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eliminating object-relational mapping. It delivers massive scalability on minimal hardware,
requires little administration, and incorporates a rapid application development environment. 

These innovations mean faster time-to-market, lower cost of operations, and higher 
application performance. We back these claims with this money-back guarantee: Buy Caché 
for new application development, and for up to one year you can return the license for a full
refund if you are unhappy for any reason.* Caché is available for Unix, Linux, Windows, Mac
OS X, and OpenVMS – and it's deployed on more than 100,000 systems ranging from two to
over 50,000 users. We are InterSystems, a global software company with a track record of
innovation for more than 25 years.

Database With Multidimensional Appeal.

Rapid development with robust objects Lightning speed with a multidimensional engine

Easy database administration

Try an innovative database for free: Download a fully functional, non-expiring copy of Caché, or request it on CD, at www.InterSystems.com/Cache15S
* Read about our money-back guarantee at the web page shown above.

© 2005 InterSystems Corporation.  All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 8-05 CacheInno15Queue

http://www.intersystems.com/Cache15S


4  September 2005 QUEUE rants: feedback@acmqueue.com

CONTENTS

INTERVIEW

A CONVERSATION WITH 

 ROGER SESSIONS AND TERRY COATTA  16

Queue board member Terry Coatta and  
“Fuzzy Boundaries” author Roger Sessions 

 spar on the differences between objects, 
 components, and Web services.

DEPARTMENTS
NEWS 2.0  8

Taking a second look at the news  
so that you don’t have to.

WHAT’S ON YOUR HARD DRIVE?  10

Visitors to our Web site are invited to tell us about  
the tools they love—and the tools they hate.

KODE VICIOUS  12

KV the Konqueror 
George V. Neville-Neil, Consultant

CURMUDGEON  64

Multicore CPUs for the Masses 
Mache Creeger, Emergent Technology Associates



http://www.techexcel.com


6  September 2005  QUEUE rants: feedback@acmqueue.com

Editorial Staff

Executive Editor

Jim Maurer

jmaurer@acmqueue.com

Associate Managing Editor

John Stanik

jstanik@acmqueue.com

Copy Editor

Susan Holly

Art Director

Sharon Reuter

Production Manager

Lynn D’Addesio-Kraus

Copyright 

Deborah Cotton

Editorial Advisory Board

Eric Allman

Charles Beeler

Steve Bourne

David J. Brown

Terry Coatta

Mark Compton

Stu Feldman

Ben Fried

Jim Gray

Randy Harr

Wendy Kellogg

Marshall Kirk McKusick

George Neville-Neil

Sales Staff

National Sales Director

Ginny Pohlman

415-383-0203

gpohlman@acmqueue.com

Regional Eastern Manager

Walter Andrzejewski

207-763-4772

walter@acmqueue.com

Regional Midwestern/ 

Southern Manager

Sal Alioto

843-236-8823

salalioto@acmqueue.com

Contact Points

Queue editorial  

queue-ed@acm.org

Queue advertising  

queue-ads@acm.org

Copyright permissions 

permissions@acm.org

Queue subscriptions 

orders@acm.org

Change of address 

acmcoa@acm.org

ACM Headquarters

Executive Director and CEO: John White

Director, ACM U.S. Public Policy Office: Jeff Grove

Deputy Executive Director and COO: Patricia Ryan 

Director, Office of Information Systems: Wayne Graves 

Director, Financial Operations Planning: Russell Harris 

Director, Office of Membership: Lillian Israel

Director, Office of Publications: Mark Mandelbaum

Deputy Director, Electronic Publishing: Bernard Rous

Deputy Director, Magazine Development: Diane Crawford

Publisher, ACM Books and Journals: Jono Hardjowirogo

Director, Office of SIG Services: Donna Baglio

Assistant Director, Office of SIG Services: Erica Johnson

Executive Committee

President: Dave Patterson

Vice-President: Stuart Feldman

Secretary/Treasurer: Laura Hill

Past President: Maria Klawe

Chair, SIG Board: Robert A. Walker

For information from Headquarters: (212) 869-7440

ACM U.S. Public Policy Office: Cameron Wilson, Director  

1100 17th Street, NW, Suite 507, Washington, DC 20036 USA 

+1-202-659-9711–office, +1-202-667-1066–fax, wilson_c@acm.org

ACM Copyright Notice: Copyright © 2005 by Association for 

Computing Machinery, Inc. (ACM). Permission to make 

digital or hard copies of part or all of this work for personal 

or classroom use is granted without fee provided that copies 

are not made or distributed for profit or commercial advantage and that 

copies bear this notice and full citation on the first page. Copyright for 

components of this work owned by others than ACM must be honored. 

Abstracting with credit is permitted. To copy otherwise, to republish, to 

post on servers, or to redistribute to lists, requires prior specific permission 

and/or fee. Request permission to republish from: Publications Dept. 

ACM, Inc. Fax +1 (212) 869-0481 or e-mail <permissions@acm.org> 

For other copying of articles that carry a code at the bottom of the 

first or last page or screen display, copying is permitted provided that the 

per-copy fee indicated in the code is paid through the Copyright Clear-

ance Center, 222 Rosewood Drive, Danvers, MA 01923, 508-750-8500, 

508-750-4470 (fax).

mca mca

ACM Queue (ISSN 1542-7730) is published ten times per year by the  

ACM, 1515 Broadway, New York, NY, 10036-5701. POSTMASTER: Please 

send address changes to ACM Queue, 1515 Broadway, New York, NY 

10036-5701 USA  Printed in the U.S.A. 

The opinions expressed by ACM Queue authors are their own, and  

are not necessarily those of ACM or ACM Queue.  

Subscription information available online at www.acmqueue.com.

BPA Worldwide Membership applied for October 2004

Publisher and Editor

Charlene O’Hanlon

cohanlon@acmqueue.com



http://www.ftpoint.com


8  September 2005  QUEUE rants: feedback@acmqueue.com

news 2.0
Taking a 

second look AT

THE NEWS SO YOU 

DON’T HAVE TO

Open Source/2
IBM recently announced that it would discontinue sup-
port for its once-fl agship operating system, OS/2, begin-
ning in late 2006. Developed in the 1980s during an early 
alliance with Microsoft, OS/2 eventually became OS/2 
Warp and had some success during the ’90s, particularly 
in the server market. But its desktop counterpart failed to 
take off, and IBM eventually ceded victory to Microsoft. 
IBM is now urging OS/2 users to switch to Linux, which 
it supports. Switch to Linux? If only it were that easy. 
Though gone from the spotlight, OS/2 continues to run 
on servers around the globe, especially on those linked 
to ATMs. Accordingly, there remains an active commu-
nity of OS/2 users, many of whom believe that OS/2 is 
superior to more popular alternatives in some areas (e.g., 
security, fi le system). Emblematic of this support is a peti-
tion recently signed by nearly 10,000 OS/2 users, urging 
IBM to make OS/2 open source.

The problem? In addition to the fact that IBM initially 
co-developed OS/2 with Microsoft, the operating system 
contains thousands of lines of code owned by third par-
ties, so unraveling the intellectual property rights would 
be daunting. But loyal OS/2 users feel that, if nothing 
else, releasing even portions of the code would yield a 
useful educational resource. Whether that means learning 
what to do or what not to do when building an operating 
system is open for debate.
WANT MORE?
http://news.zdnet.co.uk/0,39020330,39209811,00.htm

Anti-spam Activism … or Vigilantism?
By now it’s clear that current legislation enacted to crack 
down on spam is ineffective by itself. We also need sound 
technological solutions to the spam problem. Much work 
is being done on this front. Spam-fi ltering tools have 
become ubiquitous, and promising new innovations such 
as SMTP Path Analysis, which uses IP information in the 
message header to determine the legitimacy of e-mail 
messages, are expanding our arsenal in the anti-spam war. 

But for those who believe in taking more drastic 
measures, there is Blue Frog. Currently a free anti-spam 
solution offered by Blue Security, Blue Frog works by 
inviting users to add their e-mail addresses to a “do not 
spam” list. For each person added to the list, several fake 

e-mail addresses are cre-
ated, resulting in a “honey 
pot” that lures spammers. 
Spammers who send mes-
sages to those addresses are 
fi rst warned to cease doing 

so. If the warnings are ignored, the software triggers each 
user on the list to send a complaint to the URL contained 
in the spam. Thousands of simultaneous complaints will 
cripple the spammer’s Web server. Honest community 
activism? Illegal denial of service? We’ll let you decide. 
Slippery terrain, indeed.
WANT MORE?
http://www.linuxinsider.com/story/44867.html

Ride, Robot, Ride
Don’t say you didn’t see it coming. The latest generation 
of robotic technology has fi nally arrived: robotic camel 
jockeys. Oh, you’re not from the United Arab Emirates? 
Well, let us fi ll you in. Camel racing, an ancient and, 
according to one UAE offi cial, “indispensable” specta-
tor sport (i.e., lots of wagering), has long been met with 
derision by human rights activists who criticize the sport 
for allowing young children to participate. They further 
allege that the child camel jockeys, sometimes as young 
as 4 years old, have been kidnapped and deliberately 
starved to make them as lean and mean as possible. 

An answer to the critics came from a Swiss company 
contracted to build humanoid robots that are set to take 
the place of their imperiled child predecessors. The robots 
“sit” near the rear of the camel (post-hump) and balance 
with short, mechanical legs. They hold the reins with 
mechanical arms and hands. What might disappoint 
robotics enthusiasts is that these robot jockeys are not 
entirely autonomous; they are operated from the sidelines 
via remote control. This is just the beginning, though, 
and who knows whether more autonomous models even-
tually will make their way onto the sandy tracks. 

No comment yet from the U.S. horse racing com-
munity, whose jockeys have been similarly criticized for 
having to endure grueling privations to make weight. 
Churchill Downs, look out!
WANT MORE?
http://www.newscientist.com/article.ns?id=dn7705 Q
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reader files

What’s on Your 
Hard Drive?

Who: Jeff Price
What industry: Not-for-profi t
Job title: Software engineer 
Flavor: Develops on Windows for Unix

Tool I love! Eclipse. Eclipse allows me to be 
much more productive by assisting with 
syntax and generating many standard, 

repetitive code blocks. The refactoring 
tools make otherwise unthinkable-to-tackle 

tasks (such as renaming/repackaging a frequently 
used class) almost trivial.
Tool I hate! PVCS Version Manager. The X interface 
is slow, clunky, and unstable. Open projects some-
times disappear, many error messages 
inaccurately represent the cause of the 
problem…and did I mention that it’s 
slow? It represents the antithesis of the 
productivity gains I get by using Eclipse.

Who: Guilherme Mauro Germoglio Barbosa
What industry: Education
Job title: Software developer
Flavor: Develops on Linux for Linux

Tool I love! XMMS. I simply cannot focus 
on my work without any music. Pro-
gramming is a bit of a lonely task, and 
listening to music helps combat 

this loneliness. 24/7 listening to music = 
24/7 programming! 
Tool I hate! CTTE. This tool is a bit buggy—only fi ve 
minutes of use produced six exceptions. I hope they 
improve it. Maybe it will be very useful in the future. 
But there’s another problem: programming 
is fun—crafting artifacts that no one 
really cares about (such as those created 
by CTTE) is not. 

Who: Chris Bellini
What industry: Manufacturing
Job title: Software developer
Flavor: Develops on Windows for Windows

Tool I love! Python. I’m still a newbie to 
Python but I’m quite impressed with 
it thus far. As a scripting language, it 

can quickly test an idea or an algorithm, 
even if the project I’m working on doesn’t 

use Python. Also, with free tools such as wxPython 
and py2exe, a Python script can easily become a full-
blown distributable application with a robust UI.
Tool I hate! Microsoft Visual Studio .NET. It’s a 
love/hate relationship. On the one hand, 
it’s my bread and butter and I’ve learned  
to use many of its features. On the other 
hand, it has become a bloated resource 
hog that makes things sluggish while a large 
app, such as CAD/CAM, is running simultaneously.

