about how the client binds into the system. That was its
downfall.
TC Of course, from the perspective of a programmer,
that’s not necessarily a downfall, but a shortcoming.
CORBA provided very nice interceptor architecture, a
basic mechanism for dispatch, which everybody in Web
services land has to rebuild from scratch. You can see that
coming out now in the various Web services standards.

We were able to build an OTS (object transaction
service) implementation on top of CORBA because of the
appropriate interceptor mechanisms, support for global
thread IDs, etc., etc. That work is taking a huge amount of
time in Web services land, of course, because nobody has
the infrastructure for it.
RS I’ve dedicated quite a few years of my life to CORBA,

and there were some very good ideas in it. Unfortunately,
there was so much baggage that those good ideas were
never allowed to fl ourish.

Hopefully we’ve learned from those mistakes. The
only successful part of CORBA—of that massive effort, of
those millions and millions and millions of dollars that
were spent—was the tiny sliver of it that had to do with
interoperability.
TC It wasn’t just the interoperability. That was a big
part of it, but the notion of a standard mechanism for
interception and dispatch on the actual implementation
side was also hugely successful because it allowed one
to deploy things like OTS in a reasonable way without
everybody having to basically rediscover from the ground
up how to do that kind of stuff.
RS The reality is that CORBA is mostly about APIs, none
of which anybody uses.
TC I agree. I was involved in the CORBA world, too, and
of all of the interface specifi cations and the verticals, very
little of them amounted to anything. But I think that
although it’s true historically to say one of the driving
things behind CORBA was this desire to make things
talk across the network to one another in interoperable
fashion, the reality of it is that when people started using
CORBA, they discovered the power that the standardized
infrastructure offered. The basic server-side architecture,
with standards for the dispatch mechanism, the intercep-
tor mechanism, object lifecycle, and object identifi cation,
is an extremely powerful tool in the hands of developers
actually delivering working systems.
RS Lots of things worked well in CORBA, as long as both
sides agree that they’re in a CORBA world.

The Web services world is certainly borrowing ideas
from CORBA, as CORBA borrowed ideas from earlier
technologies. What they’re trying to do in Web services is
borrow the few ideas in CORBA that actually panned out.
EA I get the distinct impression, Roger, that your attitude
is CORBA failed, and Web services has succeeded. Yet
CORBA is used for lots of very real things.

CNN, for example, uses CORBA. Most phone systems
use CORBA. And the poster-child example of Web services
has been Google. It looks to me like CORBA is more of a
success than Web services.
RS I totally disagree with that. I would say that relatively
few CORBA applications have panned out. Anybody who
is investing any money in a CORBA architecture is making
a big mistake.

None of the major players that was instrumental in
bringing CORBA about is investing in its future. IBM is
investing nothing into CORBA. Sun is investing nothing

interview

PH
O

TO
G

R
A

PH
 B

Y
 T

O
M

 U
PT

O
N

 QUEUE September 2005 21 more queue: www.acmqueue.com

22 September 2005 QUEUE rants: feedback@acmqueue.com

into CORBA. Microsoft never cared about CORBA. So who
is investing in it? Some marginal player someplace.

When you mention Google, you’re talking about a
very specifi c, and limited, application. When you look at
Web services, you really need to categorize it into one of
two types of applications: inter-enterprise or intra-enter-
prise. Google is an example of inter-enterprise.

My position has always been that inter-enterprise is a
marginal area of Web services. It’s the one that Microsoft
and IBM peddle when they’re talking to everybody about
this. But the much more important area for Web ser-
vices—the one that’s being used many, many places—is
getting different technology systems to interoperate
within the same enterprise.
EA Roger made the rather
telling statement that
Microsoft never looked at
CORBA. Could I make a
legitimate argument that
CORBA failed and Web
services “succeeded”—and
I’m not admitting that
yet—because of the Micro-
soft hegemony over the
world? What I’m suggest-
ing is, had Microsoft sup-
ported CORBA, would we
not be talking about Web
services at all?
RS No, because Microsoft
is not what killed CORBA.
J2EE killed CORBA. If you
want to blame somebody
for killing CORBA, blame
IBM and Sun, because all
the major players that were originally looking at CORBA
as their savior technology abandoned it and moved on to
J2EE.
TC I actually agree, totally, with Roger on this. But it
seems to me that one of the reasons we have a huge
wealth of Web services stuff cropping up is because our
friends at Microsoft are making it completely trivial to
build Web services, in the sense that you simply build
.NET implementations and then say, “Hey, I’d like to have
the Web interfaces available for these.”

Do you think that’s true? Are the tools that are mak-
ing Web services essentially transparent to the developer
responsible for part of why they are so popular and why
we’re seeing a lot of these services inside the enterprises?
RS There is some truth to that. Certainly, if you look

at the major enterprise players, which are, in my view,
BEA, IBM, and Microsoft, they are all doing the best job
they can to make it as transparent as possible to use Web
services.

They did a similar thing with components. They tried
to make it very easy to use them, and the problem was
that people really never understood what the fundamen-
tal differences were between these technologies: objects,
components, and Web services.

In some sense, the transparent ability to make some-
thing a Web service is not really a good thing, because
making an effective Web service requires a much more
in-depth understanding of what it means to be a Web

service. It’s the same with components. These tools don’t
give you that. They give you the ability to slap a SOAP
interface on top of some code, and that’s it.
EA How do you think this is going to affect the evolution
of Web services? Given that people are going to use these
tools, is this going to result in a huge period of extremely
poor architectures because people have just slopped Web
services on top of existing architectural solutions?
RS Yes, that’s my expectation. We have great tools today
for building Web services and virtually no understanding
of why, when, and where we should build Web services.
EA I’m curious about your view of the developer’s world
when building up a system. Clearly you believe that one
has to see the boundaries between what you refer to as
objects and components and Web services. But do those

interview

PH
O

TO
G

R
A

PH
 B

Y
 T

O
M

 U
PT

O
N

 QUEUE September 2005 23 more queue: www.acmqueue.com

differences actually translate in your mind to very specific
different implementation technologies? Are objects truly
different from components, or is it just a design distinc-
tion about the role that something plays in the system?
RS I see it as more a design distinction. Just to give you a
simple example: state management. If you have an object,
it’s perfectly OK to keep state in the object long-term. As
long as the object lives, it can have state in it. In a com-
ponent, you can’t do that. You’ve got to get the state out
of there or your component will not scale. None of the
tools tells you that. You have to know that, and you have
to design the system accordingly.

Just because you can use objects to implement your

components doesn’t mean that objects and components
are semantically equivalent. State management is one
example, but there are many others. These are design
issues, not technology issues.
EA Now you’ve just introduced the semantic element.
There are lots of semantics that objects have—polymor-
phism, encapsulation, inheritance—which you can sort of
build into Web services, perhaps just as I can write object-
oriented C, but it’s not the same thing.
RS It’s not even clear that that’s a good idea. In my mind,
to have inheritance on top of a Web service is probably a
bad idea.

In the “Fuzzy Boundaries” article I said that the defin-
ing characteristics that differentiate objects, components,
and Web services are location and environmental bound-

ary. But location and environmental boundaries have
many implications in terms of security, transactions, and
other design issues.
EA There’s a very, very strong impression that came out of
this article, and that is if I’m going to use components, I
would never ever consider using components in some-
thing in the same process. But I’ve talked to a number of
people now who have said, “Nonsense, we do that all the
time, and it’s an important point of our flexibility.”
RS Then they’re really using the wrong technology for
what they’re doing. They should just be using object
technology for that.
TC No, that’s false. One of the elements that defines a

component architecture
is the point of intercep-
tion. This is incredibly
useful even if I have things
talking within the same
process, because it gives
me the opportunity to, for
example, track invocation
patterns without actually
having to disturb my archi-
tecture at all.

We actually do this for
the product that we’re
building at Silicon Chalk.
We transparently intro-
duce a layer of debugging
proxies and get all kinds of
tracing information that
vastly improves our abil-
ity to debug the system.
We couldn’t do that if we
were building it out of C++

without having some base class nightmare to deal with.
So the fact that component technology provides a

point of interception actually turns out to be an incred-
ibly valuable tool to the developer.
RS There are object systems that provide that as well.
You’re picking on the shortcomings of a particular
language and using that to condemn all object-oriented
systems. That’s not fair. If you need interception, if that’s
a useful tool, then you choose an object technology that
provides interception.
TC I don’t have those choices as a developer out in the
real world. Sometimes you have to work in a particular
language or system. That’s the land that I live in, and
that’s the reality for most developers as well. Compo-
nent systems offer me the power that I need to build my

PH
O

TO
G

R
A

PH
 B

Y
 G

EO
R

G
E

B
R

A
IN

A
R

D

24 September 2005 QUEUE rants: feedback@acmqueue.com

product and deliver it to my customers. Now it’s true, if I
had been programming in Smalltalk, I could go in there
and fi ddle with the dispatch mechanism. But I don’t have
that option.
RS That’s unfortunate. You chose the wrong language.
TC I chose the only language that made any sense, given
the other realities of the world that I deal with. It’s nice to
talk about distinctions between objects and components
as if one could make a completely free choice about how
to implement things, but the real world doesn’t work that
way. As a person who is responsible for actually getting a
product out the door and satisfying customers, you can’t
choose arbitrary technologies because they happen to
satisfy purist notions of what is appropriate.
RS If you’re saying that you are using one particular
aspect of one particular component technology to make
up for a regrettable constraint on one particular program-
ming language, then that’s OK. Do what you need to do.
But just because you are using interception doesn’t make
it a defi ning difference between components and objects.
That’s just a particular artifact of the constraints that you
happen to be working under.
EA OK, gentlemen, let’s shift gears a little. In the course
of this discussion we’ve hit upon various standardization
efforts that have come out or are evolving. For example, a

lot of stuff is happening with WS security and WS trans-
actions, WSDL (Web Services Description Language), and
UDDI (Universal Description, Discovery, and Integration).
I’m curious to get Roger’s point of view on which of these
things are good, and where we should be doing things
differently. There are lots of standards out there, and,
frankly, they’re at least as hard, if not harder, to under-
stand than some of the CORBA specifi cations were.
RS I agree that the Web services standards are harder to
understand than most of the CORBA specifi cations, but
there’s one fundamental difference between these speci-
fi cations and the CORBA ones. The CORBA specifi cations
had to be understood by developers. The Web services
standards don’t. Nobody needs to understand the Web
services standards except for Microsoft and IBM because
these standards are about how Microsoft and IBM are
going to talk together, not about how the developer is
going to do anything.
EA So, nobody is ever going to interact except Microsoft
and IBM?
RS The people who are building the platforms are the
ones who care about these standards. These standards
have no relevance to Joe or Jane Developer, none what-
soever.
TC Do you mean that Joe or Jane Developer is never

interview

Semi-Structured DataSemi-Structured Data
Are ontologies the answer?

How XML can help

Lessons learned from the Web

Coming in the
October issue

Network with Spider
Network with Spider (from $800)(from $800)

Web with Spider
Web with Spider (from $999)(from $999)

Publish for CD/DVDs
Publish for CD/DVDs (from $2,500)(from $2,500)

Engine for Win & .NET
Engine for Win & .NET

Engine for Linux
Engine for Linux

Desktop with Spider
Desktop with Spider ($199)($199)

Network with Spider (from $800)

Web with Spider (from $999)

Publish for CD/DVDs (from $2,500)

Engine for Win & .NET

Engine for Linux

Desktop with Spider ($199)

1-800-IT-FINDS 1-800-IT-FINDS • www.dtsearch.com www.dtsearch.com

Reviews of dtSearch
◆ “The most powerful document search tool on the market” — Wired Magazine

◆ “dtSearch ... leads the market” — Network Computing

◆ “Blindingly fast” — Computer Forensics: Incident Response Essentials

◆ “A powerful arsenal of search tools” — The New York Times

◆ “Super fast, super-reliable” — The Wall Street Journal

◆ “Covers all data sources ... powerful Web-based engines” — eWEEK

◆ “Searches at blazing speeds” — Computer Reseller News Test Center

The Smart Choice for Text Retrieval® since 1991

◆ over two dozen indexed, unindexed, fielded & full-text search options

◆ highlights hits in HTML, XML and PDF while displaying embedded
links, formatting and imagesimages

◆ converts other file types (word processor, database, spreadsheet,
email, ZIP, Unicode, etc.) to HTML for display with highlighted hits

NEW Version 7 Terabyte IndexerNEW Version 7 Terabyte IndexerNEW Version 7 Terabyte Indexer

1-800-IT-FINDS • www.dtsearch.com

See www.dtsearch.com for hundreds more reviews & case studies

http://www.dtsearch.com

26 September 2005 QUEUE rants: feedback@acmqueue.com

The Future of Microprocessors
KUNLE OLUKOTUN AND LANCE HAMMOND, STANFORD UNIVERSITY

 QUEUE September 2005 27 more queue: www.acmqueue.com

he performance of microprocessors that power modern
computers has continued to increase exponentially
over the years for two main reasons. First, the transis-
tors that are the heart of the circuits in all processors
and memory chips have simply become faster over
time on a course described by Moore’s law,1 and this
directly affects the performance of processors built
with those transistors. Moreover, actual processor per-
formance has increased faster than Moore’s law would
predict,2 because processor designers have been able to
harness the increasing numbers of transistors avail-
able on modern chips to extract more parallelism from

software. This is depicted in fi gure 1 for Intel’s processors.
An interesting aspect of this continual quest for more parallelism is that it has been

pursued in a way that has been virtually invisible to software programmers. Since they
were invented in the 1970s, microprocessors have continued to implement the conven-
tional von Neumann computational model, with very few exceptions or modifi cations.
To a programmer, each computer consists of a single processor executing a stream of
sequential instructions and connected to a monolithic “memory” that holds all of the
program’s data. Because the economic benefi ts of backward compatibility with earlier
generations of processors are so strong, hardware designers have essentially been limited
to enhancements that have maintained this abstraction for decades. On the memory
side, this has resulted in processors with larger cache memories, to keep frequently
accessed portions of the conceptual “memory” in small, fast memories that are physi-
cally closer to the processor, and large register fi les to hold more active data values in an

Chip multiprocessors’
promise of huge
performance gains
is now a reality.

MultiprocessorsFO
CU

S

28 September 2005 QUEUE rants: feedback@acmqueue.com

extremely small, fast, and compiler-managed region of
“memory.”