Who: John Styles
What industry: Technology vendor
Job title: Chief architect
Flavor: Develops on Windows for Windows 

Tool I love! Awk. Within its chosen 
problem domain, nothing can beat 
Awk’s elegance and simplicity. It is easy 

to deploy, and its syntax is simpler and 
more rational than certain other scripting 

languages I could mention. I often try other tools but 
come back to the one that always does the job.
Tool I hate! OLE DB. If OLE DB were just another 
bizarre, overly complex, overly abstract, 
poorly documented API, then I could just 
happily ignore it. Unfortunately, it is the 
native data access API for Microsoft SQL 
Server, so it cannot be avoided. If only 
there were a decent simple C language API 
for it, such as Oracle’s OCI.

W
OYHD is a forum for expressing your opinions 
on the tools you love and loathe. Tools, as we’ve 
made clear, can be anything from programming 

languages to IDEs to database products. This month we’ve 
taken liberties with the defi nition to include the Linux 
music software praised below. Listening to music can help 

us get through those long hours spent unraveling lines 
of spaghetti code (someone else’s, of course). It can also 
make some people completely unproductive, but cannot 
the same be said of many other, more obvious “tools”?  
Don’t get us wrong, though—never, under any circum-
stances, will Minesweeper be considered a tool!

Tool I love!

Tool I love!

to deploy, and its syntax is simpler and 

Tool I love!

But there’s another problem: programming 

Tool I love! 

can quickly test an idea or an algorithm, 



GET YOUR STAFF TO WRITE BETTER CODE, FASTER.

IF THAT MAKES YOU GIGGLE WITH EXCITEMENT,
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I
t’s been a couple of months, and Kode Vicious has 
fi nally returned from his summer vacation. We asked 
him about his travels and the only response we got was 

this: “The South Pole during winter ain’t all it’s cracked 
up to be!” Fortunately, he made it back in one piece and 
is embracing the (Northern hemisphere’s) late summer 
balminess with a fresh installment of koding kwestions. 
This month, KV follows up on a security question from a 
previous column and then revisits one of koding’s most 
divisive issues: language choice. Welcome back! 

Dear KV,
Suppose I’m a customer of Sincere-and-Authentic’s (“Kode 
Vicious Battles On,” April 2005:15-17), and suppose the 
sysadmin at my ISP is an unscrupulous, albeit music-lov-
ing, geek. He fi gured out that I have an account with 
Sincere-and-Authentic. He put in a fi lter in the access 
router to log all packets belonging to a session between 
me and S&A. He would later mine the logs and retrieve 
the music—without paying for it.

I know this is a far-fetched scenario, but if S&A wants 
his business secured as watertight as possible, shouldn’t 
he be contemplating addressing it, too? Yes, of course, 
S&A will have to weigh the risk against the cost of miti-
gating it, and he may well decide to live with the risk. But 
I think your correspondent’s suggestion is at least worthy 
of a summary debate—not something that should draw 
disgusted looks! 

There is, in fact, another advantage to encrypting the 
payload, assuming that IPsec (Internet Protocol security) 
isn’t being used: decryption will require special clients, 
and that will protect S&A that much more against the 
theft of merchandise.

Balancing is the Best Defense

Dear Balancing,
Thank you for reading my 
column in the April 2005 
issue of Queue. It’s nice 
to know that someone is 

paying attention. Of course, if you had been paying closer 
attention, you would have noticed that S&A said, “In the 
design meeting about this I suggested we just encrypt 
all the connections from the users to the Web service 
because that would provide the most protection for them 
and us.”  That phrase, “just encrypt all the connections,” 
is where the problem lies.

Your scenario is not so far-fetched, but S&A’s sugges-
tion of encrypting all the connections would not address 
the problem. Once users have gotten the music without 
their evil ISPs sniffi ng it, they would still be able to redis-
tribute the music themselves. Or, the evil network admin 
would sign up for the service and simply split the cost 
with, say, 10 of his music-loving friends, thereby getting 
the goods at a hefty discount. What S&A really needs is 
what is now called digital rights management. It’s called 
this because for some reason we let the lawyers and the 
marketing people into the industry instead of doing with 
them what was suggested in Shakespeare’s Henry VI.

What S&A failed to realize was that the biggest risk of 
revenue loss was not in the network, where only a small 
percentage of people can play tricks as your ISP network 
administrator can, but at the distribution and reception 
points of the music. Someone who works for you walking 
off with your valuable information is far more likely than 
someone trying to sniff packets from the network. Since 
computers can make perfect copies of data (after all, that’s 
how we designed these things in the fi rst place), it is the 
data itself that must be protected, from one end of the 
system to the other, in order to keep from losing revenue.

All too often, people do not consider the end-to-end 
design of their systems and instead try to fi x just one part.

KV

Dear KV,
Since there was some debate in my company over the 
following issue, I’m curious to see what you believe: put-

KV the Konqueror

Got a question for Kode Vicious?  E-mail him at 
kv@acmqueue.com—if you dare! And if your letter 
appears in print, he may even send you a Queue coffee 
mug, if he’s in the mood. And oh yeah, we edit letters for 
content, style, and for your own good!

A koder with 

attitude, KV ANSWERS 

YOUR QUESTIONS. 

MISS MANNERS HE AIN’T.

kode vicious
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ting aside performance issues (which I think are relatively 
minor on modern PCs), when would you recommend 
using C++ for development, and when would you recom-
mend C? Do you think it is always better to use C++?

My feeling is that unless your application is inher-
ently object oriented (e.g., user interfaces), C++ will tend 
to make the implementation worse instead of making it 
better (e.g., constructors and operators doing funny unex-
pected things; C++ experts trying to “use their expertise” 
and writing C++ code that is very effi cient but extremely 
hard to read and not portable; huge portability—and 
performance—issues when using templates; incompre-
hensible compiler/linker error messages; etc., etc.). I also 
think that although people can write bad C code (gotos 
out of macros was a nice one), typically people can write 
awful C++ code. Where do you stand on this dispute?

Wondering How Much + There is in ++

Dear Wondering,
Choosing a language is something I’ve addressed before 
in other letters, but the C vs. C++ debate has raged as 
long as the two languages have been in existence, and, 
really, it’s getting a bit tiring. I mean, we all know that 
assembler is the language that all red-blooded program-
mers use! Oh, no, wait, that’s not it.

I’m glad you ask this question, though, because it gives 
me license to rant about it—and to dispel a few myths.

The fi rst, and most obvious, myth in your letter is that 
user interfaces are inherently object oriented. Although 
many introductory textbooks on object-oriented pro-
gramming have user interfaces as their examples, this has 
a lot more to do with the fact that humans like pretty 
pictures. It is far easier to make a point graphically than 
with text. I have worked on object-oriented device driv-
ers, which are about as far as you’ll ever get from a user 
interface.

Another myth that your letter could promulgate is 
that C is not an object-oriented language. A good exam-
ple of object-oriented software in C is the vnode fi lesystem
interface in BSD Unix and other operating systems. So, 
if you want to write a piece of object-oriented software, 
you can certainly do it in C or C++, or assembler for that 
matter.

One fi nal myth, which was actually dispelled by Donn 
Seeley in “How Not To Write Fortran in Any Language” 
(ACM Queue, December/January 2004-2005:58-65), is that 
C++ leads to less understandable code than C. Over the 
past 20 years I have seen C code that was spaghetti and 
C++ code that was a joy to work on, and vice versa.

So, after all that myth bashing, what are we left with? 

Well, the things that are truly important in picking a 
language are:
•  What language is most of the team experienced in? 

If you’re working with a team and six out of eight of 
them are well versed in C but only two know C++, then 
you’re putting your project, and job, at risk in picking 
C++. Perhaps the two C++ koders can teach the C folks 
enough C++ to be effective but it’s unlikely. To estimate 
the amount of work necessary for a task, you have to 
understand your tools. If you don’t normally use a nail 
gun, then you’re likely to take someone’s toe off with it. 
Losing toes is bad, as you need them for balance.

•  Does the application require any of the features of 
the language you’re using? C and C++ are a lot alike 
as languages (i.e., in syntax), but they have different 
libraries of functions and different ways of working that 
may or may not be relevant to your application. Often 
realtime constraints require the use of C because of the 
control it can provide over the data types. If type safety 
is of paramount importance, then C++ is a better choice 
because that is a native part of the language that is not 
present in C.

•  Does the application require services from other 
applications or libraries that are hard to use or debug 
from one or the other language? Creating shim layers 
between your code and the libraries you depend on is 
just another way of adding useless, and probably buggy, 
code to your system. Shim layers should be avoided 
like in-laws. They’re OK to talk about, and you might 
consider keeping them around for a week, but after that, 
out they go as so much excess, noisy baggage.

There are lots of other reasons to choose one language 
over another, but I suspect that the three listed here 
should be enough for you and your team to come to 
some agreement. You’ll notice that none of them has to 
do with how easy it is to understand templates or how 
hard it is to debug with exceptions.

KV

KODE VICIOUS, known to mere mortals as George V. 
Neville-Neil, works on networking and operating system 
code for fun and profi t. He also teaches courses on various 
subjects related to programming. His areas of interest are 
code spelunking, operating systems, and rewriting your bad 
code (OK, maybe not that last one). He earned his bachelor’s 
degree in computer science at Northeastern University in 
Boston, Massachusetts, and is a member of ACM, the Usenix 
Association, and IEEE. He is an avid bicyclist and traveler who 
has made San Francisco his home since 1990.
© 2005 ACM 1542-7730/05/0900 $5.00

kode vicious



igrep.com

Developer Search Engine? COOL.

Powered by Developer Shed, Inc. 
(www.DeveloperShed.com)

http://www.igrep.com


16  September 2005  QUEUE rants: feedback@acmqueue.com

interview

A Conversation with 
Roger Sessions and Terry Coatta

The difference 

BETWEEN OBJECTS AND 

COMPONENTS? 

THAT’S DEBATABLE.I
n the December/January 2004-2005 issue of Queue, 
Roger Sessions set off some fi reworks with his article 
about objects, components, and Web services and 

which should be used when (“Fuzzy Boundaries,” 40-47). 
Sessions is on the board of directors of the International 
Association of Software Architects, the author of six 
books, writes the Architect Technology Advisory, and 
is CEO of ObjectWatch. He has a very object-oriented 
viewpoint, not necessarily shared by Queue editorial board 
member Terry Coatta, who disagreed with much of what 
Sessions had to say in his article. Coatta is an active devel-
oper who has worked extensively with component frame-

works. He is vice president 
of products and strategy 
at Silicon Chalk, a startup 
software company in 
Vancouver, British Colum-

bia. Silicon Chalk makes extensive use of Microsoft COM 
for building its application. Coatta previously worked at 
Open Text, where he architected CORBA-based infrastruc-
tures to support the company’s enterprise products.

We decided to let these two battle it out in a forum 
that might prove useful to all of our readers. We enlisted 
another Queue editorial board member, Eric Allman, CTO 
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of Sendmail Inc., to moderate what we expected to be 
quite a provocative discussion. Our expectations were 
dead on.
ERIC ALLMAN I’ve talked to people who work on object-
oriented stuff, who have read your “Fuzzy Boundaries” 
article, Roger, and every single one of them starts off by 
disagreeing that the difference between objects, compo-
nents, and Web services is location-based.

Many of them speak of object-oriented RPCs (remote 
procedure calls), which aren’t quite components. They are 
components that live together in a process and so forth. 
Since that was the fundamental point of your article, 
could you comment?
ROGER SESSIONS Unfortunately, none of these terms is 
very well defi ned. We’re all using the terms as they make 
sense to us. Some of our disagreement may be simply 
semantic.

The component industry started with CORBA. The 
developers of CORBA were trying to solve one problem: 
distribution. They weren’t trying to get objects to work 
together within the same process. Yes, you could have 
CORBA objects live together on the same machine, even 
in the same process, but that was not the main problem 
that CORBA cared about solving.  

As far as Web services go, we could say that, yes, Web 
services could be in the same process or on the same 
machine. They could be in the same environment. But 
what was the essential problem Web services were trying 
to solve? It is about heterogeneous environments. It is 
about getting a .NET system to work with a WebSphere 
system, for example, not getting a .NET system to work 
with another .NET system.
TERRY COATTA It strikes me that it’s hard to distinguish 
Web services from CORBA from EJB using that kind of 
rationale, because all three systems have open or at least 
standardized and available protocols. I can certainly 
make my WebSphere interoperate with an appropriate 
CORBA implementation that has the mappings for doing 
EJB. I can cross technology boundaries with all kinds of 
different standards.
RS If you’re using the J2EE standards such as RMI (remote 
method invocation) over IIOP (Internet Inter-ORB Pro-
tocol), you are primarily going to be doing that within 
a single vendor’s system, such as a WebSphere system. 
If you’re going from a WebSphere system to a WebLogic 
system, your best shot at interoperability is through Web 
services. Why? Because you’re crossing a technology 
boundary.
TC You’re claiming that RMI over IIOP doesn’t actually 
work?