Within processors, this has resulted in a variety of
modifi cations designed to achieve one of two goals:
increasing the number of instructions from the proces-
sor’s instruction sequence that can be issued on every
cycle, or increasing the clock frequency of the processor
faster than Moore’s law would normally allow. Pipelin-
ing of individual instruction execution into a sequence
of stages has allowed designers to increase clock rates
as instructions have been sliced into larger numbers of
increasingly small steps, which are designed to reduce
the amount of logic that needs to switch during every
clock cycle. Instructions that once took a few cycles to
execute in the 1980s now often take 20 or more in today’s
leading-edge processors, allowing a nearly proportional
increase in the possible clock rate.

Meanwhile, superscalar processors were developed to
execute multiple instructions from a single, conventional
instruction stream on each
cycle. These function by
dynamically examining
sets of instructions from
the instruction stream
to fi nd ones capable of
parallel execution on each
cycle, and then executing
them, often out of order
with respect to the original
program.

Both techniques have
fl ourished because they
allow instructions to
execute more quickly while
maintaining the key illu-
sion for programmers that
all instructions are actually
being executed sequen-
tially and in order, instead
of overlapped and out of

order. Of course, this illusion is not absolute. Performance
can often be improved if programmers or compilers
adjust their instruction scheduling and data layout to
map more effi ciently to the underlying pipelined or paral-
lel architecture and cache memories, but the important
point is that old or untuned code will still execute cor-
rectly on the architecture, albeit at less-than-peak speeds.

Unfortunately, it is becoming increasingly diffi cult for
processor designers to continue using these techniques
to enhance the speed of modern processors. Typical
instruction streams have only a limited amount of usable
parallelism among instructions,3 so superscalar processors
that can issue more than about four instructions per cycle
achieve very little additional benefi t on most applica-
tions. Figure 2 shows how effective real Intel processors
have been at extracting instruction parallelism over time.
There is a fl at region before instruction-level parallelism
was pursued intensely, then a steep rise as parallelism was
utilized usefully, followed by a tapering off in recent years
as the available parallelism has become fully exploited.

Complicating matters further, building superscalar
processor cores that can exploit more than a few instruc-
tions per cycle becomes very expensive, because the
complexity of all the additional logic required to fi nd
parallel instructions dynamically is approximately pro-
portional to the square of the number of instructions that
can be issued simultaneously. Similarly, pipelining past
about 10-20 stages is diffi cult because each pipeline stage
becomes too short to perform even a minimal amount of

Intel Performance Over Time

re
la

ti
ve

 p
er

fo
rm

an
ce

year

0.10

1.00

10.00

100.00

1000.00

10000.00

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

FIG 1FIG 1

The Future of Microprocessors

MultiprocessorsFO
CU

S

 QUEUE September 2005 29 more queue: www.acmqueue.com

logic, such as adding two integers together, beyond which
the design of the pipeline is signifi cantly more complex.
In addition, the circuitry overhead from adding pipeline
registers and bypass path multiplexers to the existing
logic combines with performance losses from events that
cause pipeline state to be fl ushed, primarily branches.
This overwhelms any potential performance gain from
deeper pipelining after about 30 stages.

Further advances in both superscalar issue and pipelin-
ing are also limited by the fact that they require ever-
larger numbers of transistors to be integrated into the
high-speed central logic within each processor core—so
many, in fact, that few companies can afford to hire
enough engineers to design and verify these processor
cores in reasonable amounts of time. These trends have
slowed the advance in processor performance somewhat
and have forced many smaller vendors to forsake the
high-end processor business, as they could no longer
afford to compete effectively.

Today, however, all progress in conventional processor
core development has essentially stopped because of a
simple physical limit: power. As processors were pipe-
lined and made increasingly superscalar over the course
of the past two decades, typical high-end microprocessor
power went from less than a watt to over 100 watts. Even
though each silicon process generation promised a reduc-
tion in power, as the ever-smaller transistors required
less power to switch, this was true in practice only when
existing designs were simply “shrunk” to use the new

process technology. Processor designers, however, kept
using more transistors in their cores to add pipelining
and superscalar issue, and switching them at higher and
higher frequencies. The overall effect was that expo-
nentially more power was required by each subsequent
processor generation (as illustrated in fi gure 3).

Unfortunately, cooling technology does not scale
exponentially nearly as easily. As a result, processors went
from needing no heat sinks in the 1980s, to moderate-size
heat sinks in the 1990s, to today’s monstrous heat sinks,
often with one or more dedicated fans to increase airfl ow
over the processor. If these trends were to continue, the
next generation of microprocessors would require very
exotic cooling solutions, such as dedicated water cool-
ing, that are economically impractical in all but the most
expensive systems.

The combination of limited instruction parallelism
suitable for superscalar issue, practical limits to pipelin-
ing, and a “power ceiling” limited by practical cooling
limitations has limited future speed increases within
conventional processor cores to the basic Moore’s law
improvement rate of the underlying transistors. This
limitation is already causing major processor manufactur-
ers such as Intel and AMD to adjust their marketing focus
away from simple core clock rate.

Although larger cache memories will continue to
improve performance somewhat, by speeding access to
the single “memory” in the conventional model, the
simple fact is that without more radical changes in pro-

cessor design, microproces-
sor performance increases
will slow dramatically
in the future. Processor
designers must fi nd new
ways to effectively utilize
the increasing transis-
tor budgets in high-end
silicon chips to improve
performance in ways that
minimize both additional
power usage and design
complexity. The market
for microprocessors has
become stratifi ed into areas
with different performance
requirements, so it is useful
to examine the problem
from the point of view
of these different perfor-
mance requirements.

Intel Performance from ILP

re
la

ti
ve

 p
er

fo
rm

an
ce

/c
yc

le

year
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

FIG 2FIG 2

30 September 2005 QUEUE rants: feedback@acmqueue.com

THROUGHPUT PERFORMANCE IMPROVEMENT
With the rise of the Internet, the need for servers capable
of handling a multitude of independent requests arriving
rapidly over the network has increased dramatically. Since
individual network requests are typically completely
independent tasks, whether those requests are for Web
pages, database access, or fi le service, they are typically
spread across many separate computers built using high-
performance conventional microprocessors (fi gure 4a),
a technique that has been used at places like Google for
years to match the overall computation throughput to
the input request rate.4

As the number of requests increased over time, more
servers were added to the collection. It has also been
possible to replace some or all of the separate servers with
multiprocessors. Most existing multiprocessors consist
of two or more separate processors connected using a
common bus, switch hub, or network to shared memory
and I/O devices. The overall system can usually be physi-
cally smaller and use less
power than an equiva-
lent set of uniprocessor
systems because physically
large components such
as memory, hard drives,
and power supplies can be
shared by some or all of
the processors.

Pressure has increased
over time to achieve more
performance per unit
volume of data-center
space and per watt, since
data centers have fi nite
room for servers and their
electric bills can be stagger-
ing. In response, the server
manufacturers have tried
to save space by adopting
denser server packaging

solutions, such as blade servers and switching to mul-
tiprocessors that can share components. Some power
reduction has also occurred through the sharing of more
power-hungry components in these systems. These short-
term solutions are reaching their practical limits, how-
ever, as systems are reaching the maximum component
density that can still be effectively air-cooled. As a result,
the next stage of development for these systems involves
a new step: the CMP (chip multiprocessor).5

The fi rst CMPs targeted toward the server market
implement two or more conventional superscalar proces-
sors together on a single die.6,7,8,9 The primary motivation
for this is reduced volume—multiple processors can now
fi t in the space where formerly only one could, so overall
performance per unit volume can be increased. Some
savings in power also occurs because all of the proces-
sors on a single die can share a single connection to the
rest of the system, reducing the amount of high-speed
communication infrastructure required, in addition to
the sharing possible with a conventional multiprocessor.
Some CMPs, such as the fi rst ones announced from AMD
and Intel, share only the system interface between proces-
sor cores (illustrated in fi gure 4b), but others share one
or more levels of on-chip cache (fi gure 4c), which allows
interprocessor communication between the CMP cores
without off-chip accesses.

Further savings in power can be achieved by taking
advantage of the fact that while server workloads require
high throughput, the latency of each request is generally

Intel Power Over Time

po
w

er
 (

w
at

ts
)

year
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

0

10

100

The Future of Microprocessors

FIG 3FIG 3

MultiprocessorsFO
CU

S

 QUEUE September 2005 31 more queue: www.acmqueue.com

not as critical.10 Most users will not be bothered if their
Web pages take a fraction of a second longer to load, but
they will complain if the Web site drops page requests
because it does not have enough throughput capacity. A
CMP-based system can be designed to take advantage of
this situation.

When a two-way CMP replaces a uniprocessor, it is
possible to achieve essentially the same or better through-
put on server-oriented workloads with just half of the
original clock speed. Each request may take up to twice
as long to process because of the reduced clock rate. With
many of these applications, however, the slowdown will
be much less, because request processing time is more
often limited by memory or disk performance than by
processor performance. Since two requests can now be
processed simultaneously, however, the overall through-
put will now be the same or better, unless there is serious
contention for the same memory or disk resources.

Overall, even though performance is the same or only
a little better, this adjustment is still advantageous at the
system level. The lower clock rate allows us to design the
system with a signifi cantly lower power supply voltage,
often a nearly linear reduction. Since power is propor-
tional to the square of the voltage, however, the power
required to obtain the original performance is much
lower—usually about half (half of the voltage squared = a
quarter of the power, per processor, so the power required
for both processors together is about half), although the
potential savings could be limited by static power dis-
sipation and any minimum voltage levels required by the
underlying transistors.

For throughput-oriented workloads, even more power/
performance and performance/chip area can be achieved
by taking the “latency is unimportant” idea to its extreme
and building the CMP with many small cores instead of a
few large ones. Because typical server workloads have very

low amounts of instruc-
tion-level parallelism and
many memory stalls, most
of the hardware associated
with superscalar instruc-
tion issue is essentially
wasted for these applica-
tions. A typical server will
have tens or hundreds
of requests in fl ight at
once, however, so there is
enough work available to
keep many processors busy
simultaneously.

Therefore, replacing
each large, superscalar pro-
cessor in a CMP with sev-
eral small ones, as has been
demonstrated successfully
with the Sun Niagara,11
is a winning policy. Each
small processor will process
its request more slowly
than a larger, superscalar
processor, but this latency
slowdown is more than
compensated for by the
fact that the same chip
area can be occupied by
a much larger number of
processors—about four
times as many, in the case

CMP Implementation Options

main memory

L2 cache

CPU core 1

L1 I$ L1 D$

regs regs

regs regs

CPU core N

L1 I$ L1 D$

regs regs

regs regs

I/O

d) multithreaded, shared-cache
 chip multiprocessor

main memory

L2 cache

L2 cache

CPU core 1

L1 I$ L1 D$

registers registers

CPU core N

L1 I$ L1 D$

I/O

c) shared-cache chip multiprocessor

main memory

L2 cache L2 cache

CPU core 1

L1 I$ L1 D$

registers registers

CPU core N

L1 I$ L1 D$

I/O

b) simple chip multiprocessor

main memory

CPU core

L1 I$ L1 D$

registers

I/O

a) conventional microprocessor

FIG 4FIG 4

32 September 2005 QUEUE rants: feedback@acmqueue.com

of Niagara, which has eight single-issue SPARC processor
cores in a technology that can hold only a pair of super-
scalar UltraSPARC cores.

Taking this idea one step further, still more latency
can be traded for higher throughput with the inclusion
of multithreading logic within each of the cores.12,13,14
Because each core tends to spend a fair amount of time
waiting for memory requests to be satisfi ed, it makes
sense to assign each core several threads by including
multiple register fi les, one per thread, within each core
(fi gure 4d). While some of the threads are waiting for
memory to respond, the processor may still execute
instructions from the others.

Larger numbers of threads can also allow each proces-
sor to send more requests off to memory in parallel,
increasing the utilization of the highly pipelined memory
systems on today’s processors. Overall, threads will typi-
cally have a slightly longer latency, because there are
times when all are active and competing for the use of the
processor core. The gain from performing computation
during memory stalls and the ability to launch numerous
memory accesses simultaneously more than compensates
for this longer latency on systems such as Niagara, which
has four threads per processor or 32 for the entire chip,
and Pentium chips with Intel’s Hyperthreading, which
allows two threads to share a Pentium 4 core.

LATENCY PERFORMANCE IMPROVEMENT
The performance of many important applications is mea-
sured in terms of the execution latency of individual tasks
instead of high overall throughput of many essentially
unrelated tasks. Most desktop processor applications still
fall in this category, as users are generally more concerned
with their computers responding to their commands
as quickly as possible than they are with their comput-
ers’ ability to handle many commands simultaneously,
although this situation is changing slowly over time as
more applications are written to include many “back-
ground” tasks. Users of many other computation-bound
applications, such as most simulations and compilations,

are typically also more interested in how long the pro-
grams take to execute than in executing many in parallel.

Multiprocessors can speed up these types of applica-
tions, but it requires effort on the part of programmers
to break up each long-latency thread of execution into a
large number of smaller threads that can be executed on
many processors in parallel, since automatic paralleliza-
tion technology has typically functioned only on Fortran
programs describing dense-matrix numerical computa-
tions. Historically, communication between processors
was generally slow in relation to the speed of individual
processors, so it was critical for programmers to ensure
that threads running on separate processors required only
minimal communication with each other.

Because communication reduction is often diffi cult,
only a small minority of users bothered to invest the time
and effort required to parallelize their programs in a way
that could achieve speedup, so these techniques were
taught only in advanced, graduate-level computer science
courses. Instead, in most cases programmers found that it
was just easier to wait for the next generation of uni-
processors to appear and speed up their applications for
“free” instead of investing the effort required to parallel-
ize their programs. As a result, multiprocessors had a hard
time competing against uniprocessors except in very large
systems, where the target performance simply exceeded
the power of the fastest uniprocessors available.

With the exhaustion of essentially all performance
gains that can be achieved for “free” with technologies
such as superscalar dispatch and pipelining, we are now
entering an era where programmers must switch to more
parallel programming models in order to exploit multi-
processors effectively, if they desire improved single-pro-
gram performance. This is because there are only three
real “dimensions” to processor performance increases
beyond Moore’s law: clock frequency, superscalar instruc-
tion issue, and multiprocessing. We have pushed the
fi rst two to their logical limits and must now embrace
multiprocessing, even if it means that programmers will
be forced to change to a parallel programming model to
achieve the highest possible performance.

Conveniently, the transition from multiple-chip
systems to chip multiprocessors greatly simplifi es the
problems traditionally associated with parallel program-
ming. Previously it was necessary to minimize commu-
nication between independent threads to an extremely
low level, because each communication could require
hundreds or even thousands of processor cycles. Within
any CMP with a shared on-chip cache memory, however,
each communication event typically takes just a handful

The Future of Microprocessors

MultiprocessorsFO
CU

S

 QUEUE September 2005 33 more queue: www.acmqueue.com

of processor cycles. With latencies like these, communica-
tion delays have a much smaller impact on overall system
performance. Programmers must still divide their work
into parallel threads, but do not need to worry nearly as
much about ensuring that these threads are highly inde-
pendent, since communication is relatively cheap. This is
not a complete panacea, however, because programmers
must still structure their inter-thread synchronization
correctly, or the program may generate incorrect results or
deadlock, but at least the performance impact of commu-
nication delays is minimized.

Parallel threads can also be much smaller and still be
effective—threads that are only hundreds or a few thou-
sand cycles long can often be used to extract parallelism
with these systems, instead of the millions of cycles long
threads typically necessary with conventional parallel
machines. Researchers have shown that parallelization
of applications can be made even easier with several
schemes involving the addition of transactional hardware
to a CMP.15,16,17,18,19 These systems add buffering logic
that lets threads attempt to execute in parallel, and then
dynamically determines whether they are actually parallel
at runtime. If no inter-thread dependencies are detected
at runtime, then the threads complete normally. If depen-
dencies exist, then the buffers of some threads are cleared
and those threads are restarted, dynamically serializing
the threads in the process.

Such hardware, which is only practical on tightly cou-
pled parallel machines such as CMPs, eliminates the need
for programmers to determine whether threads are paral-
lel as they parallelize their programs—they need only
choose potentially parallel threads. Overall, the shift from
conventional processors to CMPs should be less traumatic
for programmers than the shift from conventional proces-
sors to multichip multiprocessors, because of the short
CMP communication latencies and enhancements such
as transactional memory, which should be commercially
available within the next few years. As a result, this para-
digm shift should be within the range of what is feasible
for “typical” programmers, instead of being limited to
graduate-level computer science topics.

HARDWARE ADVANTAGES
In addition to the software advantages now and in the
future, CMPs have major advantages over conventional
uniprocessors for hardware designers. CMPs require only
a fairly modest engineering effort for each generation of
processors. Each member of a family of processors just
requires the stamping down of additional copies of the
core processor and then making some modifications to

relatively slow logic connecting the processors together to
accommodate the additional processors in each genera-
tion—and not a complete redesign of the high-speed
processor core logic. Moreover, the system board design
typically needs only minor tweaks from generation to
generation, since externally a CMP looks essentially the
same from generation to generation, even as the number
of processors within it increases.

The only real difference is that the board will need
to deal with higher I/O bandwidth requirements as the
CMPs scale. Over several silicon process generations, the
savings in engineering costs can be significant, because
it is relatively easy to stamp down a few more cores each
time. Also, the same engineering effort can be amortized
across a large family of related processors. Simply vary-
ing the numbers and clock frequencies of processors can
allow essentially the same hardware to function at many
different price/performance points.

AN INEVITABLE TRANSITION
As a result of these trends, we are at a point where chip
multiprocessors are making significant inroads into the
marketplace. Throughput computing is the first and most
pressing area where CMPs are having an impact. This is
because they can improve power/performance results
right out of the box, without any software changes,
thanks to the large numbers of independent threads that
are available in these already multithreaded applications.
In the near future, CMPs should also have an impact in
the more common area of latency-critical computations.
Although it is necessary to parallelize most latency-criti-
cal software into multiple parallel threads of execution
to really take advantage of a chip multiprocessor, CMPs
make this process easier than with conventional multi-
processors, because of their short interprocessor commu-
nication latencies.

Viewed another way, the transition to CMPs is inevi-
table because past efforts to speed up processor archi-
tectures with techniques that do not modify the basic
von Neumann computing model, such as pipelining
and superscalar issue, are encountering hard limits. As a
result, the microprocessor industry is leading the way to
multicore architectures; however, the full benefit of these
architectures will not be harnessed until the software
industry fully embraces parallel programming. The art of
multiprocessor programming, currently mastered by only
a small minority of programmers, is more complex than
programming uniprocessor machines and requires an
understanding of new computational principles, algo-
rithms, and programming tools. Q

34 September 2005 QUEUE rants: feedback@acmqueue.com

REFERENCES
1. Moore, G. E. 1965. Cramming more components onto

integrated circuits. Electronics (April): 114–117.
2. Hennessy, J. L., and Patterson, D. A. 2003. Computer

Architecture: A Quantitative Approach, 3rd Edition, San
Francisco, CA: Morgan Kaufmann Publishers.

3. Wall, D. W. 1993. Limits of Instruction-Level Parallelism,
WRL Research Report 93/6, Digital Western Research
Laboratory, Palo Alto, CA.

4. Barroso, L., Dean, J., and Hoezle, U. 2003. Web search
for a planet: the architecture of the Google cluster.
IEEE Micro 23 (2): 22–28.

5. Olukotun, K., Nayfeh, B. A., Hammond, L. Wilson, K.
and Chang, K. 1996. The case for a single chip multi-
processor. Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VII): 2–11.

6. Kapil, S. 2003. UltraSPARC Gemini: Dual CPU Proces-
sor. In Hot Chips 15 (August), Stanford, CA; http://
www.hotchips.org/archives/.

7. Maruyama, T. 2003. SPARC64 VI: Fujitsu’s next gen-
eration processor. In Microprocessor Forum (October),
San Jose, CA.

8. McNairy, C., and Bhatia, R. 2004. Montecito: the
next product in the Itanium processor family. In Hot
Chips 16 (August), Stanford, CA; http://www.hotchips.
org/archives/.

9. Moore, C. 2000. POWER4 system microarchitecture.
In Microprocessor Forum (October), San Jose, CA.

10. Barroso, L. A., Gharachorloo, K., McNamara, R.,
Nowatzyk, A., Qadeer, S., Sano, B., Smith, S., Stets, R.,
and Verghese, B. 2000. Piranha: a scalable architecture
based on single-chip multiprocessing. In Proceedings of
the 27th International Symposium on Computer Architec-
ture (June): 282–293.

11. Kongetira, P., Aingaran, K., and Olukotun, K. 2005.
Niagara: a 32-way multithreaded SPARC processor.
IEEE Micro 25 (2): 21–29.

12. Alverson, R., Callahan, D., Cummings, D., Koblenz,
B., Porterfi eld, A., and Smith, B. 1990. The Tera com-

puter system. In Proceedings of the 1990 International
Conference on Supercomputing (June): 1–6.

13. Laudon, J., Gupta, A., and Horowitz, M. 1994.
Interleaving: a multithreading technique targeting
multiprocessors and workstations. Proceedings of the 6th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems: 308–316.

14. Tullsen, D. M., Eggers, S. J., and Levy, H. M. 1995.
Simultaneous multithreading: maximizing on-chip
parallelism. In Proceedings of the 22nd International Sym-
posium on Computer Architecture (June): 392–403.

15. Hammond, L., Carlstrom, B. D., Wong, V., Chen, M.,
Kozyrakis, C., and Olukotun, K. 2004. Transactional
coherence and consistency: simplifying parallel hard-
ware and software. IEEE Micro 24 (6): 92–103.

16. Hammond, L., Hubbert, B., Siu, M., Prabhu, M., Chen,
M., and Olukotun, K. 2000. The Stanford Hydra CMP.
IEEE Micro 20 (2): 71–84.

17. Krishnan, V., and Torrellas, J. 1999. A chip multipro-
cessor architecture with speculative multithreading.
IEEE Transactions on Computers 48 (9): 866–880.

18. Sohi, G., Breach, S., and Vijaykumar, T. 1995. Multi-
scalar processors. In Proceedings of the 22nd International
Symposium on Computer Architecture (June): 414–425.

19. Steffan, J. G., and Mowry, T. 1998. The potential
for using thread-level data speculation to facilitate
automatic parallelization. In Proceedings of the 4th
International Symposium on High-Performance Computer
Architecture (February): 2–13.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

KUNLE OLUKOTUN is an associate professor of electrical
engineering and computer science at Stanford University,
where he led the Stanford Hydra single-chip multiprocessor
research project, which pioneered multiple processors on a
single silicon chip. He founded Afara Websystems to develop
commercial server systems with chip multiprocessor technol-
ogy. Afara was acquired by Sun Microsystems, and the Afara
microprocessor technology is now called Niagara. Olukotun
is involved in research in computer architecture, parallel pro-
gramming environments, and scalable parallel systems.
LANCE HAMMOND is a postdoctoral fellow at Stanford Uni-
versity. As a Ph.D. student, Hammond was the lead architect
and implementer of the Hydra chip multiprocessor. The goal
of Hammond’s recent work on transactional coherence and
consistency is to make parallel programming accessible to
the average programmer.
© 2005 ACM 1542-7730/05/0900 $5.00

The Future of Microprocessors

MultiprocessorsFO
CU

S

http://www.sdexpo.com

36 September 2005 QUEUE rants: feedback@acmqueue.com

EXTREME

Chip multiprocessors

have introduced a

new dimension in

scaling for application

developers, operating

system designers, and

deployment specialists.

MultiprocessorsFO
CU

S

 QUEUE September 2005 37 more queue: www.acmqueue.com

The advent of SMP (symmetric multiprocessing) added
a new degree of scalability to computer systems.
Rather than deriving additional performance from an
incrementally faster microprocessor, an SMP system
leverages multiple processors to obtain large gains
in total system performance. Parallelism in software
allows multiple jobs to execute concurrently on the
system, increasing system throughput accordingly.
Given sufficient software parallelism, these systems
have proved to scale to several hundred processors.

More recently, a similar phenomenon is occurring
at the chip level. Rather than pursue diminishing
returns by increasing individual processor perfor-
mance, manufacturers are producing chips with multi-
ple processor cores on a single die. (See “The Future of
Microprocessors,” by Kunle Olukotun and Lance Ham-
mond, in this issue.) For example, the AMD Opteron1
processor now uses two entire processor cores per die,
providing almost double the performance of a single
core chip. The Sun Niagara2 processor, shown in figure

EXTREME

RICHARD MCDOUGALL, SUN MICROSYSTEMS

Software Scaling

38 September 2005 QUEUE rants: feedback@acmqueue.com

1, uses eight cores per die, where each core is further mul-
tiplexed with four hardware threads each.

These new CMPs (chip multiprocessors) are bringing
what was once a large multiprocessor system down to
the chip level. A low-end four-chip dual-core Opteron
machine presents itself to software as an eight-proces-
sor system, and in the case of the Sun Niagara processor
with eight cores and four threads per core, a single chip
presents itself to software as a 32-processor system. As a
result, the ability of system and application software to
exploit multiple processors or threads simultaneously is

becoming more important than ever. As CMP hardware
progresses, software is required to scale accordingly to
fully exploit the parallelism of the chip.

Thus, bringing this degree of parallelism down to the
chip level represents a signifi cant change to the way we
think about scaling. Since the cost of a CMP system is
close to that of recent low-end uniprocessor systems, it’s
inevitable that even the cheapest desktops and servers
will be highly threaded. Techniques used to scale applica-
tion and system software on large enterprise-level SMP
systems will now frequently be leveraged to provide scal-
ability even for single-chip systems. We need to consider
the effects of the change in the degree of scaling on the
way we architect applications, on which operating system
we choose, and on the techniques we use to deploy appli-
cations—even at the low end.

CMP: JUST A COST-EFFECTIVE SMP?
A simplistic view of a CMP system is that it appears to
software as an SMP system with the number of processors
equal to the number of threads in the chip, each with
slightly reduced processing capability. Since each hard-
ware thread is sharing the resources of a single processor
core, each thread has some fraction of the core’s overall
performance. Thus, an eight-core chip with 32 hardware

threads running at 1 GHz
may be somewhat crudely
approximated as an SMP
system with thirty-two
250-MHz processors.
The effect on software is
often a subtle trade-off
in per-thread latency for
a signifi cant increase of
throughput. For a through-
put-oriented workload with
many concurrent requests
(such as a Web server),
the marginal increase in
response time is virtually
negligible, but the increase
in system throughput is an
order of magnitude over a
non-CMP processor of the
same clock speed.

There are, however,
more subtle differences
between a CMP system and
an SMP system. If threads
or cores within a CMP pro-

EXTREME
Software Scaling

A Chip Multiprocessor

instruction
cache

th
re

ad
 1

th
re

ad
 1

th
re

ad
 1

th
re

ad
 1

data
cache

MMU

core 1

instruction
cache

th
re

ad
 1

th
re

ad
 1

th
re

ad
 1

th
re

ad
 1

data
cache

MMU

core 8

level 2 cache

memory

FIG 1FIG 1

MultiprocessorsFO
CU

S

 QUEUE September 2005 39 more queue: www.acmqueue.com

cessor share important resources, then some threads may
impact the performance of other threads. For example,
when multiple threads share a single core and therefore
share fi rst-level memory caches, the performance of a
given thread may vary depending on what the other
threads, of the same core, are doing with the fi rst thread’s
data in the cache. Yet, in another similar case, a thread

may actually gain if the other threads are constructively
sharing the cache, since useful data may be brought into
the cache by threads other than the fi rst. This is covered
in more detail later as we explore some of the potential
operating system optimizations.

SCALING THE SOFTWARE
The performance of system software ideally scales pro-
portionally with the number of processors in the system.
There are, however, factors that limit the speedup.

Amdahl’s law3 defi nes scalability as the speedup of
a parallel algorithm, effectively limited by the number
of operations that must be performed sequentially (i.e.,
its serial fraction), as shown in fi gure 2. If 10 percent of
a parallel program involves serial code, the maximum
speedup that can be attained is three, using four proces-
sors (75 percent of linear), reducing to only 4.75 when
the processor count increases to eight (only 59 percent
of linear). Amdahl’s law tells us that the serial fraction
places a severe constraint on the speedup as the number
of processors increase.

In addition, software typically incurs overhead as a
result of communication and distribution of work to
multiple processors. This results in a scaling curve where
the performance peaks and then begins to degrade (see
fi gure 3).

Since most operating systems and applications contain
a certain amount of sequential code, a possible conclu-
sion of Amdahl’s law is that it is not cost effective to
build systems with large numbers of processors because
suffi cient speedup will never be produced. Over the past
decade, however, the focus has been on reducing the
serial fraction within hardware architectures, operating
systems, middleware, and application software. Today, it
is possible to scale system software and applications on
the order of 100 processors on an SMP system. Figure 4
shows the results for a series of scaling benchmarks that
were performed using database workloads on a large SMP
confi guration. These application benchmarks were per-
formed on a single-system image by measuring through-
put as the number of processors was increased.