RS It doesn’t work for interoperability across technology 
boundaries.
TC There seem to be people out there getting it to work. 
Certainly, back in the days when I worked with CORBA 
there was no problem having different vendors’ ORBs 
(object request brokers) interoperate with one another. 
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We used three or four of them at Open Text and had no 
difficulty at all with those environments interoperating 
with one another.
RS As long as you’re going CORBA to CORBA, it works 
fine. But not when you are trying to get a CORBA system 
to work with a non-CORBA system.

TC But going from WebSphere to one of the other EJB 
vendors (e.g., WebLogic) in the CORBA space, there were 
probably five or six different major ORB vendors float-
ing around, not to mention a couple of open source 
efforts, and all of those interoperated really well with one 
another.
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RS CORBA to CORBA. They’re all running on the same 
basic core of CORBA technology. The difference between 
that and Web services is that for Web services, unlike 
CORBA, there is no assumption whatsoever about what 
the underlying technology is.
TC That’s not true. There’s an assumption that one is 
using a certain set of protocols; otherwise, it doesn’t 
work, and I mean CORBA was the same thing—a standard 
set of protocols. Nobody said that you had to actually 
implement the server-side aspect of the CORBA stuff to 
interoperate over the Internet. Everybody did because 
that’s the way they defi ned the standards.
RS You could say the same thing about DCOM or RMI. 
While all of them support communications protocols, 
they, like CORBA, are about much more than communica-
tions protocols. They are about a platform. CORBA was 
95 percent API, 5 percent interoperability. Web services is 
zero API and 100 percent interoperability.
TC That part I agree with, absolutely. That was probably 
the downfall of CORBA.
RS It’s exactly the downfall of CORBA, and it will also be 
the downfall of J2EE. They didn’t learn from that mistake.
EA Isn’t Web services just essentially another standard for 
how to interact? The world has settled on CORBA proto-
cols, not CORBA implementations. Wouldn’t it have had 
exactly the same effect and maybe even better had the 
world agreed to use only the CORBA protocols? 
RS It’s quite possible, but the world didn’t. CORBA lacked 
focus. The Web services effort has a lot of focus beyond 
interoperability. 

The big difference between Web services and CORBA is 
that the Web services people said right from the begin-
ning: there is no API. The only thing that we standard-
ize is how messages go from one system to another and 
the coordination around that. CORBA was 95 percent 
about how the client binds into the system. That was its 
downfall.
TC Of course, from the perspective of a programmer, 
that’s not necessarily a downfall, but a shortcoming. 
CORBA provided very nice interceptor architecture, a 
basic mechanism for dispatch, which everybody in Web 
services land has to rebuild from scratch. You can see that 
coming out now in the various Web services standards.

We were able to build an OTS (object transaction 
service) implementation on top of CORBA because of the 
appropriate interceptor mechanisms, support for global 
thread IDs, etc., etc. That work is taking a huge amount of 
time in Web services land, of course, because nobody has 
the infrastructure for it.
RS I’ve dedicated quite a few years of my life to CORBA, 

and  there were some very good ideas in it. Unfortunately, 
there was so much baggage that those good ideas were 
never allowed to fl ourish.

Hopefully we’ve learned from those mistakes. The 
only successful part of CORBA—of that massive effort, of 
those millions and millions and millions of dollars that 
were spent—was the tiny sliver of it that had to do with 
interoperability.
TC It wasn’t just the interoperability. That was a big 
part of it, but the notion of a standard mechanism for 
interception and dispatch on the actual implementation 
side was also hugely successful because it allowed one 
to deploy things like OTS in a reasonable way without 
everybody having to basically rediscover from the ground 
up how to do that kind of stuff.
RS The reality is that CORBA is mostly about APIs, none 
of which anybody uses.
TC I agree. I was involved in the CORBA world, too, and 
of all of the interface specifi cations and the verticals, very 
little of them amounted to anything. But I think that 
although it’s true historically to say one of the driving 
things behind CORBA was this desire to make things 
talk across the network to one another in interoperable 
fashion, the reality of it is that when people started using 
CORBA, they discovered the power that the standardized 
infrastructure offered. The basic server-side architecture, 
with standards for the dispatch mechanism, the intercep-
tor mechanism, object lifecycle, and object identifi cation, 
is an extremely powerful tool in the hands of developers 
actually delivering working systems.
RS Lots of things worked well in CORBA, as long as both 
sides agree that they’re in a CORBA world.

The Web services world is certainly borrowing ideas 
from CORBA, as CORBA borrowed ideas from earlier 
technologies. What they’re trying to do in Web services is 
borrow the few ideas in CORBA that actually panned out.
EA I get the distinct impression, Roger, that your attitude 
is CORBA failed, and Web services has succeeded. Yet 
CORBA is used for lots of very real things.

CNN, for example, uses CORBA. Most phone systems 
use CORBA. And the poster-child example of Web services 
has been Google. It looks to me like CORBA is more of a 
success than Web services.
RS I totally disagree with that. I would say that relatively 
few CORBA applications have panned out. Anybody who 
is investing any money in a CORBA architecture is making 
a big mistake.

None of the major players that was instrumental in 
bringing CORBA about is investing in its future. IBM is 
investing nothing into CORBA. Sun is investing nothing 
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into CORBA. Microsoft never cared about CORBA. So who 
is investing in it? Some marginal player someplace.

When you mention Google, you’re talking about a 
very specifi c, and limited, application. When you look at 
Web services, you really need to categorize it into one of 
two types of applications: inter-enterprise or intra-enter-
prise. Google is an example of inter-enterprise. 

My position has always been that inter-enterprise is a 
marginal area of Web services. It’s the one that Microsoft 
and IBM peddle when they’re talking to everybody about 
this. But the much more important area for Web ser-
vices—the one that’s being used many, many places—is 
getting different technology systems to interoperate 
within the same enterprise. 
EA Roger made the rather 
telling statement that 
Microsoft never looked at 
CORBA. Could I make a 
legitimate argument that 
CORBA failed and Web 
services “succeeded”—and 
I’m not admitting that 
yet—because of the Micro-
soft hegemony over the 
world? What I’m suggest-
ing is, had Microsoft sup-
ported CORBA, would we 
not be talking about Web 
services at all?
RS No, because Microsoft 
is not what killed CORBA. 
J2EE killed CORBA. If you 
want to blame somebody 
for killing CORBA, blame 
IBM and Sun, because all 
the major players that were originally looking at CORBA 
as their savior technology abandoned it and moved on to 
J2EE.
TC I actually agree, totally, with Roger on this. But it 
seems to me that one of the reasons we have a huge 
wealth of Web services stuff cropping up is because our 
friends at Microsoft are making it completely trivial to 
build Web services, in the sense that you simply build 
.NET implementations and then say, “Hey, I’d like to have 
the Web interfaces available for these.”

Do you think that’s true? Are the tools that are mak-
ing Web services essentially transparent to the developer 
responsible for part of why they are so popular and why 
we’re seeing a lot of these services inside the enterprises? 
RS There is some truth to that. Certainly, if you look 

at the major enterprise players, which are, in my view, 
BEA, IBM, and Microsoft, they are all doing the best job 
they can to make it as transparent as possible to use Web 
services.

They did a similar thing with components. They tried 
to make it very easy to use them, and the problem was 
that people really never understood what the fundamen-
tal differences were between these technologies: objects, 
components, and Web services.

In some sense, the transparent ability to make some-
thing a Web service is not really a good thing, because 
making an effective Web service requires a much more 
in-depth understanding of what it means to be a Web 

service. It’s the same with components. These tools don’t 
give you that. They give you the ability to slap a SOAP 
interface on top of some code, and that’s it.
EA How do you think this is going to affect the evolution 
of Web services? Given that people are going to use these 
tools, is this going to result in a huge period of extremely 
poor architectures because people have just slopped Web 
services on top of existing architectural solutions?
RS Yes, that’s my expectation. We have great tools today 
for building Web services and virtually no understanding 
of why, when, and where we should build Web services. 
EA I’m curious about your view of the developer’s world 
when building up a system. Clearly you believe that one 
has to see the boundaries between what you refer to as 
objects and components and Web services. But do those 
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differences actually translate in your mind to very specific 
different implementation technologies? Are objects truly 
different from components, or is it just a design distinc-
tion about the role that something plays in the system?
RS I see it as more a design distinction. Just to give you a 
simple example: state management. If you have an object, 
it’s perfectly OK to keep state in the object long-term. As 
long as the object lives, it can have state in it. In a com-
ponent, you can’t do that. You’ve got to get the state out 
of there or your component will not scale. None of the 
tools tells you that. You have to know that, and you have 
to design the system accordingly. 

Just because you can use objects to implement your 

components doesn’t mean that objects and components 
are semantically equivalent. State management is one 
example, but there are many others. These are design 
issues, not technology issues.
EA Now you’ve just introduced the semantic element. 
There are lots of semantics that objects have—polymor-
phism, encapsulation, inheritance—which you can sort of 
build into Web services, perhaps just as I can write object-
oriented C, but it’s not the same thing.
RS It’s not even clear that that’s a good idea. In my mind, 
to have inheritance on top of a Web service is probably a 
bad idea. 

In the “Fuzzy Boundaries” article I said that the defin-
ing characteristics that differentiate objects, components, 
and Web services are location and environmental bound-

ary. But location and environmental boundaries have 
many implications in terms of security, transactions, and 
other design issues.
EA There’s a very, very strong impression that came out of 
this article, and that is if I’m going to use components, I 
would never ever consider using components in some-
thing in the same process. But I’ve talked to a number of 
people now who have said, “Nonsense, we do that all the 
time, and it’s an important point of our flexibility.”
RS Then they’re really using the wrong technology for 
what they’re doing. They should just be using object 
technology for that.
TC No, that’s false. One of the elements that defines a 

component architecture 
is the point of intercep-
tion. This is incredibly 
useful even if I have things 
talking within the same 
process, because it gives 
me the opportunity to, for 
example, track invocation 
patterns without actually 
having to disturb my archi-
tecture at all.

We actually do this for 
the product that we’re 
building at Silicon Chalk. 
We transparently intro-
duce a layer of debugging 
proxies and get all kinds of 
tracing information that 
vastly improves our abil-
ity to debug the system. 
We couldn’t do that if we 
were building it out of C++ 

without having some base class nightmare to deal with.
So the fact that component technology provides a 

point of interception actually turns out to be an incred-
ibly valuable tool to the developer.
RS There are object systems that provide that as well. 
You’re picking on the shortcomings of a particular 
language and using that to condemn all object-oriented 
systems. That’s not fair. If you need interception, if that’s 
a useful tool, then you choose an object technology that 
provides interception.
TC I don’t have those choices as a developer out in the 
real world. Sometimes you have to work in a particular 
language or system. That’s the land that I live in, and 
that’s the reality for most developers as well. Compo-
nent systems offer me the power that I need to build my 
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product and deliver it to my customers. Now it’s true, if I 
had been programming in Smalltalk, I could go in there 
and fi ddle with the dispatch mechanism. But I don’t have 
that option.
RS That’s unfortunate. You chose the wrong language.
TC I chose the only language that made any sense, given 
the other realities of the world that I deal with. It’s nice to 
talk about distinctions between objects and components 
as if one could make a completely free choice about how 
to implement things, but the real world doesn’t work that 
way. As a person who is responsible for actually getting a 
product out the door and satisfying customers, you can’t 
choose arbitrary technologies because they happen to 
satisfy purist notions of what is appropriate.
RS If you’re saying that you are using one particular 
aspect of one particular component technology to make 
up for a regrettable constraint on one particular program-
ming language, then that’s OK. Do what you need to do. 
But just because you are using interception doesn’t make 
it a defi ning difference between components and objects. 
That’s just a particular artifact of the constraints that you 
happen to be working under.
EA OK, gentlemen, let’s shift gears a little. In the course 
of this discussion we’ve hit upon various standardization 
efforts that have come out or are evolving. For example, a 