INTRA- OR INTER-MACHINE SCALE?
Software scalability for these large SMP machines has
historically been obtained through rigorous focus on
intra-machine scalability within one large instance of
the application within a single operating system. A good
example is a one-tier enterprise application such as
SAP. The original version of SAP used a single and large
monolithic application server. The application instance

Speedups
(0%, 2%, 5% and 10% Sequential Portions)

8.0

6.0

4.0

2.0

0

0%

2%

5%

10%

1 2 3 4 5 6 7 8

re
la

ti
ve

 s
pe

ed
up

number of processors

Speedup Curve With Overheads

2.5

2.0

1.5

1.0

0.5

0

5%

20%

10%
15%

1 2 3 4 5 6 7 8

re
la

ti
ve

 s
pe

ed
up

number of processors

FIG 3FIG 3

FIG 2

40 September 2005 QUEUE rants: feedback@acmqueue.com

obtains its parallelism from the many concurrent requests
from users. Providing there are no major serialization
points between the users, the application will naturally
scale. The focus on scaling these applications has been to
remove these serialization points within the applications.

More recently, because of the economics of low-end
systems, the focus has been on leveraging inter-machine
scaling, using low-cost commodity one- to two-processor
servers. Some applications can be made to scale without
requiring large, expensive SMP systems by running multi-
ple instances in parallel on separate one- to two-processor
systems, resulting in good
overall throughput. Appli-
cations can be designed to
scale this way by moving
all shared state to a shared
back-end service, like a
database. Many one- to
two-processor systems
are confi gured as mid-tier
application servers, com-
municating to an intra-
machine scaled database
system. The shift in focus
to one- to two-processor
hardware has removed
much of the pressure to
design intra-machine scal-
ability into the software.

The compelling features
of CMP—low power,
extreme density, and high
throughput—match this
space well, mandating
a revised focus on intra-
machine scalability.

IMPACT OF CMP ON APPLICATION DEVELOPERS
The most signifi cant impact for application developers is
the requirement to scale. The minimum scaling require-
ment has been raised from 1-4 processors to 32 today, and
will likely increase again in the near future.

BUILDING SCALABLE APPLICATIONS
Engineering scalable code is challenging, but the perfor-
mance wins are huge. The data in the scaling curves for
Oracle and DB2 in fi gure 4 show the rewards, from a great
deal of performance tuning to optimization for scaling.
According to Amdahl’s law, scaling software requires
minimization of the serial fraction of the workload. In
many commercial systems, natural parallelism comes
from the many concurrent users of the system.

The simple fi rst-order scaling bottlenecks (those with
a large serial fraction) typically come from contention for
shared resources, such as:
• Networks or interconnects. Bandwidth limitations on

interconnects between portions of the system—for
example, an ingress network on the Web servers, tier-1
and -2 networks for SQL traffi c, or a SAN (storage area
network).

• CPU/Memory. Queuing for CPU or waiting for page
faults as a result of resource starvation.

Scaling of Throughput-Oriented Workloads on SMP Hardware

pe
rfe

ct
 sc

ali
ng

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

0 16 32 48 64
0

16

32

48

64

sc
al

in
g

number of CPUs

FIG 4FIG 4

EXTREME
Software Scaling

MultiprocessorsFO
CU

S

 QUEUE September 2005 41 more queue: www.acmqueue.com

• I/O throughput. Insufficient capacity for disk I/O opera-
tions or bandwidth.

The more interesting problems result from intrinsic
application design. These problems manifest from serial
operations within the application or the operating envi-
ronment. They are often much harder to identify without
good observation tools, because rather than showing
up as an easy-to-detect overloaded resource (such as out
of CPU), they often exhibit growing amounts of idle
resource as load is increased.

Here’s a common example. We were recently asked to
help with a scaling problem on a large online e-commerce
system. The application consisted of thousands of users
performing payment transactions from a Web applica-
tion. As load increased, the latency became unacceptable.
The application was running on a large SMP system and
database, both of which were known to scale well. There
was no clear indicator of where in the system the problem
occurred. As load was increased, the system CPU resources
became more idle. It turned out that there was a single
table at the center of all the updates, and the locking
strategy for the table became the significant serial fraction
of the workload. User transactions were simply waiting
for updates to the table. The solution was to break up the
table so that concurrent inserts could occur, thus reduc-
ing the serial fraction and increasing scalability.

For CMP, we need to pay attention to what might limit
scaling within one application instance, since we now
need to scale in the order of tens of threads, increasing to
the order of 100 in the near future.

WRITING SCALABLE LOW-LEVEL CODE
Many middleware applications (such as databases, appli-
cation servers, or transaction systems) require special
attention to scale. Here are a few of the common tech-
niques that may serve as a general guideline.

Scalable algorithms. Many algorithms become less effi-
cient as the size of the problem set increases. For example,
an algorithm that searches for an object using a linear list
will increase the amount of CPU required as the size of
the list increases, potentially at a super-linear rate. Select-
ing good algorithms that optimize for the common case
is of key importance.

Locking. Locking strategies have significant impact
on scalability. As concurrency increases, the num-
ber of threads attempting to lock an object or region
increases, resulting in compounding contention as the
lock becomes “hotter.” In modern systems, an opti-
mal approach is to provide fine-grained locking using
a lock per object where possible. There are also several

approaches to making the reader side of code lock-free at
the expense of some memory waste or increased writer-
side cost.

Cache line sharing. Multiprocessor and CMP systems
use hardware coherency algorithms to keep data consis-
tent between different pipelines. This can have a signifi-
cant effect on scaling. For example, a latency penalty may
result if one processor updates a memory object within
its cache, which is also accessed from another processor.
The cache location will be invalidated because of the
cache coherency hardware protocol, which ensures only
one version of the data exists. In a CMP system, multiple
threads typically access a single first-level cache; thus,
colocating data that will be accessed within a single core
may be appropriate.

Pools of worker threads. A good approach for con-
currency is to use a pool of worker threads; a general-
purpose, multithreaded engine can be used to process
an aggregate set of work events. Using this model, an
application gives discrete units of work to the engine and
lets the engine process them in parallel. The worker pool
provides a flexible mechanism to balance the work events
across multiple processors or hardware threads. The
operating system can automatically tune the concurrency
of the application to meet the topology of the underlying
hardware architecture.

Memory allocators. Memory allocators pose a signifi-
cant problem to scaling. Almost every code needs to allo-
cate and free data structures, and typically does so via a
central system-provided memory allocator. Unfortunately,
very few memory allocators scale well. The few that do
include the open source Hoard, Solaris 10’s libumem slab
allocator, and MicroQuill’s SmartHeap. It’s worth paying
attention to more than one dimension of scalability: dif-
ferent allocators have different properties in light of the
nature of allocation/deallocation requests.

CONDUCT SCALABILITY EXPERIMENTS EARLY AND OFTEN
Time has shown that the most efficient way of driv-
ing out scaling issues from an application is to perform
scaling studies. Given the infinite space in which opti-
mizations can be made, it is important to follow a meth-
odology to prioritize the most important issues.

Modeling techniques can be used to mathematically
predict response times and potential scaling bottlenecks
in complex systems. They are often used for predicting
the performance of hardware, to assist with design trade-
off analysis. Modeling software, however, requires inti-
mate knowledge of the software algorithms, code paths,
and system service latencies. The time taken to construct

42 September 2005 QUEUE rants: feedback@acmqueue.com

a model and validate all assumptions is often at odds with
running scaling tests.

A well-designed set of scaling experiments is key to
understanding the performance characteristics of an
application, and with proper observation instrumenta-
tion, it is easy to pinpoint key issues. Scalability predic-
tion and analysis should be done as early as possible in
the development cycle. It’s often much harder to retrofit
scalability improvements to an existing architecture.
Consider scalability as part of the application architecture
and design.

Key items to include in scalability experiments are:
• Throughput versus number of threads/processors. Does

the throughput scale close to linearly as the amount of
resource applied increases?

• Throughput versus resource consumed (i.e., CPU,
network I/O, and disk I/O) per transaction. Does the
amount of resource consumed per unit of work increase
as scale increases?

• Latency versus throughput. Does the latency of a trans-
action increase as the throughput of a system increases?
A system that provides linear throughput scalability
might not be useful in the real world if the transaction
response times are too long.

• Statistics. Measure code path length in both number of
instructions and cycles.

OBSERVATION TOOLS ARE THE PRIMARY MEANS
TO SCALABLE SOFTWARE
Effective tools are the most significant factor in improv-
ing application scalability. Being able to quickly identify
a root cause of a scaling issue is paramount. The objective
of looking for scaling issues is to easily pinpoint the most
significant sources of serialization.

The tools should help identify what type of issue is
causing the serialization—the two classic cases being star-

vation resulting from escalating resource requirements as
load increases, and increasing idle time as load increases.
Ideally, the tools should help identify the source of the
scaling issue rather than merely pointing to the object of
contention. This helps with identifying not only what
the contention point is, but also perhaps some offending
code that may be overutilizing a resource. Often, once the
source is identified, many obvious optimizations become
apparent.

Consider tools that can do the following:
• Locate key sources of wait time. What are the con-

tended resources, which one is causing the resource uti-
lization, and how much effect is the contention having
on overall performance?

• Identify hot synchronization locks. How much wall
clock and CPU time is serialized in locking objects, and
which code is responsible?

• Identify nonscalable algorithms. Which functions or
classes become more expensive as the scale of the appli-
cation increases?

• Make it clear where the problem lies. This is done
either in the application code, which you can affect,
or by pointing to a contention point in a vendor-sup-
plied middleware or operating system. Even though
the contention point may lie in a vendor code, it may
result from how that code is being called, which can be
affected by optimizing the higher-level code.

CMT AND SOFTWARE LICENSING
Another impact of the hardware architecture’s scal-
ing characteristics is on software licensing. Applica-
tion developers often use the number of processors in
the system to determine the price of the software. The
number of processors has been a convenient measure for
software licensing, primarily because of the close correla-
tion between the costs of the hardware platform and the
number of processors. By using a license fee indexed by
the number of processors, the software vendor can charge
a roughly proportional fee for software.

This is, however, based on old assumptions that are
no longer true. First of all, an operating system on a CMT
platform reports one virtual processor for every thread in
the chip, resulting in a very expensive software license for
a low-end system. Software vendors have been scrambling
to adjust for the latest two-core CMT systems, some opt-
ing for one license fee per core, and others for each physi-
cal chip. Licensing by core unfairly increases software
licenses per dollar unit of hardware.

In the short term, operating system vendors are
providing enhancements to report the number of cores

EXTREME
Software Scaling

MultiprocessorsFO
CU

S

 QUEUE September 2005 43 more queue: www.acmqueue.com

and physical processors in the system, but there is an
urgent need for a more appropriate (and fair) solution.
It is likely that a throughput-based license fee that uses
standard benchmarks will be pursued. This would allow
license fees to be charged in accordance with the actual
processing power of the platform. Such a scheme would
allow software licenses to scale when more advanced
virtualization schemes, which divide up processors into
subprocessor portions, are used (such as priority-based
resource partitioning). These schemes are becoming more
commonplace as utility computing and server consolida-
tion become more popular. The opportunity for operating
system vendors is to choose a uniform metric that can
be measured and reported, based on the actual use by an
application.

IMPACT OF CMP FOR OPERATING SYSTEMS
The challenge for the operating system is twofold: provid-
ing scalable system services to the applications it hosts,
and providing a scalable programming environment that
facilitates easy development of parallel programs.

CMP ENHANCEMENTS FOR OPERATING SYSTEMS
An SMP-capable operating system kernel works quite well
on CMP hardware. Since each core or hardware thread in
a chip has an entire set of registers, they appear to soft-
ware as individual CPUs. An unchanged operating system
will simply implement one logical processor for every
hardware thread in the chip. Software threads will be

scheduled onto each hardware thread just as in an SMP
system, with equal weighting according to the operating
system kernel’s scheduling policy (see fi gure 5).

Basic changes to optimize for CMT processors will
include elimination of any busy wait loops. For example,
the idle loop is typically implemented as a busy spin that
checks a run queue looking for more work to do. When
multiple hardware threads share a single core, the idle
loop running on one thread will have a detrimental effect
on other threads sharing the core’s pipeline. In this exam-
ple, leveraging the hardware’s ability to park a thread
when there is no work to do would be more effective.

Further operating system enhancements will likely be
pursued to optimize for the subtle differences of CMPs.
For example, with knowledge of the processor architec-
ture and some information about the behavior of the
software, the scheduler may be able to optimize the place-
ment of software threads onto specifi c hardware threads.
In the case of a CMP architecture with multiple hardware
threads sharing a core, fi rst-level cache, and TLB (transla-
tion look-aside buffer), there may be a benefi t if software
threads with similar memory access patterns (construc-
tive) are colocated on the same core, and those with
destructive patterns are separated onto different cores.

OPERATING SYSTEM SCALING
The challenge with scaling operating system services has
historically been the shared state between instances of the
services. For example, consider a global process table that

Software Threads Scheduling on CMP Cores/Threads

threads
C1 C2 C3 C4 C5 C6 C7 C8

application

operating
system OS scheduler

cores

Xbar

level 2 cache

application threads

FIG 5FIG 5

44 September 2005 QUEUE rants: feedback@acmqueue.com

needs to be accessed and updated by any program want-
ing to start a new process. In a multiprocessor system,
synchronization techniques must be used to mitigate race
conditions when two or more threads attempt to update
the process table at the same time.

The common techniques require serialization around
either the code that accesses these structures or the data
structures themselves. Early attempts to port Unix to
SMP hardware were crude—they were typically retrofits
of existing operating system codes with simple, coarse-
grained serialization. For example, the first SMP Unix
systems used a slightly modified implementation with a
single global lock around the operating system kernel to
serialize all requests to its data structures. Early versions
of SunOS (1.x), Linux (2.2), and FreeBSD (4.x) kernels
used this approach. Although easy to implement, this
approach helps scalability only for applications that sel-
dom use operating system services. Applications that were
entirely compute-intensive showed good scalability, but
those that used a significant amount of operating system
services saw serialization yielding little or no scalability
beyond one processor.

In contrast, successful operating system scaling is
achieved by minimizing contention, restricting serializa-
tion to only fine-grained portions of data structures. In
this way, the operating system can execute code within
the same region concurrently on multiple processors,
serializing only momentarily while accessing shared data
structures. This approach does, however, require substan-
tial architectural change to the operating system and in
some cases a ground-up redesign focused on scalability.