lot of stuff is happening with WS security and WS trans-
actions, WSDL (Web Services Description Language), and 
UDDI (Universal Description, Discovery, and Integration). 
I’m curious to get Roger’s point of view on which of these 
things are good, and where we should be doing things 
differently. There are lots of standards out there, and, 
frankly, they’re at least as hard, if not harder, to under-
stand than some of the CORBA specifi cations were.
RS I agree that the Web services standards are harder to 
understand than most of the CORBA specifi cations, but 
there’s one fundamental difference between these speci-
fi cations and the CORBA ones. The CORBA specifi cations 
had to be understood by developers. The Web services 
standards don’t. Nobody needs to understand the Web 
services standards except for Microsoft and IBM because 
these standards are about how Microsoft and IBM are 
going to talk together, not about how the developer is 
going to do anything. 
EA So, nobody is ever going to interact except Microsoft 
and IBM?
RS The people who are building the platforms are the 
ones who care about these standards. These standards 
have no relevance to Joe or Jane Developer, none what-
soever.
TC Do you mean that Joe or Jane Developer is never 
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he performance of microprocessors that power modern 
computers has continued to increase exponentially 
over the years for two main reasons. First, the transis-
tors that are the heart of the circuits in all processors 
and memory chips have simply become faster over 
time on a course described by Moore’s law,1 and this 
directly affects the performance of processors built 
with those transistors. Moreover, actual processor per-
formance has increased faster than Moore’s law would 
predict,2 because processor designers have been able to 
harness the increasing numbers of transistors avail-
able on modern chips to extract more parallelism from 

software. This is depicted in fi gure 1 for Intel’s processors.
An interesting aspect of this continual quest for more parallelism is that it has been 

pursued in a way that has been virtually invisible to software programmers. Since they 
were invented in the 1970s, microprocessors have continued to implement the conven-
tional von Neumann computational model, with very few exceptions or modifi cations. 
To a programmer, each computer consists of a single processor executing a stream of 
sequential instructions and connected to a monolithic “memory” that holds all of the 
program’s data. Because the economic benefi ts of backward compatibility with earlier 
generations of processors are so strong, hardware designers have essentially been limited 
to enhancements that have maintained this abstraction for decades. On the memory 
side, this has resulted in processors with larger cache memories, to keep frequently 
accessed portions of the conceptual “memory” in small, fast memories that are physi-
cally closer to the processor, and large register fi les to hold more active data values in an 
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extremely small, fast, and compiler-managed region of 
“memory.” 

Within processors, this has resulted in a variety of 
modifi cations designed to achieve one of two goals: 
increasing the number of instructions from the proces-
sor’s instruction sequence that can be issued on every 
cycle, or increasing the clock frequency of the processor 
faster than Moore’s law would normally allow. Pipelin-
ing of individual instruction execution into a sequence 
of stages has allowed designers to increase clock rates 
as instructions have been sliced into larger numbers of 
increasingly small steps, which are designed to reduce 
the amount of logic that needs to switch during every 
clock cycle. Instructions that once took a few cycles to 
execute in the 1980s now often take 20 or more in today’s 
leading-edge processors, allowing a nearly proportional 
increase in the possible clock rate. 

Meanwhile, superscalar processors were developed to 
execute multiple instructions from a single, conventional 
instruction stream on each 
cycle. These function by 
dynamically examining 
sets of instructions from 
the instruction stream 
to fi nd ones capable of 
parallel execution on each 
cycle, and then executing 
them, often out of order 
with respect to the original 
program. 

Both techniques have 
fl ourished because they 
allow instructions to 
execute more quickly while 
maintaining the key illu-
sion for programmers that 
all instructions are actually 
being executed sequen-
tially and in order, instead 
of overlapped and out of 

order. Of course, this illusion is not absolute. Performance 
can often be improved if programmers or compilers 
adjust their instruction scheduling and data layout to 
map more effi ciently to the underlying pipelined or paral-
lel architecture and cache memories, but the important 
point is that old or untuned code will still execute cor-
rectly on the architecture, albeit at less-than-peak speeds.

Unfortunately, it is becoming increasingly diffi cult for 
processor designers to continue using these techniques 
to enhance the speed of modern processors. Typical 
instruction streams have only a limited amount of usable 
parallelism among instructions,3 so superscalar processors 
that can issue more than about four instructions per cycle 
achieve very little additional benefi t on most applica-
tions. Figure 2 shows how effective real Intel processors 
have been at extracting instruction parallelism over time. 
There is a fl at region before instruction-level parallelism 
was pursued intensely, then a steep rise as parallelism was 
utilized usefully, followed by a tapering off in recent years 
as the available parallelism has become fully exploited. 

Complicating matters further, building superscalar 
processor cores that can exploit more than a few instruc-
tions per cycle becomes very expensive, because the 
complexity of all the additional logic required to fi nd 
parallel instructions dynamically is approximately pro-
portional to the square of the number of instructions that 
can be issued simultaneously. Similarly, pipelining past 
about 10-20 stages is diffi cult because each pipeline stage 
becomes too short to perform even a minimal amount of 
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logic, such as adding two integers together, beyond which 
the design of the pipeline is signifi cantly more complex. 
In addition, the circuitry overhead from adding pipeline 
registers and bypass path multiplexers to the existing 
logic combines with performance losses from events that 
cause pipeline state to be fl ushed, primarily branches. 
This overwhelms any potential performance gain from 
deeper pipelining after about 30 stages. 

Further advances in both superscalar issue and pipelin-
ing are also limited by the fact that they require ever-
larger numbers of transistors to be integrated into the 
high-speed central logic within each processor core—so 
many, in fact, that few companies can afford to hire 
enough engineers to design and verify these processor 
cores in reasonable amounts of time. These trends have 
slowed the advance in processor performance somewhat 
and have forced many smaller vendors to forsake the 
high-end processor business, as they could no longer 
afford to compete effectively.

Today, however, all progress in conventional processor 
core development has essentially stopped because of a 
simple physical limit: power. As processors were pipe-
lined and made increasingly superscalar over the course 
of the past two decades, typical high-end microprocessor 
power went from less than a watt to over 100 watts. Even 
though each silicon process generation promised a reduc-
tion in power, as the ever-smaller transistors required 
less power to switch, this was true in practice only when 
existing designs were simply “shrunk” to use the new 

process technology. Processor designers, however, kept 
using more transistors in their cores to add pipelining 
and superscalar issue, and switching them at higher and 
higher frequencies. The overall effect was that expo-
nentially more power was required by each subsequent 
processor generation (as illustrated in fi gure 3). 

Unfortunately, cooling technology does not scale 
exponentially nearly as easily. As a result, processors went 
from needing no heat sinks in the 1980s, to moderate-size 
heat sinks in the 1990s, to today’s monstrous heat sinks, 
often with one or more dedicated fans to increase airfl ow 
over the processor. If these trends were to continue, the 
next generation of microprocessors would require very 
exotic cooling solutions, such as dedicated water cool-
ing, that are economically impractical in all but the most 
expensive systems.

The combination of limited instruction parallelism 
suitable for superscalar issue, practical limits to pipelin-
ing, and a “power ceiling” limited by practical cooling 
limitations has limited future speed increases within 
conventional processor cores to the basic Moore’s law 
improvement rate of the underlying transistors. This 
limitation is already causing major processor manufactur-
ers such as Intel and AMD to adjust their marketing focus 
away from simple core clock rate. 

Although larger cache memories will continue to 
improve performance somewhat, by speeding access to 
the single “memory” in the conventional model, the 
simple fact is that without more radical changes in pro-

cessor design, microproces-
sor performance increases 
will slow dramatically 
in the future. Processor 
designers must fi nd new 
ways to effectively utilize 
the increasing transis-
tor budgets in high-end 
silicon chips to improve 
performance in ways that 
minimize both additional 
power usage and design 
complexity. The market 
for microprocessors has 
become stratifi ed into areas 
with different performance 
requirements, so it is useful 
to examine the problem 
from the point of view 
of these different perfor-
mance requirements.
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THROUGHPUT PERFORMANCE IMPROVEMENT
With the rise of the Internet, the need for servers capable 
of handling a multitude of independent requests arriving 
rapidly over the network has increased dramatically. Since 
individual network requests are typically completely 
independent tasks, whether those requests are for Web 
pages, database access, or fi le service, they are typically 
spread across many separate computers built using high-
performance conventional microprocessors (fi gure 4a), 
a technique that has been used at places like Google for 
years to match the overall computation throughput to 
the input request rate.4 

As the number of requests increased over time, more 
servers were added to the collection. It has also been 
possible to replace some or all of the separate servers with 
multiprocessors. Most existing multiprocessors consist 
of two or more separate processors connected using a 
common bus, switch hub, or network to shared memory 
and I/O devices. The overall system can usually be physi-
cally smaller and use less 
power than an equiva-
lent set of uniprocessor 
systems because physically 
large components such 
as memory, hard drives, 
and power supplies can be 
shared by some or all of 
the processors.

Pressure has increased 
over time to achieve more 
performance per unit 
volume of data-center 
space and per watt, since 
data centers have fi nite 
room for servers and their 
electric bills can be stagger-
ing. In response, the server 
manufacturers have tried 
to save space by adopting 
denser server packaging 

solutions, such as blade servers and switching to mul-
tiprocessors that can share components. Some power 
reduction has also occurred through the sharing of more 
power-hungry components in these systems. These short-
term solutions are reaching their practical limits, how-
ever, as systems are reaching the maximum component 
density that can still be effectively air-cooled. As a result, 
the next stage of development for these systems involves 
a new step: the CMP (chip multiprocessor).5

The fi rst CMPs targeted toward the server market 
implement two or more conventional superscalar proces-
sors together on a single die.6,7,8,9 The primary motivation 
for this is reduced volume—multiple processors can now 
fi t in the space where formerly only one could, so overall 
performance per unit volume can be increased. Some 
savings in power also occurs because all of the proces-
sors on a single die can share a single connection to the 
rest of the system, reducing the amount of high-speed 
communication infrastructure required, in addition to 
the sharing possible with a conventional multiprocessor. 
Some CMPs, such as the fi rst ones announced from AMD 
and Intel, share only the system interface between proces-
sor cores (illustrated in fi gure 4b), but others share one 
or more levels of on-chip cache (fi gure 4c), which allows 
interprocessor communication between the CMP cores 
without off-chip accesses.

Further savings in power can be achieved by taking 
advantage of the fact that while server workloads require 
high throughput, the latency of each request is generally 
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not as critical.10 Most users will not be bothered if their 
Web pages take a fraction of a second longer to load, but 
they will complain if the Web site drops page requests 
because it does not have enough throughput capacity. A 
CMP-based system can be designed to take advantage of 
this situation. 

When a two-way CMP replaces a uniprocessor, it is 
possible to achieve essentially the same or better through-
put on server-oriented workloads with just half of the 
original clock speed. Each request may take up to twice 
as long to process because of the reduced clock rate. With 
many of these applications, however, the slowdown will 
be much less, because request processing time is more 
often limited by memory or disk performance than by 
processor performance. Since two requests can now be 
processed simultaneously, however, the overall through-
put will now be the same or better, unless there is serious 
contention for the same memory or disk resources. 

Overall, even though performance is the same or only 
a little better, this adjustment is still advantageous at the 
system level. The lower clock rate allows us to design the 
system with a signifi cantly lower power supply voltage, 
often a nearly linear reduction. Since power is propor-
tional to the square of the voltage, however, the power 
required to obtain the original performance is much 
lower—usually about half (half of the voltage squared = a 
quarter of the power, per processor, so the power required 
for both processors together is about half), although the 
potential savings could be limited by static power dis-
sipation and any minimum voltage levels required by the 
underlying transistors. 

For throughput-oriented workloads, even more power/
performance and performance/chip area can be achieved 
by taking the “latency is unimportant” idea to its extreme 
and building the CMP with many small cores instead of a 
few large ones. Because typical server workloads have very 

low amounts of instruc-
tion-level parallelism and 
many memory stalls, most 
of the hardware associated 
with superscalar instruc-
tion issue is essentially 
wasted for these applica-
tions. A typical server will 
have tens or hundreds 
of requests in fl ight at 
once, however, so there is 
enough work available to 
keep many processors busy 
simultaneously. 

Therefore, replacing 
each large, superscalar pro-
cessor in a CMP with sev-
eral small ones, as has been 
demonstrated successfully 
with the Sun Niagara,11 
is a winning policy. Each 
small processor will process 
its request more slowly 
than a larger, superscalar 
processor, but this latency 
slowdown is more than 
compensated for by the 
fact that the same chip 
area can be occupied by 
a much larger number of 
processors—about four 
times as many, in the case 
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of Niagara, which has eight single-issue SPARC processor 
cores in a technology that can hold only a pair of super- 
scalar UltraSPARC cores.

Taking this idea one step further, still more latency 
can be traded for higher throughput with the inclusion 
of multithreading logic within each of the cores.12,13,14 
Because each core tends to spend a fair amount of time 
waiting for memory requests to be satisfi ed, it makes 
sense to assign each core several threads by including 
multiple register fi les, one per thread, within each core 
(fi gure 4d). While some of the threads are waiting for 
memory to respond, the processor may still execute 
instructions from the others. 

Larger numbers of threads can also allow each proces-
sor to send more requests off to memory in parallel, 
increasing the utilization of the highly pipelined memory 
systems on today’s processors. Overall, threads will typi-
cally have a slightly longer latency, because there are 
times when all are active and competing for the use of the 
processor core. The gain from performing computation 
during memory stalls and the ability to launch numerous 
memory accesses simultaneously more than compensates 
for this longer latency on systems such as Niagara, which 
has four threads per processor or 32 for the entire chip, 
and Pentium chips with Intel’s Hyperthreading, which 
allows two threads to share a Pentium 4 core.

LATENCY PERFORMANCE IMPROVEMENT
The performance of many important applications is mea-
sured in terms of the execution latency of individual tasks 
instead of high overall throughput of many essentially 
unrelated tasks. Most desktop processor applications still 
fall in this category, as users are generally more concerned 
with their computers responding to their commands 
as quickly as possible than they are with their comput-
ers’ ability to handle many commands simultaneously, 
although this situation is changing slowly over time as 
more applications are written to include many “back-
ground” tasks. Users of many other computation-bound 
applications, such as most simulations and compilations, 

are typically also more interested in how long the pro-
grams take to execute than in executing many in parallel.

Multiprocessors can speed up these types of applica-
tions, but it requires effort on the part of programmers 
to break up each long-latency thread of execution into a 
large number of smaller threads that can be executed on 
many processors in parallel, since automatic paralleliza-
tion technology has typically functioned only on Fortran 
programs describing dense-matrix numerical computa-
tions. Historically, communication between processors 
was generally slow in relation to the speed of individual 
processors, so it was critical for programmers to ensure 
that threads running on separate processors required only 
minimal communication with each other. 

Because communication reduction is often diffi cult, 
only a small minority of users bothered to invest the time 
and effort required to parallelize their programs in a way 
that could achieve speedup, so these techniques were 
taught only in advanced, graduate-level computer science 
courses. Instead, in most cases programmers found that it 
was just easier to wait for the next generation of uni-
processors to appear and speed up their applications for 
“free” instead of investing the effort required to parallel-
ize their programs. As a result, multiprocessors had a hard 
time competing against uniprocessors except in very large 
systems, where the target performance simply exceeded 
the power of the fastest uniprocessors available.

With the exhaustion of essentially all performance 
gains that can be achieved for “free” with technologies 
such as superscalar dispatch and pipelining, we are now 
entering an era where programmers must switch to more 
parallel programming models in order to exploit multi-
processors effectively, if they desire improved single-pro-
gram performance. This is because there are only three 
real “dimensions” to processor performance increases 
beyond Moore’s law: clock frequency, superscalar instruc-
tion issue, and multiprocessing. We have pushed the 
fi rst two to their logical limits and must now embrace 
multiprocessing, even if it means that programmers will 
be forced to change to a parallel programming model to 
achieve the highest possible performance.

Conveniently, the transition from multiple-chip 
systems to chip multiprocessors greatly simplifi es the 
problems traditionally associated with parallel program-
ming. Previously it was necessary to minimize commu-
nication between independent threads to an extremely 
low level, because each communication could require 
hundreds or even thousands of processor cycles. Within 
any CMP with a shared on-chip cache memory, however, 
each communication event typically takes just a handful 
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of processor cycles. With latencies like these, communica-
tion delays have a much smaller impact on overall system 
performance. Programmers must still divide their work 
into parallel threads, but do not need to worry nearly as 
much about ensuring that these threads are highly inde-
pendent, since communication is relatively cheap. This is 
not a complete panacea, however, because programmers 
must still structure their inter-thread synchronization 
correctly, or the program may generate incorrect results or 
deadlock, but at least the performance impact of commu-
nication delays is minimized. 

Parallel threads can also be much smaller and still be 
effective—threads that are only hundreds or a few thou-
sand cycles long can often be used to extract parallelism 
with these systems, instead of the millions of cycles long 
threads typically necessary with conventional parallel 
machines. Researchers have shown that parallelization 
of applications can be made even easier with several 
schemes involving the addition of transactional hardware 
to a CMP.15,16,17,18,19 These systems add buffering logic 
that lets threads attempt to execute in parallel, and then 
dynamically determines whether they are actually parallel 
at runtime. If no inter-thread dependencies are detected 
at runtime, then the threads complete normally. If depen-
dencies exist, then the buffers of some threads are cleared 
and those threads are restarted, dynamically serializing 
the threads in the process. 

Such hardware, which is only practical on tightly cou-
pled parallel machines such as CMPs, eliminates the need 
for programmers to determine whether threads are paral-
lel as they parallelize their programs—they need only 
choose potentially parallel threads. Overall, the shift from 
conventional processors to CMPs should be less traumatic 
for programmers than the shift from conventional proces-
sors to multichip multiprocessors, because of the short 
CMP communication latencies and enhancements such 
as transactional memory, which should be commercially 
available within the next few years. As a result, this para-
digm shift should be within the range of what is feasible 
for “typical” programmers, instead of being limited to 
graduate-level computer science topics.

HARDWARE ADVANTAGES
In addition to the software advantages now and in the 
future, CMPs have major advantages over conventional 
uniprocessors for hardware designers. CMPs require only 
a fairly modest engineering effort for each generation of 
processors. Each member of a family of processors just 
requires the stamping down of additional copies of the 
core processor and then making some modifications to 

relatively slow logic connecting the processors together to 
accommodate the additional processors in each genera-
tion—and not a complete redesign of the high-speed 
processor core logic. Moreover, the system board design 
typically needs only minor tweaks from generation to 
generation, since externally a CMP looks essentially the 
same from generation to generation, even as the number 
of processors within it increases. 

The only real difference is that the board will need 
to deal with higher I/O bandwidth requirements as the 
CMPs scale. Over several silicon process generations, the 
savings in engineering costs can be significant, because 
it is relatively easy to stamp down a few more cores each 
time. Also, the same engineering effort can be amortized 
across a large family of related processors. Simply vary-
ing the numbers and clock frequencies of processors can 
allow essentially the same hardware to function at many 
different price/performance points.

AN INEVITABLE TRANSITION
As a result of these trends, we are at a point where chip 
multiprocessors are making significant inroads into the 
marketplace. Throughput computing is the first and most 
pressing area where CMPs are having an impact. This is 
because they can improve power/performance results 
right out of the box, without any software changes, 
thanks to the large numbers of independent threads that 
are available in these already multithreaded applications. 
In the near future, CMPs should also have an impact in 
the more common area of latency-critical computations. 
Although it is necessary to parallelize most latency-criti-
cal software into multiple parallel threads of execution 
to really take advantage of a chip multiprocessor, CMPs 
make this process easier than with conventional multi-
processors, because of their short interprocessor commu-
nication latencies.

Viewed another way, the transition to CMPs is inevi-
table because past efforts to speed up processor archi-
tectures with techniques that do not modify the basic 
von Neumann computing model, such as pipelining 
and superscalar issue, are encountering hard limits. As a 
result, the microprocessor industry is leading the way to 
multicore architectures; however, the full benefit of these 
architectures will not be harnessed until the software 
industry fully embraces parallel programming. The art of 
multiprocessor programming, currently mastered by only 
a small minority of programmers, is more complex than 
programming uniprocessor machines and requires an 
understanding of new computational principles, algo-
rithms, and programming tools. Q
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The advent of SMP (symmetric multiprocessing) added 
a new degree of scalability to computer systems. 
Rather than deriving additional performance from an 
incrementally faster microprocessor, an SMP system 
leverages multiple processors to obtain large gains 
in total system performance. Parallelism in software 
allows multiple jobs to execute concurrently on the 
system, increasing system throughput accordingly. 
Given sufficient software parallelism, these systems 
have proved to scale to several hundred processors.

More recently, a similar phenomenon is occurring 
at the chip level. Rather than pursue diminishing 
returns by increasing individual processor perfor-
mance, manufacturers are producing chips with multi-
ple processor cores on a single die. (See “The Future of 
Microprocessors,” by Kunle Olukotun and Lance Ham-
mond, in this issue.) For example, the AMD Opteron1 
processor now uses two entire processor cores per die, 
providing almost double the performance of a single 
core chip. The Sun Niagara2 processor, shown in figure 

EXTREME

RICHARD MCDOUGALL, SUN MICROSYSTEMS

Software Scaling 



38  September 2005  QUEUE rants: feedback@acmqueue.com

1, uses eight cores per die, where each core is further mul-
tiplexed with four hardware threads each.

These new CMPs (chip multiprocessors) are bringing 
what was once a large multiprocessor system down to 
the chip level. A low-end four-chip dual-core Opteron 
machine presents itself to software as an eight-proces-
sor system, and in the case of the Sun Niagara processor 
with eight cores and four threads per core, a single chip 
presents itself to software as a 32-processor system. As a 
result, the ability of system and application software to 
exploit multiple processors or threads simultaneously is 

becoming more important than ever. As CMP hardware 
progresses, software is required to scale accordingly to 
fully exploit the parallelism of the chip.

Thus, bringing this degree of parallelism down to the 
chip level represents a signifi cant change to the way we 
think about scaling. Since the cost of a CMP system is 
close to that of recent low-end uniprocessor systems, it’s 
inevitable that even the cheapest desktops and servers 
will be highly threaded. Techniques used to scale applica-
tion and system software on large enterprise-level SMP 
systems will now frequently be leveraged to provide scal-
ability even for single-chip systems. We need to consider 
the effects of the change in the degree of scaling on the 
way we architect applications, on which operating system 
we choose, and on the techniques we use to deploy appli-
cations—even at the low end.

CMP: JUST A COST-EFFECTIVE SMP?
A simplistic view of a CMP system is that it appears to 
software as an SMP system with the number of processors 
equal to the number of threads in the chip, each with 
slightly reduced processing capability. Since each hard-
ware thread is sharing the resources of a single processor 
core, each thread has some fraction of the core’s overall 
performance. Thus, an eight-core chip with 32 hardware 

threads running at 1 GHz 
may be somewhat crudely 
approximated as an SMP 
system with thirty-two 
250-MHz processors. 
The effect on software is 
often a subtle trade-off 
in per-thread latency for 
a signifi cant increase of 
throughput. For a through-
put-oriented workload with 
many concurrent requests 
(such as a Web server), 
the marginal increase in 
response time is virtually 
negligible, but the increase 
in system throughput is an 
order of magnitude over a 
non-CMP processor of the 
same clock speed.

There are, however, 
more subtle differences 
between a CMP system and 
an SMP system. If threads 
or cores within a CMP pro-
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cessor share important resources, then some threads may 
impact the performance of other threads. For example, 
when multiple threads share a single core and therefore 
share fi rst-level memory caches, the performance of a 
given thread may vary depending on what the other 
threads, of the same core, are doing with the fi rst thread’s 
data in the cache. Yet, in another similar case, a thread 

may actually gain if the other threads are constructively 
sharing the cache, since useful data may be brought into 
the cache by threads other than the fi rst. This is covered 
in more detail later as we explore some of the potential 
operating system optimizations.

SCALING THE SOFTWARE
The performance of system software ideally scales pro-
portionally with the number of processors in the system. 
There are, however, factors that limit the speedup.

Amdahl’s law3 defi nes scalability as the speedup of 
a parallel algorithm, effectively limited by the number 
of operations that must be performed sequentially (i.e., 
its serial fraction), as shown in fi gure 2. If 10 percent of 
a parallel program involves serial code, the maximum 
speedup that can be attained is three, using four proces-
sors (75 percent of linear), reducing to only 4.75 when 
the processor count increases to eight (only 59 percent 
of linear). Amdahl’s law tells us that the serial fraction 
places a severe constraint on the speedup as the number 
of processors increase.