A well-designed operating system allows high levels
of concurrency through its operating system services. In
particular, applications invoking system services through
libraries, memory allocators, and other system services
must be able to execute in parallel even if they access

shared facilities. For example, multiple programs should
be able to allocate memory concurrently without serial-
izing. Other areas that are critical to scalability include
parallel access to shared hardware (e.g., I/O) and the
networking subsystem.

SCALING ENHANCEMENTS IN FREEBSD
FreeBSD has seen a significant amount of scaling effort,
starting with 5.x kernels.4 Architectural changes include
new kernel memory allocators, synchronization routines,
the move to ithreads, and the removal of the global
kernel lock from activities such as process scheduling,
virtual memory, the virtual file system, the UFS (Unix
file system), the networking stack, and several common
forms of inter-process communication. The scaling work
in FreeBSD has successfully improved scaling (estimates
suggest to the order of 12 processors).

SCALING ENHANCEMENTS IN LINUX
Scaling was greatly improved in Linux 2.2 kernels by
breaking up the global kernel lock. It is said to scale on
the order of two to four processors. Linux 2.4 scaling
was improved to eight to 16 by introducing much finer-
grained locking in the scheduler and I/O subsystem. This
improved the scaling of many items, including interrupts
and I/O. Later efforts in Linux kernels focused on scaling
the scheduler for larger numbers of processes and improv-
ing concurrency through the networking subsystem.

SCALING ENHANCEMENTS IN SOLARIS
The Solaris operating system is built around the concept
of concurrency, and serialization is restricted to very small
and critical parts of data structures. The operating system
is designed around the notion that execution contexts
are individual software threads, which are scheduled and
executed in parallel where possible.

Replacing the original Unix memory allocators with
the Slab5 and Vmem6 allocators led to significant scal-
ability gains. These provide consistent in-time allocations
as the object set sizes grow, and they pay special atten-
tion to avoid locking by providing per-processor pools of
memory that allow allocations and deallocations to occur
without having to access global structures.

Scalable I/O is achieved by allowing requesting threads
to execute concurrently even within the same device
driver, and further by processing interrupts from hard-
ware devices as separate threads, allowing scaling of inter-
rupt handling.7

In some cases, there are requirements for high levels
of concurrent access to data structures. For example, per-

EXTREME
Software Scaling

MultiprocessorsFO
CU

S

 QUEUE September 2005 45 more queue: www.acmqueue.com

formance statistics for I/O devices require updates from
potentially thousands of concurrent operations. To miti-
gate contention around these types of structures, statistics
are kept on a per-processor basis and then aggregated
when required. This allows concurrent access to updates,
requiring serialization only when the statistics are read.

The Solaris networking code was rearchitected to elimi-
nate the majority of the global data structures by intro-
ducing a per-connection vertical perimeter.8 This allows
the TCP/IP implementation to operate in near-lockless
mode within a single connection, requiring locking only
when global events such as routing changes occur.

Integrated observation tools are key to optimizing
scaling issues. Facilities for observing sources of locking
contention on systems with live workloads have been
critical to making improvements in important areas.
More recently, Dtrace, perhaps one of the more revolu-
tionary approaches to performance optimization, allows
dynamic instrumentation of C and Java code.9 It can
quickly pinpoint sources of contention from the top of
the application stack through the operating system.

These types of techniques allow the Solaris kernel to
scale to thousands of threads, up to 1 million I/Os per
second, and several hundred physical processors. Con-
veniently, this scaling work can be leveraged for CMP
systems. Techniques such as those described here, which
are vital for large SMP scaling, are now required even
for entry-level CMP systems. Within the next fi ve years,
expect to see CMP hardware scaling to as many as 512
processor threads per system, pushing the requirements
of operating system scaling past the extreme end of that
realized today.

OPERATING SYSTEM UTILIZATION METRICS
The reporting of processor utilization on systems with
multithreaded cores poses a challenge. In a single-core
chip, throughput often increases proportionally with pro-
cessor utilization. In a multithreaded chip, there is much
greater opportunity for sharing of resources between
hardware threads, and therefore a nonlinear relationship
exists between throughput and the actual utilization of a
processor. As a result, calculation of “headroom” based on
reported processor utilization may no longer be accurate.

For example, a processor core with two threads (such
as an Intel Xeon) presents itself to the operating system as
two separate processors. If a software thread fully uses one
of the threads and the other is completely idle, the pro-
cessor will appear 50 percent busy and be reported as such
by the operating system. Running two of these threads on
the processor may often yield only a 10 percent through-
put increase on Xeon architecture, but since both threads
are utilized, it will report as 100 percent busy. So this
system now reports 50 percent utilization when it’s at 90
percent of its maximum throughput.

This effect will vary depending on how many of the
resources are shared by hardware threads within the
processor, and ultimately will need some redefi nition of
the meaning of system utilization metrics, together with
some new facilities for reporting. The impact on capacity
planning methodology will also need to be considered.

LEVERAGING VIRTUALIZATION FOR PARALLELISM
So far we have examined how to fi nd ways to use the
many hardware threads available with CMTs by scaling
individual applications or operating systems. Another

Different Types of Virtualization

application

Solaris

virtual machine

container

application application

container
application

server

Solaris

application

Solaris

virtual machine

memory backplane memory backplane

server

FIG 6FIG 6

46 September 2005 QUEUE rants: feedback@acmqueue.com

way to use these resources effectively is to run multiple
nonscalable applications or even several unoptimized
operating systems at once, using techniques such as oper-
ating system or server virtualization.

These facilities typically allow multiple instances of an
application to be consolidated onto a single server (see
figure 6).

For example, the Solaris Container facility allows mul-
tiple applications to reside within a single operating sys-
tem instance. In such an environment, you can leverage
the cumulative concurrency as applications are added. By
adding two Web servers, each of which has concurrency
of 16 threads, you can potentially increase the system-
wide concurrency to 32 threads. This side effect presents a
useful mechanism that allows you to deploy applications
with limited scalability in a manner that can exploit the
full concurrency of a CMP system.

Another relevant virtualization technology is the
virtual machine environment, which allows multiple
operating system instances to run on a single hardware
platform. Examples of virtual machine technologies are
VMware and Xen. These environments allow consolida-
tion of applications and operating systems on a single
system, which provides a mechanism to deploy even
nonscalable operating systems on CMP architectures,
albeit with a little more complexity.

CMP REQUIRES A RETHINKING BY DEVELOPERS
The introduction of CMP systems represents a significant
opportunity to scale systems in a new dimension. The
most significant impact of CMP systems is that the degree
of scaling is being increased by an order of magnitude:
what was a low-end one- to two-processor entry-level
system should now be viewed as a 16- to 32-way system,
and soon even midrange systems will be scaling to several
hundred ways.

For application developers, this represents a new or
revised focus on intra-machine scalability within applica-
tions and a rethinking of how software license fees are
calculated. For operating system developers, scalability
to hundreds of ways is going to be a requirement. For
deployment practitioners, CMP represents a new way to
scale applications and will require consideration in the
systems we architect, the way we tune, and the tech-
niques we use for capacity planning. Q

REFERENCES
1. AMD Opteron Processor; http://www.amd.com.
2. Kongetira, P., Aingaran, K., and Olukotun, K. 2005.

Niagara: a 32-way multithreaded SPARC processor.
IEEE Micro 25 (2): 21–29.

3. Amdahl, G. M. 1967. Validity of the single-processor
approach to achieving large-scale computing capabili-
ties. Proceedings of AFIPS Conference: 483-485.

4. The FreeBSD SMP Project; http://www.freebsd.org/
smp/.

5. Bonwick, J. 1994. The Slab allocator: an object-caching
kernel memory allocator. Sun Microsystems.

6. Bonwick, J., and Adams, J. 2001. Magazines and
Vmem: extending the Slab allocator to many CPUs and
arbitrary resources. Sun Microsystems and California
Institute of Technology.

7. Kleiman, S., and Eykholt, J. 1995. Interrupts as threads.
ACM Sigops Operating Systems Review 29 (2): 21-26.

8. Tripathi, S. 2005. Solaris OS network performance. Sun
White Paper (February).

9. Cantrill, B. M., Shapiro, M. W., Leventhal, A.H. 2004.
Dynamic instrumentation of production systems.
Usenix Proceedings.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

RICHARD McDOUGALL, had he lived 100 years ago, would
have had the hood open on the first four-stroke internal
combustion gasoline-powered vehicle, exploring new tech-
niques for making improvements. He would be looking for
simple ways to solve complex problems and helping pioneer-
ing owners understand how the technology worked to get
the most from their new experience. These days, McDougall
uses technology to satisfy his curiosity. He is a Distinguished
Engineer at Sun Microsystems, specializing in operating sys-
tems technology and system performance. McDougall is the
author of Solaris Internals (Prentice Hall, 2000; second edi-
tion, 2005), and Resource Management (Prentice Hall, 1999).
© 2005 ACM 1542-7730/05/0900 $5.00

EXTREME
Software Scaling

MultiprocessorsFO
CU

S

Managing
Projects & Teams

Plan-Driven
Development

Agile
Development

Process Improvement
& Measurement

Testing & Quality
Assurance

Security &
Special Topics

DEVELOPMENT
L I F E CYC L E
PRACTICES

THE LATEST IN SOFTWARE
DEVELOPMENT TODAY

Find the Balance

REGISTER NOW!
www.sqe.com/bettersoftwareconf

www.sqe.com

SEPTEMBER 19–22, 2005
SAN FRANCISCO, CA
Hyatt Regency San Francisco Airport

http://www.sqe.com/bettersoftwareconf

48 September 2005 QUEUE rants: feedback@acmqueue.com

The Price of The

 QUEUE September 2005 49 more queue: www.acmqueue.com

In the late 1990s, our research group at DEC was one of
a growing number of teams advocating the CMP (chip
multiprocessor) as an alternative to highly complex
single-threaded CPUs. We were designing the Piranha sys-
tem,1 which was a radical point in the CMP design space
in that we used very simple cores (similar to the early
RISC designs of the late ’80s) to provide a higher level of
thread-level parallelism. Our main goal was to achieve the
best commercial workload performance for a given silicon
budget.

Today, in developing Google’s computing infra-
structure, our focus is broader than performance alone.
The merits of a particular architecture are measured by

answering the following question: Are
you able to afford the computational
capacity you need? The high-compu-
tational demands that are inherent in
most of Google’s services have led us
to develop a deep understanding of the
overall cost of computing, and continu-

ally to look for hardware/software designs that optimize
performance per unit of cost.

This article addresses some of the cost trends in a
large-scale Internet service infrastructure and highlights
the challenges and opportunities for CMP-based systems
to improve overall computing platform cost efficiency.

UNDERSTANDING SYSTEM COST
The systems community has developed an arsenal of tools
to measure, model, predict, and optimize performance.
The community’s appreciation and understanding of
cost factors, however, remain less developed. Without
thorough consideration and understanding of cost, the
true merits of any one technology or product remain
unproven.

We can break down the TCO (total cost of ownership)
of a large-scale computing cluster into four main compo-
nents: price of the hardware, power (recurring and initial
data-center investment), recurring data-center operations
costs, and cost of the software infrastructure.

Often the major component of TCO for commercial
deployments is software. A cursory inspection of the price
breakdown for systems used in TPC-C benchmark filings
shows that per-CPU costs of just operating systems and
database engines can range from $4,000 to $20,000.2
Once the license fees for other system software compo-
nents, applications, and management software are added
up, they can dwarf all other components of cost. This is
especially true for deployments using mid- and low-end
servers, since those tend to have larger numbers of less

An Economic Case for
Chip Multiprocessing

LUIZ ANDRÉ BARROSO, GOOGLE

MultiprocessorsFO
CU

S
Performance

50 September 2005 QUEUE rants: feedback@acmqueue.com

expensive machines but can incur signifi cant software
costs because of still-commonplace per-CPU or per-server
license-fee policies.

Google’s choice to produce its own software infra-
structure in-house and to work with the open source
community changes that cost distribution by greatly
reducing software costs (software development costs still
exist, but are amortized over large CPU deployments). As
a result, it needs to pay special attention to the remaining
components of cost. Here I will focus on cost components
that are more directly affected by system-design choice:
hardware and power costs.

Figure 1 shows performance, performance-per-server
price, and performance-per-watt trends from three suc-
cessive generations of Google server platforms. Google’s
hardware solutions include the use of low-end serv-
ers.3 Such systems are based on high-volume, PC-class
components and thus deliver increasing performance for
roughly the same cost over successive generations, result-
ing in the upward trend of the performance-per-server
price curve. Google’s fault-tolerant software design meth-
odology enables it to deliver highly available services
based on these relatively less-reliable building blocks.

Nevertheless, performance per watt has remained
roughly fl at over time, even after signifi cant efforts to
design for power effi ciency.
In other words, every gain
in performance has been
accompanied by a propor-
tional infl ation in overall
platform power consump-
tion. The result of these
trends is that power-related
costs are an increasing frac-
tion of the TCO.

Such trends could
have a signifi cant impact
on how computing costs
are factored. The follow-
ing analysis ignores other
indirect power costs and
focuses solely on the cost
of energy. A typical low-
end x86-based server today
can cost about $3,000 and
consume an average of 200
watts (peak consumption

can reach over 300 watts). Typical power delivery inef-
fi ciencies and cooling overheads will easily double that
energy budget. If we assume a base energy cost of nine
cents per kilowatt hour and a four-year server lifecycle,
the energy costs of that system today would already be
more than 40 percent of the hardware costs.

And it gets worse. If performance per watt is to remain
constant over the next few years, power costs could eas-
ily overtake hardware costs, possibly by a large margin.
Figure 2 depicts this extrapolation assuming four differ-
ent annual rates of performance and power growth. For
the most aggressive scenario (50 percent annual growth
rates), power costs by the end of the decade would dwarf
server prices (note that this doesn’t account for the
likely increases in energy costs over the next few years).
In this extreme situation, in which keeping machines
powered up costs signifi cantly more than the machines
themselves, one could envision bizarre business models
in which the power company will provide you with free
hardware if you sign a long-term power contract.

The possibility of computer equipment power con-
sumption spiraling out of control could have serious
consequences for the overall affordability of computing,
not to mention the overall health of the planet. It should
be noted that although the CPUs are responsible for only

MultiprocessorsFO
CU

S

Three Successive Generations of Google Hardware

pe
rf

or
m

an
ce

hardware platform generations
A B

performance

performance/server price

performance/watt

C
0

2

4

6

8

10

12

14

16

18

The Price of Performance

FIG 1FIG 1

 QUEUE September 2005 51 more queue: www.acmqueue.com

a fraction of the total system power budget, that frac-
tion can easily reach 50 percent to 60 percent in low-end
server platforms.

THE CMP AND COMPUTING EFFICIENCY
The eventual introduction of processors with CMP tech-
nology is the best (and perhaps only) chance to avoid the
dire future envisioned above. As discussed in the opening
article of this issue (“The Future of Microprocessors,” by
Kunle Olukotun and Lance Hammond), if thread-level
parallelism is available, using the transistor and energy
budget for additional cores is more likely to yield higher
performance than any other techniques we are aware of.
In such a thread-rich environment, prediction and specu-
lation techniques need to be extremely accurate to justify
the extra energy and real estate they require, as there will
be nonspeculative instructions ready to execute from
other threads. Unfortunately, many server-class workloads
are known to exhibit poor instruction-level parallelism;4
therefore, they are a poor match for the aggressive specu-
lative out-of-order cores that are common today.

Some key workloads at Google share such behavior.
Our index-serving application, for example, retires on
average only one instruction every two CPU cycles on
modern processors, badly underutilizing the multiple
issue slots and functional units available. This is caused
by the use of data structures that are too large for on-chip
caches, and a data-dependent control fl ow that exposes

the pipeline to large DRAM latencies. Such behavior also
causes the memory system to be under utilized, since
often a new memory access cannot be issued until the
result of a previous one is available. There is enough
unpredictability in both control fl ow and memory access
streams to render speculation techniques relatively inef-
fective. This same workload, however, exhibits excellent
thread-level speedup on traditional multiprocessors,
simultaneous multithreaded systems, and CMPs.5

The Piranha implementation took the lessons from
commercial workload behavior to heart: If there are
enough threads (hardware and software), one should
never have to speculate. The eight CPU cores were a
throwback to early RISC designs: single-issue, in-order,
nonspeculative. The fi rst Piranha chip was expected to
outperform state-of-the-art CPUs by more than a factor of
two at nearly half the power consumption. What makes
this especially signifi cant is that this was achieved despite
our team having completely ignored power effi ciency as
a design target. This is a good illustration of the inherent
power-effi ciency advantages of the CMP model.

Recent product announcements also provide insights
into the power-effi ciency potential of CMP microarchitec-
tures. Both AMD and Intel are introducing CMP designs
that stay within approximately the same power envelope
of their previous-generation single-core offerings. For
example, AMD reports that its dual-core Opteron 275
model outperforms its single-core equivalent (Opteron

248) by about 1.8 times on
a series of benchmarks,6 at
a power envelope increase
of less than 7 percent.
Even if we pessimistically
assume that the whole
platform power increases
by that same amount,
the power effi ciency of
the dual-core platform
(performance per watt)
is still nearly 70 percent
better than the single-core
platform. Indeed, process
technology improvements
do play a large role in
achieving this, but the fact
remains that for the fi rst
time in many processor
generations we are looking
at dramatic power-effi -
ciency improvements.

Extrapolation of Hardware and Power Costs for Low-End Servers*

pr
ic

e
($

)

time (years)
0 1 2 3 4

hardware power
(20% growth)

power
(30% growth)

power
(40% growth)

power
(50% growth)

5
0

2000

4000

6000

8000

10000

*assumes constant performance/watt
 over the next five years FIG 2FIG 2

52 September 2005 QUEUE rants: feedback@acmqueue.com

SLOW PACE
In our first Piranha paper published in 2000 we described
chip multiprocessing as an inevitable next step in micro-
architectural evolution. Although this is no longer a
controversial view, it is nevertheless surprising that it has
taken so long for this architecture to achieve widespread
acceptance. I am particularly surprised that more aggres-
sive CMP architectures—those (like Piranha) that trade
single-threaded performance for additional thread-level
parallelism—are only now beginning to appear in com-
mercial products7 and are unlikely to be widely available
for quite some time.

The commercial introduction of CMPs seems to be
following a more measured approach in which fairly
complex cores are being slowly added to the die as the
transistor budget increases every process generation. If
CMPs have such compelling potential, why is it taking so
long for that potential to be realized? There are four main
reasons for this:

It’s the power envelope, stupid. As it turned out,
contrary to what we envisioned during the Piranha devel-
opment, design complexity and performance alone were
not compelling enough to trigger a switch to CMP archi-
tectures; power was. In order to steer away from expen-
sive cooling technologies, chip developers had to stay
within power density boundaries that became increas-
ingly difficult to meet with conventional techniques.

Marketing matters. Megahertz is a performance
metric that is easy to understand and communicate
to consumers. Although it is a very poor indicator of
application performance, the same can be said for most
popular benchmarks. When given a choice between a
bogus metric that sells and one that doesn’t, the outcome
is predictable. Unfortunately, the MHz competition has
reinforced the direction toward larger and more complex
single-threaded systems, and away from CMPs.

Execution matters. Many of us underestimated the
incredible engineering effort that went into making con-
ventional complex cores into very successful products.
Seemingly suboptimal architectures can be made into
winning solutions with the right combination of talent,
drive, and execution.

Threads aren’t everywhere yet. Although server-
class workloads have been multithreaded for years, the
same cannot be said yet for desktop workloads. Since
desktop volume still largely subsidizes the enormous cost
of server CPU development and fabrication, the lack of

threads in the desktop has made CMPs less universally
compelling. I will expand on this issue later in this article.

DREADING THREADING
Much of the industry’s slowness in adopting CMP designs
reflects a fear that the CMP opportunity depends on
having enough threads to take advantage of that oppor-
tunity. Such fear seems to be based mainly on two factors:
parallel programming complexity and the thread-level
speedup potential of common applications.

The complexity of parallel software can slow down
programmer productivity by making it more difficult to
write correct and efficient programs. Computer science
students’ limited exposure to parallel programming, lack
of popular languages with native support for parallelism,
and the slow progress of automatic compiler paralleliza-
tion technology all contribute to the fear that many
applications will not be ready to take advantage of multi-
threaded chips.

There is reason for optimism, though. The ever-grow-
ing popularity of small multiprocessors is exposing more
programmers to parallel hardware. More tools to spot
correctness and performance problems are becoming
available (e.g., thread checkers8 and performance debug-
gers9). Also, a few expert programmers can write efficient
threaded code that is in turn leveraged by many others.
Fast-locking and thread-efficient memory allocation
libraries are good examples of programming work that
is highly leveraged. On a larger scale, libraries such as
Google’s MapReduce10 can make it easier for programmers
to write efficient applications that mine huge datasets
using hundreds or thousands of threads.

While it’s true that some algorithms are hard to paral-
lelize efficiently, the majority of problem classes that
demand the additional performance of CMPs are not.
The general principle here is that, with few exceptions,
the more data one has, the easier it is to obtain parallel
speedup. That’s one of the reasons why database applica-
tions have been run as parallel workloads successfully for
well over a decade. At Google we have generally been able
to tune our CPU-intensive workloads to scale to increas-
ing numbers of hardware threads whenever needed—that
is, whenever servers with higher numbers of hardware
contexts become economically attractive.

The real challenge for CMPs is not at the server but the
desktop level. Many popular desktop applications have
not been parallelized yet, in part because they manipulate

MultiprocessorsFO
CU

S
The Price of Performance

 QUEUE September 2005 53 more queue: www.acmqueue.com

modest datasets, and in part because multithreaded CPUs
have only recently been introduced to that market seg-
ment. As more data-intensive workloads (such as speech
recognition) become common at the desktop, CMP sys-
tems will become increasingly attractive for that segment.

It is important to note that CMPs are a friendly target
platform for applications that don’t parallelize well. Com-
munication between concurrent threads in a CMP can
be an order of magnitude faster than in traditional SMP
systems, especially when using shared on-chip caches.
Therefore, workloads that require significant communica-
tion or synchronization among threads will pay a smaller
performance penalty. This characteristic of CMP architec-
tures should ease the programming burden involved in
initial parallelization of the established code base.

CMP HEADING FOR MAINSTREAM ACCEPTANCE
A highly cost-efficient distributed computing system is
essential to large-scale services such as those offered by
Google. For these systems, given the distributed nature of
the workloads, single-threaded performance is much less
important than the aggregate cost/performance ratio of
an entire system. Chip multiprocessing is a good match
for such requirements. When running these inherently
parallel workloads, CMPs can better utilize on-chip
resources and the memory system than traditional
wide-issue single-core architectures, leading to higher
performance for a given silicon budget. CMPs are also
fundamentally more power-efficient than traditional CPU
designs and therefore will help keep power costs under
control over the next few years. Note, however, that
CMPs cannot solve the power-efficiency challenge alone,
but can simply mitigate it for the next two or three CPU
generations. Fundamental circuit and architectural inno-
vations are still needed to address the longer-term trends.

The computing industry is ready to embrace chip mul-
tiprocessing as the mainstream solution for the desktop
and server markets, yet it appears to be doing so with
some reluctance. CMP parallelism is being introduced
only when it is absolutely necessary to remain within
a safe thermal envelope. This approach minimizes any
significant losses in single-threaded performance, but it
is unlikely to realize the full cost-efficiency potential of
chip multiprocessing. A riskier bet on slower cores could
have a much larger positive impact on the affordability of
high-performance systems. Q

REFERENCES
1. Barroso, L. A., Gharachorloo, K., McNamara, R.,

Nowatzyk, A., Qadeer, S., Sano, B., Smith, S., Stets, R.,

and Verghese, B. 2000. Piranha: a scalable architecture
based on single-chip multiprocessing. Proceedings of
the 27th ACM International Symposium on Computer
Architecture (June), Vancouver, BC.

2. Transaction Processing Performance Council. Execu-
tive summary reports for TPC-C benchmark filings;
http://www.tpc.org.

3. Hoelzle, U., Dean, J., and Barroso, L. A. 2003. Web
search for a planet: the architecture of the Google
cluster. IEEE Micro Magazine (April).

4. Ranganathan, P., Gharachorloo, K., Adve, S., and Bar-
roso, L.A. 1998. Performance of database workloads
on shared memory systems with out-of-order proces-
sors. Proceedings of the Eighth International Conference
on Architecture Support for Programming Languages and
Operating Systems (ASPLOS VIII), San Jose, CA.

5. See Reference 3.
6. AMD competitive server benchmarks; http://www.

amd.com/us-en/Processors/ProductInformation/0,,30_
118_8796_8800~97051,00.html.

7. Kongetira, P., Aingaran, K., and Olukotun, K. 2005.
Niagara: a 32-way multithreaded SPARC processor.
IEEE Micro Magazine (March/April); http://www
.computer.org/micro.

8. Intel Corporation. Intel thread checker; http://devel-
oper.intel.com/software/products/threading/tcwin.

9. Seward, J. Valgrind; http://valgrind.kde.org/.
10. Dean, J., and Ghemawat, S. 2004. MapReduce: simpli-

fied data processing on large clusters. Proceedings of
OSDI, San Francisco, CA.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

ACKNOWLEDGMENTS
The author thanks Wolf-Dietrich Weber and Christopher
Lyle Johnson for their careful review of the manuscript.

LUIZ ANDRÉ BARROSO is a principal engineer at Google,
where he leads the platforms engineering group. He has
worked on several aspects of Google’s systems infrastruc-
ture, including load balancing, fault detection and recovery,
communication libraries, performance optimization, and the
computing platform design. Prior to Google he was on the
research staff at Compaq and DEC, where he investigated
processor and memory system architectures for commercial
workloads and co-architected the Piranha system. Barroso
holds a Ph.D. in computer engineering from USC, and a
B.Sc. and M.S. in electrical engineering from PUC-Rio, Brazil.
© 2005 ACM 1542-7730/05/0900 $5.00

54 September 2005 QUEUE rants: feedback@acmqueue.com

Software
and the
Concurrency
Revolution

Leveraging the full power
of multicore processors demands
new tools and new thinking
from the software industry.

Concurrency has long been touted as the “next
big thing” and “the way of the future,” but for the past
30 years, mainstream software development has been
able to ignore it. Our parallel future has finally arrived:
new machines will be parallel machines, and this will
require major changes in the way we develop software.

The introductory article in this issue (“The Future
of Microprocessors” by Kunle Olukotun and Lance
Hammond) describes the hardware imperatives behind
this shift in computer architecture from uniprocessors
to multicore processors, also known as CMPs (chip
multiprocessors). (For related analysis, see “The Free
Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software.”1)

In this article we focus on the implications of con-
currency for software and its consequences for both
programming languages and programmers.

The hardware changes that Olukotun and Ham-
mond describe represent a fundamental shift in
computing. For the past three decades, improvements
in semiconductor fabrication and processor implemen-
tation produced steady increases in the speed at which
computers executed existing sequential programs. The
architectural changes in multicore processors benefit
only concurrent applications and therefore have little
value for most existing mainstream software. For the
foreseeable future, today’s desktop applications will

HERB SUTTER AND JAMES LARUS, MICROSOFT

 QUEUE September 2005 55 more queue: www.acmqueue.com

MultiprocessorsFO
CU

S

56 September 2005 QUEUE rants: feedback@acmqueue.com

not run much faster than they do now. In fact, they may
run slightly slower on newer chips, as individual cores
become simpler and run at lower clock speeds to reduce
power consumption on dense multicore processors.

That brings us to a fundamental turning point in
software development, at least for mainstream software.
Computers will continue to become more and more
capable, but programs can no longer simply ride the
hardware wave of increasing performance unless they are
highly concurrent.

Although multicore performance is the forcing
function, we have other reasons to want concurrency:
notably, to improve responsiveness by performing work
asynchronously instead of synchronously. For example,
today’s applications must move work off the GUI thread
so it can redraw the screen while a computation runs in
the background.

But concurrency is hard. Not only are today’s lan-
guages and tools inadequate to transform applications
into parallel programs, but also it is difficult to find
parallelism in mainstream applications, and—worst of
all—concurrency requires programmers to think in a way
humans find difficult.

Nevertheless, multicore machines are the future, and
we must figure out how to program them. The rest of this
article delves into some of the reasons why it is hard, and
some possible directions for solutions.

CONSEQUENCES: A NEW ERA IN SOFTWARE
Today’s concurrent programming languages and tools are
at a level comparable to sequential programming at the
beginning of the structured programming era. Sema-
phores and coroutines are the assembler of concurrency,
and locks and threads are the slightly higher-level struc-
tured constructs of concurrency. What we need is OO for
concurrency—higher-level abstractions that help build
concurrent programs, just as object-oriented abstractions
help build large componentized programs.

For several reasons, the concurrency revolution is
likely to be more disruptive than the OO revolution.