In addition, software typically incurs overhead as a 
result of communication and distribution of work to 
multiple processors. This results in a scaling curve where 
the performance peaks and then begins to degrade (see 
fi gure 3).

Since most operating systems and applications contain 
a certain amount of sequential code, a possible conclu-
sion of Amdahl’s law is that it is not cost effective to 
build systems with large numbers of processors because 
suffi cient speedup will never be produced. Over the past 
decade, however, the focus has been on reducing the 
serial fraction within hardware architectures, operating 
systems, middleware, and application software. Today, it 
is possible to scale system software and applications on 
the order of 100 processors on an SMP system. Figure 4 
shows the results for a series of scaling benchmarks that 
were performed using database workloads on a large SMP 
confi guration. These application benchmarks were per-
formed on a single-system image by measuring through-
put as the number of processors was increased. 

INTRA- OR INTER-MACHINE SCALE?
Software scalability for these large SMP machines has 
historically been obtained through rigorous focus on 
intra-machine scalability within one large instance of 
the application within a single operating system. A good 
example is a one-tier enterprise application such as 
SAP. The original version of SAP used a single and large 
monolithic application server. The application instance 
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obtains its parallelism from the many concurrent requests 
from users. Providing there are no major serialization 
points between the users, the application will naturally 
scale. The focus on scaling these applications has been to 
remove these serialization points within the applications.

More recently, because of the economics of low-end 
systems, the focus has been on leveraging inter-machine 
scaling, using low-cost commodity one- to two-processor 
servers. Some applications can be made to scale without 
requiring large, expensive SMP systems by running multi-
ple instances in parallel on separate one- to two-processor 
systems, resulting in good 
overall throughput. Appli-
cations can be designed to 
scale this way by moving 
all shared state to a shared 
back-end service, like a 
database. Many one- to 
two-processor systems 
are confi gured as mid-tier 
application servers, com-
municating to an intra-
machine scaled database 
system. The shift in focus 
to one- to two-processor 
hardware has removed 
much of the pressure to 
design intra-machine scal-
ability into the software.

The compelling features 
of CMP—low power, 
extreme density, and high 
throughput—match this 
space well, mandating 
a revised focus on intra-
machine scalability.

IMPACT OF CMP ON APPLICATION DEVELOPERS
The most signifi cant impact for application developers is 
the requirement to scale. The minimum scaling require-
ment has been raised from 1-4 processors to 32 today, and 
will likely increase again in the near future.

BUILDING SCALABLE APPLICATIONS
Engineering scalable code is challenging, but the perfor-
mance wins are huge. The data in the scaling curves for 
Oracle and DB2 in fi gure 4 show the rewards, from a great 
deal of performance tuning to optimization for scaling. 
According to Amdahl’s law, scaling software requires 
minimization of the serial fraction of the workload. In 
many commercial systems, natural parallelism comes 
from the many concurrent users of the system. 

The simple fi rst-order scaling bottlenecks (those with 
a large serial fraction) typically come from contention for 
shared resources, such as:
•  Networks or interconnects. Bandwidth limitations on 

interconnects between portions of the system—for 
example, an ingress network on the Web servers, tier-1 
and -2 networks for SQL traffi c, or a SAN (storage area 
network).

•  CPU/Memory. Queuing for CPU or waiting for page 
faults as a result of resource starvation.
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•  I/O throughput. Insufficient capacity for disk I/O opera-
tions or bandwidth.

The more interesting problems result from intrinsic 
application design. These problems manifest from serial 
operations within the application or the operating envi-
ronment. They are often much harder to identify without 
good observation tools, because rather than showing 
up as an easy-to-detect overloaded resource (such as out 
of CPU), they often exhibit growing amounts of idle 
resource as load is increased. 

Here’s a common example. We were recently asked to 
help with a scaling problem on a large online e-commerce 
system. The application consisted of thousands of users 
performing payment transactions from a Web applica-
tion. As load increased, the latency became unacceptable. 
The application was running on a large SMP system and 
database, both of which were known to scale well. There 
was no clear indicator of where in the system the problem 
occurred. As load was increased, the system CPU resources 
became more idle. It turned out that there was a single 
table at the center of all the updates, and the locking 
strategy for the table became the significant serial fraction 
of the workload. User transactions were simply waiting 
for updates to the table. The solution was to break up the 
table so that concurrent inserts could occur, thus reduc-
ing the serial fraction and increasing scalability.

For CMP, we need to pay attention to what might limit 
scaling within one application instance, since we now 
need to scale in the order of tens of threads, increasing to 
the order of 100 in the near future.

WRITING SCALABLE LOW-LEVEL CODE
Many middleware applications (such as databases, appli-
cation servers, or transaction systems) require special 
attention to scale. Here are a few of the common tech-
niques that may serve as a general guideline.

Scalable algorithms. Many algorithms become less effi-
cient as the size of the problem set increases. For example, 
an algorithm that searches for an object using a linear list 
will increase the amount of CPU required as the size of 
the list increases, potentially at a super-linear rate. Select-
ing good algorithms that optimize for the common case 
is of key importance.

Locking. Locking strategies have significant impact 
on scalability. As concurrency increases, the num-
ber of threads attempting to lock an object or region 
increases, resulting in compounding contention as the 
lock becomes “hotter.” In modern systems, an opti-
mal approach is to provide fine-grained locking using 
a lock per object where possible. There are also several 

approaches to making the reader side of code lock-free at 
the expense of some memory waste or increased writer-
side cost.

Cache line sharing. Multiprocessor and CMP systems 
use hardware coherency algorithms to keep data consis-
tent between different pipelines. This can have a signifi-
cant effect on scaling. For example, a latency penalty may 
result if one processor updates a memory object within 
its cache, which is also accessed from another processor. 
The cache location will be invalidated because of the 
cache coherency hardware protocol, which ensures only 
one version of the data exists. In a CMP system, multiple 
threads typically access a single first-level cache; thus, 
colocating data that will be accessed within a single core 
may be appropriate.

Pools of worker threads. A good approach for con-
currency is to use a pool of worker threads; a general-
purpose, multithreaded engine can be used to process 
an aggregate set of work events. Using this model, an 
application gives discrete units of work to the engine and 
lets the engine process them in parallel. The worker pool 
provides a flexible mechanism to balance the work events 
across multiple processors or hardware threads. The 
operating system can automatically tune the concurrency 
of the application to meet the topology of the underlying 
hardware architecture.

Memory allocators. Memory allocators pose a signifi-
cant problem to scaling. Almost every code needs to allo-
cate and free data structures, and typically does so via a 
central system-provided memory allocator. Unfortunately, 
very few memory allocators scale well. The few that do 
include the open source Hoard, Solaris 10’s libumem slab 
allocator, and MicroQuill’s SmartHeap. It’s worth paying 
attention to more than one dimension of scalability: dif-
ferent allocators have different properties in light of the 
nature of allocation/deallocation requests.

CONDUCT SCALABILITY EXPERIMENTS EARLY AND OFTEN
Time has shown that the most efficient way of driv-
ing out scaling issues from an application is to perform 
scaling studies. Given the infinite space in which opti-
mizations can be made, it is important to follow a meth-
odology to prioritize the most important issues.

Modeling techniques can be used to mathematically 
predict response times and potential scaling bottlenecks 
in complex systems. They are often used for predicting 
the performance of hardware, to assist with design trade-
off analysis. Modeling software, however, requires inti-
mate knowledge of the software algorithms, code paths, 
and system service latencies. The time taken to construct 
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a model and validate all assumptions is often at odds with 
running scaling tests.

A well-designed set of scaling experiments is key to 
understanding the performance characteristics of an 
application, and with proper observation instrumenta-
tion, it is easy to pinpoint key issues. Scalability predic-
tion and analysis should be done as early as possible in 
the development cycle. It’s often much harder to retrofit 
scalability improvements to an existing architecture. 
Consider scalability as part of the application architecture 
and design.

Key items to include in scalability experiments are:
•  Throughput versus number of threads/processors. Does 

the throughput scale close to linearly as the amount of 
resource applied increases?

•  Throughput versus resource consumed (i.e., CPU, 
network I/O, and disk I/O) per transaction. Does the 
amount of resource consumed per unit of work increase 
as scale increases?

•  Latency versus throughput. Does the latency of a trans-
action increase as the throughput of a system increases? 
A system that provides linear throughput scalability 
might not be useful in the real world if the transaction 
response times are too long.

•  Statistics. Measure code path length in both number of 
instructions and cycles. 

OBSERVATION TOOLS ARE THE PRIMARY MEANS  
TO SCALABLE SOFTWARE
Effective tools are the most significant factor in improv-
ing application scalability. Being able to quickly identify 
a root cause of a scaling issue is paramount. The objective 
of looking for scaling issues is to easily pinpoint the most 
significant sources of serialization. 

The tools should help identify what type of issue is 
causing the serialization—the two classic cases being star-

vation resulting from escalating resource requirements as 
load increases, and increasing idle time as load increases. 
Ideally, the tools should help identify the source of the 
scaling issue rather than merely pointing to the object of 
contention. This helps with identifying not only what 
the contention point is, but also perhaps some offending 
code that may be overutilizing a resource. Often, once the 
source is identified, many obvious optimizations become 
apparent.

Consider tools that can do the following:
•  Locate key sources of wait time. What are the con-

tended resources, which one is causing the resource uti-
lization, and how much effect is the contention having 
on overall performance?

•  Identify hot synchronization locks. How much wall 
clock and CPU time is serialized in locking objects, and 
which code is responsible?

•  Identify nonscalable algorithms. Which functions or 
classes become more expensive as the scale of the appli-
cation increases?

•  Make it clear where the problem lies. This is done 
either in the application code, which you can affect, 
or by pointing to a contention point in a vendor-sup-
plied middleware or operating system. Even though 
the contention point may lie in a vendor code, it may 
result from how that code is being called, which can be 
affected by optimizing the higher-level code.

CMT AND SOFTWARE LICENSING
Another impact of the hardware architecture’s scal-
ing characteristics is on software licensing. Applica-
tion developers often use the number of processors in 
the system to determine the price of the software. The 
number of processors has been a convenient measure for 
software licensing, primarily because of the close correla-
tion between the costs of the hardware platform and the 
number of processors. By using a license fee indexed by 
the number of processors, the software vendor can charge 
a roughly proportional fee for software. 

This is, however, based on old assumptions that are 
no longer true. First of all, an operating system on a CMT 
platform reports one virtual processor for every thread in 
the chip, resulting in a very expensive software license for 
a low-end system. Software vendors have been scrambling 
to adjust for the latest two-core CMT systems, some opt-
ing for one license fee per core, and others for each physi-
cal chip. Licensing by core unfairly increases software 
licenses per dollar unit of hardware.

In the short term, operating system vendors are 
providing enhancements to report the number of cores 
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and physical processors in the system, but there is an 
urgent need for a more appropriate (and fair) solution. 
It is likely that a throughput-based license fee that uses 
standard benchmarks will be pursued. This would allow 
license fees to be charged in accordance with the actual 
processing power of the platform. Such a scheme would 
allow software licenses to scale when more advanced 
virtualization schemes, which divide up processors into 
subprocessor portions, are used (such as priority-based 
resource partitioning). These schemes are becoming more 
commonplace as utility computing and server consolida-
tion become more popular. The opportunity for operating 
system vendors is to choose a uniform metric that can 
be measured and reported, based on the actual use by an 
application.

IMPACT OF CMP FOR OPERATING SYSTEMS
The challenge for the operating system is twofold: provid-
ing scalable system services to the applications it hosts, 
and providing a scalable programming environment that 
facilitates easy development of parallel programs. 

CMP ENHANCEMENTS FOR OPERATING SYSTEMS
An SMP-capable operating system kernel works quite well 
on CMP hardware. Since each core or hardware thread in 
a chip has an entire set of registers, they appear to soft-
ware as individual CPUs. An unchanged operating system 
will simply implement one logical processor for every 
hardware thread in the chip. Software threads will be 

scheduled onto each hardware thread just as in an SMP 
system, with equal weighting according to the operating 
system kernel’s scheduling policy (see fi gure 5).