First, concurrency will be integral to higher performance.
Languages such as C ignored OO and remained usable for
many programs. If concurrency becomes the sole path to
higher-performance hardware, commercial and systems
programming languages will be valued on their support
for concurrent programming. Existing languages, such as
C, will gain concurrent features beyond simple models
such as pthreads. Languages that fail to support concur-
rent programming will gradually die away and remain
useful only when modern hardware is unimportant.

The second reason that concurrency will be more
disruptive than OO is that, although sequential program-
ming is hard, concurrent programming is demonstrably
more difficult. For example, context-sensitive analysis of
sequential programs is a fundamental technique for tak-
ing calling contexts into account when analyzing a pro-
gram. Concurrent programs also require synchronization
analysis, but simultaneously performing both analyses is
provably undecidable.2

Finally, humans are quickly overwhelmed by concur-
rency and find it much more difficult to reason about
concurrent than sequential code. Even careful people
miss possible interleavings among simple collections of
partially ordered operations.

DIFFERENCES BETWEEN CLIENT AND
SERVER APPLICATIONS
Concurrency is a challenging issue for client-side applica-
tions. For many server-based programs, however, concur-
rency is a “solved problem,” in that we routinely architect
concurrent solutions that work well, although program-
ming them and ensuring they scale can still require a
huge effort. These applications typically have an abun-
dance of parallelism, as they simultaneously handle many
independent request streams. For example, a Web server
or Web site independently executes thousands of copies
of the same code on mostly nonoverlapping data.

In addition, these executions are well isolated and
share state via an abstract data store, such as a database
that supports highly concurrent access to structured data.
The net effect is that code that shares data through a
database can keep its “peaceful easy feeling”—the illusion
of living in a tidy, single-threaded universe.

The world of client applications is not nearly as well
structured and regular. A typical client application exe-
cutes a relatively small computation on behalf of a single
user, so concurrency is found by dividing a computa-
tion into finer pieces. These pieces, say the user interface
and program’s computation, interact and share data in
myriad ways. What makes this type of program difficult

Software
and the
Concurrency
Revolution

 QUEUE September 2005 57 more queue: www.acmqueue.com

to execute concurrently are nonhomogeneous code; fine-
grained, complicated interactions; and pointer-based data
structures.

PROGRAMMING MODELS
Today, you can express parallelism in a number of differ-
ent ways, each applicable to only a subset of programs.
In many cases, it is difficult, without careful design and
analysis, to know in advance which model is appropriate
for a particular problem, and it is always tricky to com-
bine several models when a given application does not fit
cleanly into a single paradigm.

These parallel programming models differ significantly
in two dimensions: the granularity of the parallel opera-
tions and the degree of coupling between these tasks. Dif-
ferent points in this space favor different programming
models, so let’s examine these axes in turn.

Operations executed in parallel can range from single
instructions, such as addition or multiplication, to com-
plex programs that take hours or days to run. Obviously,
for small operations, the overhead costs of the parallel
infrastructure are significant; for example, parallel instruc-
tion execution generally requires hardware support.
Multicore processors reduce communication and syn-
chronization costs, as compared with conventional mul-
tiprocessors, which can reduce the overhead burden on
smaller pieces of code. Still, in general, the finer grained
the task, the more attention must be paid to the cost of
spawning it as a separate task and providing its communi-
cation and synchronization.

The other dimension is the degree of coupling in the
communication and synchronization between the opera-
tions. The ideal is none: operations run entirely inde-
pendently and produce distinct outputs. In this case, the
operations can run in any order, incur no synchroniza-
tion or communications costs, and are easily programmed
without the possibility of data races. This state of affairs
is rare, as most concurrent programs share data among
their operations. The complexity of ensuring correct and
efficient operation increases as the operations become
more diverse. The easiest case is executing the same code
for each operation. This type of sharing is often regular
and can be understood by analyzing only a single task.
More challenging is irregular parallelism, in which the
operations are distinct and the sharing patterns are more
difficult to comprehend.

INDEPENDENT PARALLELISM
Perhaps the simplest and best-behaved model is indepen-
dent parallelism (sometimes called “embarrassingly paral-

lel tasks”), in which one or more operations are applied
independently to each item in a data collection.

Fine-grained data parallelism relies on the indepen-
dence of the operations executed concurrently. They
should not share input data or results and should be
executable without coordination. For example:

double A[100][100];
…
A = A * 2;

multiplies each element of a 100x100 array by 2 and
stores the result in the same array location. Each of the
10,000 multiplications proceeds independently and with-
out coordination with its peers. This is probably more
concurrency than necessary for most computers, and
its granularity is very fine, so a more practical approach
would partition the matrix into n x m blocks and execute
the operations on the blocks concurrently.

At the other end of the granularity axis, some applica-
tions, such as search engines, share only a large read-only
database, so concurrently processing queries requires no
coordination. Similarly, large simulations, which require
many runs to explore a large space of input parameters,
are another embarrassingly parallel application.

REGULAR PARALLELISM
The next step beyond independent parallelism is to apply
the same operation to a collection of data when the com-
putations are mutually dependent. An operation on one
piece of data is dependent on another operation if there
is communication or synchronization between the two
operations.

For example, consider a stencil computation that
replaces each point in an array, the average of its four
nearest neighbors:

A[i, j] = (A[i-1, j] + A[i, j-1] + A[i+1, j] + A[i, j+1]) / 4;

This computation requires careful coordination to ensure
that an array location is read by its neighbors before
being replaced by its average. If space is no concern,
then the averages can be computed into a new array. In
general, other more structured computation strategies,
such as traversing the array in a diagonal wavefront, will
produce the same result, with better cache locality and
lower memory consumption.

Regular parallel programs may require synchronization
or carefully orchestrated execution strategies to produce
the correct results, but unlike general parallelism, the

58 September 2005 QUEUE rants: feedback@acmqueue.com

code behind the operations can be analyzed to determine
how to execute them concurrently and what data they
share. This advantage is sometimes hypothetical, since
program analysis is an imprecise discipline, and suffi-
ciently complex programs are impossible for compilers to
understand and restructure.

At the other end of the granularity axis, computa-
tions on a Web site are typically independent except for
accesses to a common database. The computations run
in parallel without a significant amount of coordination
beyond the database transactions. This ensures that con-
current access to the same data is consistently resolved.

UNSTRUCTURED PARALLELISM
The most general, and least disciplined, form of parallel-
ism is when the concurrent computations differ, so that
their data accesses are not predictable and need to be
coordinated through explicit synchronization. This is the
form of parallelism most common in programs written
using threads and explicit synchronization, in which
each thread has a distinct role in the program. In general,
it is difficult to say anything specific about this form of
parallelism, except that conflicting data accesses in two
threads need explicit synchronization; otherwise, the
program will be nondeterministic.

THE PROBLEM OF SHARED STATE, AND
WHY LOCKS AREN’T THE ANSWER
Another challenging aspect of unstructured parallelism is
sharing unstructured state. A client application typically
manipulates shared memory organized as unpredictably
interconnected graphs of objects.

When two tasks try to access the same object, and one
could modify its state, if we do nothing to coordinate
the tasks, we have a data race. Races are bad, because the
concurrent tasks can read and write inconsistent or cor-
rupted values.

There are a rich variety of synchronization devices
that can prevent races. The simplest of these is a lock.
Each task that wants to access a piece of shared data must

acquire the lock for that data, perform its computation,
and then release the lock so other operations on the data
can proceed. Unfortunately, although locks work, they
pose serious problems for modern software development.

A fundamental problem with locks is that they are
not composable. You can’t take two correct lock-based
pieces of code, combine them, and know that the result is
still correct. Modern software development relies on the
ability to compose libraries into larger programs, and so it
is a serious difficulty that we cannot build on lock-based
components without examining their implementations.

The composability issue arises primarily from the
possibility of deadlock. In its simplest form, deadlock
happens when two locks might be acquired by two tasks
in opposite order: task T1 takes lock L1, task T2 takes lock
L2, and then T1 tries to take L2 while T2 tries to take L1.
Both block forever. Because this can happen any time
two locks can be taken in opposite order, calling into
code you don’t control while holding a lock is a recipe for
deadlock.

That is exactly what extensible frameworks do, how-
ever, as they call virtual functions while holding a lock.
Today’s best-of-breed commercial application frameworks
all do this, including the .NET Frameworks and the Java
standard libraries. We have gotten away with it because
developers aren’t yet writing lots of heavily concur-
rent programs that do frequent locking. Many complex
models attempt to deal with the deadlock problem—with
backoff-and-retry protocols, for example—but they
require strict discipline by programmers, and some intro-
duce their own problems (e.g., livelock).

Techniques for avoiding deadlock by guarantee-
ing locks will always be acquired in a safe order do not
compose, either. For example, lock leveling and lock
hierarchies prevent programs from acquiring locks in con-
flicting order by requiring that all locks at a given level be
acquired at once in a predetermined order, and that while
holding locks at one level, you can acquire additional
locks only at higher levels. Such techniques work inside
a module or framework maintained by a team (although
they’re underused in practice), but they assume control
of an entire code base. That severely restricts their use in
extensible frameworks, add-in systems, and other situa-
tions that bring together code written by different parties.

A more basic problem with locks is that they rely on
programmers to strictly follow conventions. The rela-
tionship between a lock and the data that it protects is
implicit, and it is preserved only through programmer
discipline. A programmer must always remember to take
the right lock at the right point before touching shared

Software
and the
Concurrency
Revolution

 QUEUE September 2005 59 more queue: www.acmqueue.com

data. Conventions governing locks in a program are
sometimes written down, but they’re almost never stated
precisely enough for a tool to check them.

Locks have other more subtle problems. Locking is
a global program property, which is difficult to localize
to a single procedure, class, or framework. All code that
accesses a piece of shared state must know and obey the
locking convention, regardless of who wrote the code or
where it resides.

Attempts to make synchronization a local property
do not work all the time. Consider a popular solution
such as Java’s synchronized methods. Each of an object’s
methods can take a lock on the object, so no two threads
can directly manipulate the object’s state simultaneously.
As long as an object’s state is accessed only by its meth-
ods and programmers remember to add the synchronized
declaration, this approach works.

There are at least three major problems with synchro-
nized methods. First, they are not appropriate for types
whose methods call virtual functions on other objects
(e.g., Java’s Vector and .NET’s SyncHashTable), because
calling into third-party code while holding a lock opens
the possibility of deadlock. Second, synchronized methods
can perform too much locking, by acquiring and releas-
ing locks on all object instances, even those never shared
across threads (typically the majority). Third, synchro-
nized methods can also perform too little locking, by
not preserving atomicity when a program calls multiple
methods on an object or on different objects. As a simple
example of the latter, consider a banking transfer:

account1.Credit(amount); account2.Debit(amount)

Per-object locking protects each call, but does not prevent
another thread from seeing the inconsistent state of the
two accounts between the calls. Operations of this type,
whose atomicity does not correspond to a method call
boundary, require additional, explicit synchronization.

LOCK ALTERNATIVES
For completeness, we note two major alternatives to
locks. The first is lock-free programming. By relying on a
deep knowledge of a processor’s memory model, it is pos-
sible to create data structures that can be shared without
explicit locking. Lock-free programming is difficult and
fragile; inventing a new lock-free data-structure imple-
mentation is still often a publishable result.

The second alternative is transactional memory, which
brings the central idea of transactions from databases
into programming languages. Programmers write their

programs as a series of explicitly atomic blocks, which
appear to execute indivisibly, so concurrently execut-
ing operations see the shared state strictly before or after
an atomic action executes. Although many people view
transactional memory as a promising direction, it is still a
subject of active research.

WHAT WE NEED IN PROGRAMMING LANGUAGES
We need higher-level language abstractions, including
evolutionary extensions to current imperative languages,
so that existing applications can incrementally become
concurrent. The programming model must make concur-
rency easy to understand and reason about, not only dur-
ing initial development but also during maintenance.

EXPLICIT, IMPLICIT, AND AUTOMATIC PARALLELIZATION
Explicit programming models provide abstractions that
require programmers to state exactly where concurrency
can occur. The major advantage of expressing concur-
rency explicitly is that it allows programmers to take full
advantage of their application domain knowledge and
express the full potential concurrency in the application.
It has drawbacks, however. It requires new higher-level
programming abstractions and a higher level of program-
mer proficiency in the presence of shared data.

Implicit programming models hide concurrency
inside libraries or behind APIs, so that a caller retains a
sequential worldview while the library performs the work
in parallel. This approach lets naïve programmers safely
use concurrency. Its main drawback is that some kinds of
concurrency-related performance gains can’t be realized
this way. Also, it is difficult to design interfaces that do
not expose the concurrency in any circumstance—for
example, when a program applies the operation to several
instances of the same data.

Another widely studied approach is automatic paral-
lelization, where a compiler attempts to find parallel-
ism, typically in programs written in a conventional
language such as Fortran. As appealing as it may seem,
this approach has not worked well in practice. Accurate
program analysis is necessary to understand a program’s
potential behavior. This analysis is challenging for simple
languages such as Fortran, and far more difficult for
languages, such as C, that manipulate pointer-based data.
Moreover, sequential programs often use sequential algo-
rithms and contain little concurrency.

IMPERATIVE AND FUNCTIONAL LANGUAGES.
Popular commercial programming languages (e.g., Pascal,
C, C++, Java, C#) are imperative languages in which a

60 September 2005 QUEUE rants: feedback@acmqueue.com

programmer specifies step-by-step changes to variables
and data structures. Fine-grained control constructs (e.g.,
for loops), low-level data manipulations, and shared
mutable object instances make programs in these lan-
guages difficult to analyze and automatically parallelize.

The common belief is that functional languages, such
as Scheme, ML, or Haskell, could eliminate this difficulty
because they are naturally suited to concurrency. Pro-
grams written in these languages manipulate immutable
object instances, which pose no concurrency hazards.
Moreover, without side effects, programs seem to have
fewer constraints on execution order.

In practice, however, functional languages are not
necessarily conducive to concurrency. The parallelism
exposed in functional programs is typically at the level
of procedure calls, which is impractically fine-grained for
conventional parallel processors. Moreover, most func-
tional languages allow some side effects to mutable state,
and code that uses these features is difficult to parallelize
automatically.

These languages reintroduce mutable state for reasons
of expressibility and efficiency. In a purely functional lan-
guage, aggregate data structures, such as arrays or trees,
are updated by producing a copy containing a modified
value. This technique is semantically attractive but can be
terrible for performance (linear algorithms easily become
quadratic). In addition, functional updates do nothing to
discourage the writing of a strictly sequential algorithm,
in which each operation waits until the previous opera-
tion updates the program’s state.

The real contribution of functional languages to
concurrency comes in the higher-level programming
style commonly employed in these languages, in which
operations such as map or map-reduce apply computa-
tions to all elements of an aggregate data structure. These
higher-level operations are rich sources of concurrency.
This style of programming, fortunately, is not inherently
tied to functional languages, but is valuable in imperative
programs.

For example, Google Fellows Jeffrey Dean and Sanjay

Ghemawat describe how Google uses Map-Reduce to
express large-scale distributed computations.3 Imperative
languages can judiciously add functional style extensions
and thereby benefit from those features. This is important
because the industry can’t just start over. To preserve the
huge investment in the world’s current software, it is
essential to incrementally add support for concurrency,
while preserving software developers’ expertise and train-
ing in imperative languages.

BETTER ABSTRACTIONS
Most of today’s languages offer explicit programming at
the level of threads and locks. These abstractions are low-
level and difficult to reason about systematically. Because
these constructs are a poor basis for building abstractions,
they encourage multithreaded programming with its
problems of arbitrary blocking and reentrancy.

Higher-level abstractions allow programmers to
express tasks with inherent concurrency, which a runtime
system can then combine and schedule to fit the hard-
ware on the actual machine. This will enable applications
that perform better on newer hardware. In addition, for
mainstream development, programmers will value the
illusion of sequential execution within a task.

Two basic examples of higher-level abstractions are
asynchronous calls and futures. An asynchronous call is a
function or method call that is nonblocking. The caller
continues executing and, conceptually, a message is sent
to a task, or fork, to execute operation independently.
A future is a mechanism for returning a result from an
asynchronous call; it is a placeholder for the value that
has not yet materialized.

Another example of a higher-level abstraction is an
active object, which conceptually runs on its own thread
so that creating 1,000 such objects conceptually cre-
ates 1,000 potential threads of execution. An active
object behaves as a monitor, in that only one method
of the object executes at a given time, but it requires no
traditional locking. Rather, method calls from outside
an active object are asynchronous messages, marshaled,
queued, and pumped by the object. Active objects have
many designs, from specialized actor languages to COM
single-threaded apartments callable from traditional C
code, and many design variables.

Other higher-level abstractions are needed, such as
protocols to describe and check asynchronous message
exchange. Together they should bring together a consis-
tent programming model that can express typical applica-
tion concurrency requirements across all of the major
granularity levels.

Software
and the
Concurrency
Revolution

 QUEUE September 2005 61 more queue: www.acmqueue.com

WHAT WE NEED IN TOOLS
Parallel programming, because of its unfamiliarity and
intrinsic difficulty, is going to require better programming
tools to systematically find defects, help debug programs,
find performance bottlenecks, and aid in testing. Without
these tools, concurrency will become an impediment that
reduces developer and tester productivity and makes con-
current software more expensive and of lower quality.

Concurrency introduces new types of programming
errors, beyond those all too familiar in sequential code.
Data races (resulting from inadequate synchronization
and deadlocks) and livelocks (resulting from improper
synchronization) are difficult defects to find and under-
stand, since their behavior is often nondeterministic and
difficult to reproduce. Conventional methods of debug-
ging, such as reexecuting a program with a breakpoint set
earlier in its execution, do not work well for concurrent
programs whose execution paths and behaviors may vary
from one execution to the next.

Systematic defect detection tools are extremely valu-
able in this world. These tools use static program analysis
to systematically explore all possible executions of a
program; thus, they can catch errors that are impossible
to reproduce. Although similar techniques, such as model
checking, have been used with great success for finding
defects in hardware, which is inherently concurrent,
software is more difficult. The state space of a typical
program is far larger than that of most hardware, so tech-
niques that systematically explore an artifact’s states have
much more work to do. In both cases, modularity and
abstraction are the keys to making the analysis tractable.
In hardware model testing, if you can break off the ALU
(arithmetic logic unit) and analyze it independently of
the register file, your task becomes much more tractable.

That brings us to a second reason why software is more
difficulty to analyze: it is far harder to carve off pieces of
a program, analyze them in isolation, and then combine
the results to see how they work together. Shared state,
unspecified interfaces, and undocumented interactions
make this task much more challenging for software.

Defect detection tools for concurrent software
comprise an active area of research. One promising
technique from Microsoft Research called KISS (Keep it
Strictly Sequential)4 transforms a threaded program into
a sequential program whose execution behavior includes
all possible interleaves of the original threads that involve
no more than two context switches. The transformed
program can then be analyzed by the large number of
existing sequential tools, which then become concurrent
defect detection tools for this bounded model.

Even with advances such as these, programmers are
still going to need good debuggers that let them under-
stand the complex and difficult-to-reproduce interac-
tions in their parallel programs. There are two general
techniques for collecting this information. The first is
better logging facilities that track which messages were
sent to which process or which thread accessed which
object, so that a developer can look back and understand
a program’s partially ordered execution. Developers
will also want the ability to follow causality trails across
threads (e.g., which messages to one active object, when
executed, led to which other messages to other active
objects?), replay and reorder messages in queues, step
through asynchronous call patterns including callbacks,
and otherwise inspect the concurrent execution of their
code. The second approach is reverse execution, which
permits a programmer to back up in a program’s execu-
tion history and reexecute some code. Replay debugging
is an old idea, but its cost and complexity have been

barriers to adoption. Recently, virtual machine monitors
have reduced both factors.5 In a concurrent world, this
technique will likely become a necessity.

Performance debugging and tuning will require new
tools in a concurrent world as well. Concurrency intro-
duces new performance bottlenecks, such as lock con-
tention, cache coherence overheads, and lock convoys,
which are often difficult to identify with simple profil-
ers. New tools that are more aware of the underlying
computer architecture and the concurrent structure of a
program will be better able to identify these problems.

Testing, too, must change. Concurrent programs,
because of their nondeterministic behaviors, are more
difficult to test. Simple code coverage metrics, which
track whether a statement or branch has executed, need
to be extended to take into account the other code that
is executing concurrently, or else testing will provide

Debugging
and tuning will require
new tools in a concurrent world as well.

62 September 2005 QUEUE rants: feedback@acmqueue.com

an unrealistically optimistic picture of how completely
a program has been exercised. Moreover, simple stress
tests will need to be augmented by more systematic
techniques that use model-checking-like techniques to
explore systems’ state spaces. For example, Verisoft has
been very successful in using these techniques to find
errors in concurrent telephone switching software.6
Today, many concurrent applications use length of stress
testing to gain confidence that the application is unlikely
to contain serious races. In the future, that will increas-
ingly be insufficient, and software developers will need to
be able to prove their product’s quality through rigorous
deterministic testing instead of relying on a probabilistic
confidence based on stress tests.

PARALLELISM IS KEY
The concurrency revolution is primarily a software revo-
lution. The difficult problem is not building multicore
hardware, but programming it in a way that lets main-
stream applications benefit from the continued exponen-
tial growth in CPU performance.

The software industry needs to get back into the state
where existing applications run faster on new hardware.
To do that, we must begin writing concurrent applica-
tions containing at least dozens, and preferably hundreds,
of separable tasks (not all of which need be active at a
given point).

Concurrency also opens the possibility of new, richer
computer interfaces and far more robust and functional
software. This requires a new burst of imagination to find
and exploit new uses for the exponentially increasing
potential of new processors.

To enable such applications, programming language
designers, system builders, and programming tool
creators need to start thinking seriously about parallel-
ism and find techniques better than the low-level tools
of threads and explicit synchronization that are today’s
basic building blocks of parallel programs. We need
higher-level parallel constructs that more clearly express a
programmer’s intent, so that the parallel architecture of a

program is more visible, easily understood, and verifiable
by tools. Q

REFERENCES
1. Sutter, H. 2005. The free lunch is over: a fundamental

turn toward concurrency in software. Dr. Dobb’s Journal
30 (3); http://www.gotw.ca/publications/concurrency-
ddj.htm.

2. Ramalingam, G. 2000. Context-sensitive synchroniza-
tion-sensitive analysis is undecidable. ACM Transactions
on Programming Languages and Systems 22 (2): 416-430.

3. Dean, J., and Ghemawat, S. 2004. MapReduce: simpli-
fied data processing on large clusters. Proceedings of the
Sixth Symposium on Operating Systems Design and Imple-
mentation, San Francisco, CA: 137-150.

4. Qadeer, S., and Wu, D. 2004. KISS: Keep it Simple and
Sequential. Proceedings of the ACM SIGPLAN 2004 Con-
ference on Programming Language Design and Implementa-
tion, Washington, DC: 1-13.

5. King, S. T., Dunlap, G. W., and Chen, P. M. 2005.
Debugging operating systems with time-traveling
virtual machines. Proceedings of the 2005 Annual Usenix
Technical Conference, Anaheim, CA: 1-15.

6. Chandra, S., Godefroid, P., and Palm, C. 2002. Software
model checking in practice: an industrial case study.
Proceedings of the 24th International Conference on Soft-
ware Engineering, Orlando, FL: 431-441.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

HERB SUTTER is a software architect in Microsoft’s devel-
oper division. He chairs the ISO C++ standards committee,
and is the author of four books and more than 200 techni-
cal papers and articles, including the widely read “The Free
Lunch Is Over” essay on the concurrency revolution. He can
be reached at hsutter@microsoft.com.
JAMES LARUS is a senior researcher at Microsoft Research,
managing SWIG (Software Improvement Group), which
consists of the SPT (software productivity tools), TVM (test-
ing, verification, and measurement), and HIP (human inter-
actions in programming) research groups, and running the
Singularity research project. Before joining Microsoft, he was
an associate professor at the University of Wisconsin-Madi-
son, where he co-led the Wisconsin Wind Tunnel research
project. This DARPA- and NSF-funded project investigated
new approaches to building and programming parallel
shared-memory computers. Larus received his Ph.D. in com-
puter science from the University of California at Berkeley.
© 2005 ACM 1542-7730/05/0900 $5.00

Software
and the
Concurrency
Revolution

AD25

Associat ion for Comput ing Machinery

The F i rs t Soc iety in Comput ing

www.acm.org

 the

acm

the
new
acm

Looking for your next IT job? Need career advice?

Visit the new ACM Career Resource Centre!

ACM Members enjoy full access to the CRC!
View and apply for Jobs ◆ Perform advanced searches ◆ Advertise your resume for employers to view

◆ Maintain your personal account ◆ Receive email notification as matches are posted ◆ Manage your career

planning ◆ Refine your professional skills ◆ Master job search techniques ◆ Discover long-range IT trends

◆ Explore first-hand accounts from pros in the field ◆ Participate in career and technical forums ◆ Use exclusive

self-assessment tools to pinpoint strengths and weaknesses, develop career paths, and more!

New —
CareerNews, ACM’s biweekly digest of career news and resources for professionals and students!

For details on how ACM can help you manage your IT career, go to www.acm.org/crc

http://www.acm.org/crc

64 September 2005 QUEUE rants: feedback@acmqueue.com

M
ulticore is the new hot topic in the latest round of
CPUs from Intel, AMD, Sun, etc. With clock speed
increases becoming more and more diffi cult to

achieve, vendors have turned to multicore CPUs as the
best way to gain additional performance. Customers are
excited about the promise of more performance through
parallel processors for the same real estate investment.

For a handful of popular server-based enterprise appli-
cations, that may be true, but for desktop applications I
wouldn’t depend on that promise being fulfi lled anytime
soon. The expectation for multicore CPUs on the desktop
is to have all our desktop applications fully using all
the processor cores on the chip. Each application would
gracefully increase its performance as more and more pro-
cessors became available for use. Just like past increases
in clock speed and application bandwidth, increasing the
number of processor cores should produce similar perfor-
mance enhancements. It works for the popular enterprise
applications, so why not for desktop applications? Sounds
reasonable, right? Don’t count on it.

Sure, the major enterprise applications such as Oracle,
WebLogic, DB2, and Apache are designed to take full
advantage of multiple processors and are architected to
be MT (multithreaded). They have to be for the large SMP
(symmetric multiprocessing) servers that are the meat and
potatoes of their market.

Even though the concept of using concurrent CPUs to
increase overall software performance has been around
for at least 35 years, remarkably little in the way of devel-
opment tools has made it to the commercial marketplace.
As a result, the vast majority of applications are single-
threaded. Although multicore CPUs will allow you to
share a mix of applications across multiple processors,
individual application performance will remain bounded
by the speed of an individual processor. Application per-
formance will remain the same regardless of whether you
have one or 100 processors because each application can
run on only one processor at any given time.

With the possible exception of Java, there are no
widely used commercial development languages with MT
extensions. Realistically, until now there has not been
much of a need. The widespread availability of com-

mercial SMP systems did
not really arrive until the
early 1990s, and even then
multithreaded applications
came slowly.

When I was at Sun, the company rewrote SunOS to
take advantage of its new multithreading architecture.
It was a long and painful process. Initially, subsystems
were rewritten with locks at either end so they would be
assured to run as one big single thread (MT-safe) and then
rewritten again to be fully MT optimized (MT-hot) for
maximal concurrency. Everything was designed by hand
and there were no tools to manage the complexity.

Around the same time, Sun implemented a set of user
MT libraries that applications could use. As larger SMP
servers started to appear on Sun’s roadmap, the major
enterprise application vendors saw that they too had to
make the investment in converting their software to MT.
The experience was equally painful and similar to the
SunOS MT rewrite. Recognizing the need to make these
applications run MT-hot in order to sell their new SMP
servers, Sun leveraged its experience by assigning engi-
neers to these companies to help them in their migration.

The situation today is quickly becoming a replay
of what happened 10 years ago. Application vendors
requiring more CPU bandwidth can no longer count
on increased clock speeds for better performance and
functionality. Most large-scale client-side applications are
written in C or C++ and historically have been designed
to be single-threaded. Making applications MT-hot is
still a labor-intensive redelivery process. Although a few
vendors, most notably in the multimedia area, have made
some MT enhancements to their applications, they have
just started to pick off the low-hanging fruit. With multi-
core CPUs, widespread desktop performance and func-
tionality improvements are still years away.

What have the development tool vendors been doing
as MT architectures have evolved during the past decade
or so? It’s not as if anyone in the computer industry did
not see this coming. What can we expect in the future?
Given where the industry is today, the introduction of

Multicore CPUs
for the Masses

Mache Creeger, Emergent Technology Associates

Will increased

CPU BANDWIDTH

TRANSLATE INTO USABLE

DESKTOP PERFORMANCE?

curmudgeon

Continued on page 63

http://www.automatedqa.com

http://www.ibm.com/middleware/tools