Basic changes to optimize for CMT processors will 
include elimination of any busy wait loops. For example, 
the idle loop is typically implemented as a busy spin that 
checks a run queue looking for more work to do. When 
multiple hardware threads share a single core, the idle 
loop running on one thread will have a detrimental effect 
on other threads sharing the core’s pipeline. In this exam-
ple, leveraging the hardware’s ability to park a thread 
when there is no work to do would be more effective.

Further operating system enhancements will likely be 
pursued to optimize for the subtle differences of CMPs. 
For example, with knowledge of the processor architec-
ture and some information about the behavior of the 
software, the scheduler may be able to optimize the place-
ment of software threads onto specifi c hardware threads. 
In the case of a CMP architecture with multiple hardware 
threads sharing a core, fi rst-level cache, and TLB (transla-
tion look-aside buffer), there may be a benefi t if software 
threads with similar memory access patterns (construc-
tive) are colocated on the same core, and those with 
destructive patterns are separated onto different cores.

OPERATING SYSTEM SCALING
The challenge with scaling operating system services has 
historically been the shared state between instances of the 
services. For example, consider a global process table that 
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needs to be accessed and updated by any program want-
ing to start a new process. In a multiprocessor system, 
synchronization techniques must be used to mitigate race 
conditions when two or more threads attempt to update 
the process table at the same time.

The common techniques require serialization around 
either the code that accesses these structures or the data 
structures themselves. Early attempts to port Unix to 
SMP hardware were crude—they were typically retrofits 
of existing operating system codes with simple, coarse-
grained serialization. For example, the first SMP Unix 
systems used a slightly modified implementation with a 
single global lock around the operating system kernel to 
serialize all requests to its data structures. Early versions 
of SunOS (1.x), Linux (2.2), and FreeBSD (4.x) kernels 
used this approach. Although easy to implement, this 
approach helps scalability only for applications that sel-
dom use operating system services. Applications that were 
entirely compute-intensive showed good scalability, but 
those that used a significant amount of operating system 
services saw serialization yielding little or no scalability 
beyond one processor.

In contrast, successful operating system scaling is 
achieved by minimizing contention, restricting serializa-
tion to only fine-grained portions of data structures. In 
this way, the operating system can execute code within 
the same region concurrently on multiple processors, 
serializing only momentarily while accessing shared data 
structures. This approach does, however, require substan-
tial architectural change to the operating system and in 
some cases a ground-up redesign focused on scalability.

A well-designed operating system allows high levels 
of concurrency through its operating system services. In 
particular, applications invoking system services through 
libraries, memory allocators, and other system services 
must be able to execute in parallel even if they access 

shared facilities. For example, multiple programs should 
be able to allocate memory concurrently without serial-
izing. Other areas that are critical to scalability include 
parallel access to shared hardware (e.g., I/O) and the 
networking subsystem.

SCALING ENHANCEMENTS IN FREEBSD
FreeBSD has seen a significant amount of scaling effort, 
starting with 5.x kernels.4 Architectural changes include 
new kernel memory allocators, synchronization routines, 
the move to ithreads, and the removal of the global 
kernel lock from activities such as process scheduling, 
virtual memory, the virtual file system, the UFS (Unix 
file system), the networking stack, and several common 
forms of inter-process communication. The scaling work 
in FreeBSD has successfully improved scaling (estimates 
suggest to the order of 12 processors).

SCALING ENHANCEMENTS IN LINUX
Scaling was greatly improved in Linux 2.2 kernels by 
breaking up the global kernel lock. It is said to scale on 
the order of two to four processors. Linux 2.4 scaling 
was improved to eight to 16 by introducing much finer-
grained locking in the scheduler and I/O subsystem. This 
improved the scaling of many items, including interrupts 
and I/O. Later efforts in Linux kernels focused on scaling 
the scheduler for larger numbers of processes and improv-
ing concurrency through the networking subsystem. 

SCALING ENHANCEMENTS IN SOLARIS
The Solaris operating system is built around the concept 
of concurrency, and serialization is restricted to very small 
and critical parts of data structures. The operating system 
is designed around the notion that execution contexts 
are individual software threads, which are scheduled and 
executed in parallel where possible.

Replacing the original Unix memory allocators with 
the Slab5 and Vmem6 allocators led to significant scal-
ability gains. These provide consistent in-time allocations 
as the object set sizes grow, and they pay special atten-
tion to avoid locking by providing per-processor pools of 
memory that allow allocations and deallocations to occur 
without having to access global structures.

Scalable I/O is achieved by allowing requesting threads 
to execute concurrently even within the same device 
driver, and further by processing interrupts from hard-
ware devices as separate threads, allowing scaling of inter-
rupt handling.7 

In some cases, there are requirements for high levels 
of concurrent access to data structures. For example, per-
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formance statistics for I/O devices require updates from 
potentially thousands of concurrent operations. To miti-
gate contention around these types of structures, statistics 
are kept on a per-processor basis and then aggregated 
when required. This allows concurrent access to updates, 
requiring serialization only when the statistics are read.

The Solaris networking code was rearchitected to elimi-
nate the majority of the global data structures by intro-
ducing a per-connection vertical perimeter.8 This allows 
the TCP/IP implementation to operate in near-lockless 
mode within a single connection, requiring locking only 
when global events such as routing changes occur.

Integrated observation tools are key to optimizing 
scaling issues. Facilities for observing sources of locking 
contention on systems with live workloads have been 
critical to making improvements in important areas. 
More recently, Dtrace, perhaps one of the more revolu-
tionary approaches to performance optimization, allows 
dynamic instrumentation of C and Java code.9 It can 
quickly pinpoint sources of contention from the top of 
the application stack through the operating system.

These types of techniques allow the Solaris kernel to 
scale to thousands of threads, up to 1 million I/Os per 
second, and several hundred physical processors. Con-
veniently, this scaling work can be leveraged for CMP 
systems. Techniques such as those described here, which 
are vital for large SMP scaling, are now required even 
for entry-level CMP systems. Within the next fi ve years, 
expect to see CMP hardware scaling to as many as 512 
processor threads per system, pushing the requirements 
of operating system scaling past the extreme end of that 
realized today.

OPERATING SYSTEM UTILIZATION METRICS
The reporting of processor utilization on systems with 
multithreaded cores poses a challenge. In a single-core 
chip, throughput often increases proportionally with pro-
cessor utilization. In a multithreaded chip, there is much 
greater opportunity for sharing of resources between 
hardware threads, and therefore a nonlinear relationship 
exists between throughput and the actual utilization of a 
processor. As a result, calculation of “headroom” based on 
reported processor utilization may no longer be accurate.

For example, a processor core with two threads (such 
as an Intel Xeon) presents itself to the operating system as 
two separate processors. If a software thread fully uses one 
of the threads and the other is completely idle, the pro-
cessor will appear 50 percent busy and be reported as such 
by the operating system. Running two of these threads on 
the processor may often yield only a 10 percent through-
put increase on Xeon architecture, but since both threads 
are utilized, it will report as 100 percent busy. So this 
system now reports 50 percent utilization when it’s at 90 
percent of its maximum throughput.

This effect will vary depending on how many of the 
resources are shared by hardware threads within the 
processor, and ultimately will need some redefi nition of 
the meaning of system utilization metrics, together with 
some new facilities for reporting. The impact on capacity 
planning methodology will also need to be considered.

LEVERAGING VIRTUALIZATION FOR PARALLELISM
So far we have examined how to fi nd ways to use the 
many hardware threads available with CMTs by scaling 
individual applications or operating systems. Another 
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way to use these resources effectively is to run multiple 
nonscalable applications or even several unoptimized 
operating systems at once, using techniques such as oper-
ating system or server virtualization.

These facilities typically allow multiple instances of an 
application to be consolidated onto a single server (see 
figure 6). 

For example, the Solaris Container facility allows mul-
tiple applications to reside within a single operating sys-
tem instance. In such an environment, you can leverage 
the cumulative concurrency as applications are added. By 
adding two Web servers, each of which has concurrency 
of 16 threads, you can potentially increase the system-
wide concurrency to 32 threads. This side effect presents a 
useful mechanism that allows you to deploy applications 
with limited scalability in a manner that can exploit the 
full concurrency of a CMP system.

Another relevant virtualization technology is the 
virtual machine environment, which allows multiple 
operating system instances to run on a single hardware 
platform. Examples of virtual machine technologies are 
VMware and Xen. These environments allow consolida-
tion of applications and operating systems on a single 
system, which provides a mechanism to deploy even 
nonscalable operating systems on CMP architectures, 
albeit with a little more complexity.

CMP REQUIRES A RETHINKING BY DEVELOPERS
The introduction of CMP systems represents a significant 
opportunity to scale systems in a new dimension. The 
most significant impact of CMP systems is that the degree 
of scaling is being increased by an order of magnitude: 
what was a low-end one- to two-processor entry-level 
system should now be viewed as a 16- to 32-way system, 
and soon even midrange systems will be scaling to several 
hundred ways.

For application developers, this represents a new or 
revised focus on intra-machine scalability within applica-
tions and a rethinking of how software license fees are 
calculated. For operating system developers, scalability 
to hundreds of ways is going to be a requirement. For 
deployment practitioners, CMP represents a new way to 
scale applications and will require consideration in the 
systems we architect, the way we tune, and the tech-
niques we use for capacity planning. Q
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In the late 1990s, our research group at DEC was one of 
a growing number of teams advocating the CMP (chip 
multiprocessor) as an alternative to highly complex 
single-threaded CPUs. We were designing the Piranha sys-
tem,1 which was a radical point in the CMP design space 
in that we used very simple cores (similar to the early 
RISC designs of the late ’80s) to provide a higher level of 
thread-level parallelism. Our main goal was to achieve the 
best commercial workload performance for a given silicon 
budget.

Today, in developing Google’s computing infra-
structure, our focus is broader than performance alone. 
The merits of a particular architecture are measured by 

answering the following question: Are 
you able to afford the computational 
capacity you need? The high-compu-
tational demands that are inherent in 
most of Google’s services have led us 
to develop a deep understanding of the 
overall cost of computing, and continu-

ally to look for hardware/software designs that optimize 
performance per unit of cost.

This article addresses some of the cost trends in a 
large-scale Internet service infrastructure and highlights 
the challenges and opportunities for CMP-based systems 
to improve overall computing platform cost efficiency.

UNDERSTANDING SYSTEM COST
The systems community has developed an arsenal of tools 
to measure, model, predict, and optimize performance. 
The community’s appreciation and understanding of 
cost factors, however, remain less developed. Without 
thorough consideration and understanding of cost, the 
true merits of any one technology or product remain 
unproven.

We can break down the TCO (total cost of ownership) 
of a large-scale computing cluster into four main compo-
nents: price of the hardware, power (recurring and initial 
data-center investment), recurring data-center operations 
costs, and cost of the software infrastructure.

Often the major component of TCO for commercial 
deployments is software. A cursory inspection of the price 
breakdown for systems used in TPC-C benchmark filings 
shows that per-CPU costs of just operating systems and 
database engines can range from $4,000 to $20,000.2 
Once the license fees for other system software compo-
nents, applications, and management software are added 
up, they can dwarf all other components of cost. This is 
especially true for deployments using mid- and low-end 
servers, since those tend to have larger numbers of less 
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expensive machines but can incur signifi cant software 
costs because of still-commonplace per-CPU or per-server 
license-fee policies. 

Google’s choice to produce its own software infra-
structure in-house and to work with the open source 
community changes that cost distribution by greatly 
reducing software costs (software development costs still 
exist, but are amortized over large CPU deployments). As 
a result, it needs to pay special attention to the remaining 
components of cost. Here I will focus on cost components 
that are more directly affected by system-design choice: 
hardware and power costs. 

Figure 1 shows performance, performance-per-server 
price, and performance-per-watt trends from three suc-
cessive generations of Google server platforms. Google’s 
hardware solutions include the use of low-end serv-
ers.3 Such systems are based on high-volume, PC-class 
components and thus deliver increasing performance for 
roughly the same cost over successive generations, result-
ing in the upward trend of the performance-per-server 
price curve. Google’s fault-tolerant software design meth-
odology enables it to deliver highly available services 
based on these relatively less-reliable building blocks.

Nevertheless, performance per watt has remained 
roughly fl at over time, even after signifi cant efforts to 
design for power effi ciency. 
In other words, every gain 
in performance has been 
accompanied by a propor-
tional infl ation in overall 
platform power consump-
tion. The result of these 
trends is that power-related 
costs are an increasing frac-
tion of the TCO.

Such trends could 
have a signifi cant impact 
on how computing costs 
are factored. The follow-
ing analysis ignores other 
indirect power costs and 
focuses solely on the cost 
of energy. A typical low-
end x86-based server today 
can cost about $3,000 and 
consume an average of 200 
watts (peak consumption 

can reach over 300 watts). Typical power delivery inef-
fi ciencies and cooling overheads will easily double that 
energy budget. If we assume a base energy cost of nine 
cents per kilowatt hour and a four-year server lifecycle, 
the energy costs of that system today would already be 
more than 40 percent of the hardware costs. 

And it gets worse. If performance per watt is to remain 
constant over the next few years, power costs could eas-
ily overtake hardware costs, possibly by a large margin. 
Figure 2 depicts this extrapolation assuming four differ-
ent annual rates of performance and power growth. For 
the most aggressive scenario (50 percent annual growth 
rates), power costs by the end of the decade would dwarf 
server prices (note that this doesn’t account for the 
likely increases in energy costs over the next few years). 
In this extreme situation, in which keeping machines 
powered up costs signifi cantly more than the machines 
themselves, one could envision bizarre business models 
in which the power company will provide you with free 
hardware if you sign a long-term power contract.

The possibility of computer equipment power con-
sumption spiraling out of control could have serious 
consequences for the overall affordability of computing, 
not to mention the overall health of the planet. It should 
be noted that although the CPUs are responsible for only 
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a fraction of the total system power budget, that frac-
tion can easily reach 50 percent to 60 percent in low-end 
server platforms.

THE CMP AND COMPUTING EFFICIENCY
The eventual introduction of processors with CMP tech-
nology is the best (and perhaps only) chance to avoid the 
dire future envisioned above. As discussed in the opening 
article of this issue (“The Future of Microprocessors,” by 
Kunle Olukotun and Lance Hammond), if thread-level 
parallelism is available, using the transistor and energy 
budget for additional cores is more likely to yield higher 
performance than any other techniques we are aware of. 
In such a thread-rich environment, prediction and specu-
lation techniques need to be extremely accurate to justify 
the extra energy and real estate they require, as there will 
be nonspeculative instructions ready to execute from 
other threads. Unfortunately, many server-class workloads 
are known to exhibit poor instruction-level parallelism;4 
therefore, they are a poor match for the aggressive specu-
lative out-of-order cores that are common today.

Some key workloads at Google share such behavior. 
Our index-serving application, for example, retires on 
average only one instruction every two CPU cycles on 
modern processors, badly underutilizing the multiple 
issue slots and functional units available. This is caused 
by the use of data structures that are too large for on-chip 
caches, and a data-dependent control fl ow that exposes 

the pipeline to large DRAM latencies. Such behavior also 
causes the memory system to be under utilized, since 
often a new memory access cannot be issued until the 
result of a previous one is available. There is enough 
unpredictability in both control fl ow and memory access 
streams to render speculation techniques relatively inef-
fective. This same workload, however, exhibits excellent 
thread-level speedup on traditional multiprocessors, 
simultaneous multithreaded systems, and CMPs.5 

The Piranha implementation took the lessons from 
commercial workload behavior to heart: If there are 
enough threads (hardware and software), one should 
never have to speculate. The eight CPU cores were a 
throwback to early RISC designs: single-issue, in-order, 
nonspeculative. The fi rst Piranha chip was expected to 
outperform state-of-the-art CPUs by more than a factor of 
two at nearly half the power consumption. What makes 
this especially signifi cant is that this was achieved despite 
our team having completely ignored power effi ciency as 
a design target. This is a good illustration of the inherent 
power-effi ciency advantages of the CMP model.

Recent product announcements also provide insights 
into the power-effi ciency potential of CMP microarchitec-
tures. Both AMD and Intel are introducing CMP designs 
that stay within approximately the same power envelope 
of their previous-generation single-core offerings. For 
example, AMD reports that its dual-core Opteron 275 
model outperforms its single-core equivalent (Opteron 

248) by about 1.8 times on 
a series of benchmarks,6 at 
a power envelope increase 
of less than 7 percent. 
Even if we pessimistically 
assume that the whole 
platform power increases 
by that same amount, 
the power effi ciency of 
the dual-core platform 
(performance per watt) 
is still nearly 70 percent 
better than the single-core 
platform. Indeed, process 
technology improvements 
do play a large role in 
achieving this, but the fact 
remains that for the fi rst 
time in many processor 
generations we are looking 
at dramatic power-effi -
ciency improvements.

Extrapolation of Hardware and Power Costs for Low-End Servers* 
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SLOW PACE
In our first Piranha paper published in 2000 we described 
chip multiprocessing as an inevitable next step in micro-
architectural evolution. Although this is no longer a 
controversial view, it is nevertheless surprising that it has 
taken so long for this architecture to achieve widespread 
acceptance. I am particularly surprised that more aggres-
sive CMP architectures—those (like Piranha) that trade 
single-threaded performance for additional thread-level 
parallelism—are only now beginning to appear in com-
mercial products7 and are unlikely to be widely available 
for quite some time. 

The commercial introduction of CMPs seems to be 
following a more measured approach in which fairly 
complex cores are being slowly added to the die as the 
transistor budget increases every process generation. If 
CMPs have such compelling potential, why is it taking so 
long for that potential to be realized? There are four main 
reasons for this:

It’s the power envelope, stupid. As it turned out, 
contrary to what we envisioned during the Piranha devel-
opment, design complexity and performance alone were 
not compelling enough to trigger a switch to CMP archi-
tectures; power was. In order to steer away from expen-
sive cooling technologies, chip developers had to stay 
within power density boundaries that became increas-
ingly difficult to meet with conventional techniques.

Marketing matters. Megahertz is a performance 
metric that is easy to understand and communicate 
to consumers. Although it is a very poor indicator of 
application performance, the same can be said for most 
popular benchmarks. When given a choice between a 
bogus metric that sells and one that doesn’t, the outcome 
is predictable. Unfortunately, the MHz competition has 
reinforced the direction toward larger and more complex 
single-threaded systems, and away from CMPs.

Execution matters. Many of us underestimated the 
incredible engineering effort that went into making con-
ventional complex cores into very successful products. 
Seemingly suboptimal architectures can be made into 
winning solutions with the right combination of talent, 
drive, and execution.

Threads aren’t everywhere yet. Although server-
class workloads have been multithreaded for years, the 
same cannot be said yet for desktop workloads. Since 
desktop volume still largely subsidizes the enormous cost 
of server CPU development and fabrication, the lack of 

threads in the desktop has made CMPs less universally 
compelling. I will expand on this issue later in this article.

DREADING THREADING
Much of the industry’s slowness in adopting CMP designs 
reflects a fear that the CMP opportunity depends on 
having enough threads to take advantage of that oppor-
tunity. Such fear seems to be based mainly on two factors: 
parallel programming complexity and the thread-level 
speedup potential of common applications.

The complexity of parallel software can slow down 
programmer productivity by making it more difficult to 
write correct and efficient programs. Computer science 
students’ limited exposure to parallel programming, lack 
of popular languages with native support for parallelism, 
and the slow progress of automatic compiler paralleliza-
tion technology all contribute to the fear that many 
applications will not be ready to take advantage of multi-
threaded chips. 

There is reason for optimism, though. The ever-grow-
ing popularity of small multiprocessors is exposing more 
programmers to parallel hardware. More tools to spot 
correctness and performance problems are becoming 
available (e.g., thread checkers8 and performance debug-
gers9). Also, a few expert programmers can write efficient 
threaded code that is in turn leveraged by many others. 
Fast-locking and thread-efficient memory allocation 
libraries are good examples of programming work that 
is highly leveraged. On a larger scale, libraries such as 
Google’s MapReduce10 can make it easier for programmers 
to write efficient applications that mine huge datasets 
using hundreds or thousands of threads.

While it’s true that some algorithms are hard to paral-
lelize efficiently, the majority of problem classes that 
demand the additional performance of CMPs are not. 
The general principle here is that, with few exceptions, 
the more data one has, the easier it is to obtain parallel 
speedup. That’s one of the reasons why database applica-
tions have been run as parallel workloads successfully for 
well over a decade. At Google we have generally been able 
to tune our CPU-intensive workloads to scale to increas-
ing numbers of hardware threads whenever needed—that 
is, whenever servers with higher numbers of hardware 
contexts become economically attractive.

The real challenge for CMPs is not at the server but the 
desktop level. Many popular desktop applications have 
not been parallelized yet, in part because they manipulate 
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modest datasets, and in part because multithreaded CPUs 
have only recently been introduced to that market seg-
ment. As more data-intensive workloads (such as speech 
recognition) become common at the desktop, CMP sys-
tems will become increasingly attractive for that segment.

It is important to note that CMPs are a friendly target 
platform for applications that don’t parallelize well. Com-
munication between concurrent threads in a CMP can 
be an order of magnitude faster than in traditional SMP 
systems, especially when using shared on-chip caches. 
Therefore, workloads that require significant communica-
tion or synchronization among threads will pay a smaller 
performance penalty. This characteristic of CMP architec-
tures should ease the programming burden involved in 
initial parallelization of the established code base.

CMP HEADING FOR MAINSTREAM ACCEPTANCE
A highly cost-efficient distributed computing system is 
essential to large-scale services such as those offered by 
Google. For these systems, given the distributed nature of 
the workloads, single-threaded performance is much less 
important than the aggregate cost/performance ratio of 
an entire system. Chip multiprocessing is a good match 
for such requirements. When running these inherently 
parallel workloads, CMPs can better utilize on-chip 
resources and the memory system than traditional 
wide-issue single-core architectures, leading to higher 
performance for a given silicon budget. CMPs are also 
fundamentally more power-efficient than traditional CPU 
designs and therefore will help keep power costs under 
control over the next few years. Note, however, that 
CMPs cannot solve the power-efficiency challenge alone, 
but can simply mitigate it for the next two or three CPU 
generations. Fundamental circuit and architectural inno-
vations are still needed to address the longer-term trends.

The computing industry is ready to embrace chip mul-
tiprocessing as the mainstream solution for the desktop 
and server markets, yet it appears to be doing so with 
some reluctance. CMP parallelism is being introduced 
only when it is absolutely necessary to remain within 
a safe thermal envelope. This approach minimizes any 
significant losses in single-threaded performance, but it 
is unlikely to realize the full cost-efficiency potential of 
chip multiprocessing. A riskier bet on slower cores could 
have a much larger positive impact on the affordability of 
high-performance systems. Q
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Software 
and the  
Concurrency  
Revolution

Leveraging the full power  
of multicore processors demands  
new tools and new thinking  
from the software industry.

Concurrency has long been touted as the “next 
big thing” and “the way of the future,” but for the past 
30 years, mainstream software development has been 
able to ignore it. Our parallel future has finally arrived: 
new machines will be parallel machines, and this will 
require major changes in the way we develop software.

The introductory article in this issue (“The Future 
of Microprocessors” by Kunle Olukotun and Lance 
Hammond) describes the hardware imperatives behind 
this shift in computer architecture from uniprocessors 
to multicore processors, also known as CMPs (chip 
multiprocessors). (For related analysis, see “The Free 
Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software.”1) 

In this article we focus on the implications of con-
currency for software and its consequences for both 
programming languages and programmers.

The hardware changes that Olukotun and Ham-
mond describe represent a fundamental shift in 
computing. For the past three decades, improvements 
in semiconductor fabrication and processor implemen-
tation produced steady increases in the speed at which 
computers executed existing sequential programs. The 
architectural changes in multicore processors benefit 
only concurrent applications and therefore have little 
value for most existing mainstream software. For the 
foreseeable future, today’s desktop applications will 
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not run much faster than they do now. In fact, they may 
run slightly slower on newer chips, as individual cores 
become simpler and run at lower clock speeds to reduce 
power consumption on dense multicore processors.

That brings us to a fundamental turning point in 
software development, at least for mainstream software. 
Computers will continue to become more and more 
capable, but programs can no longer simply ride the 
hardware wave of increasing performance unless they are 
highly concurrent.

Although multicore performance is the forcing 
function, we have other reasons to want concurrency: 
notably, to improve responsiveness by performing work 
asynchronously instead of synchronously. For example, 
today’s applications must move work off the GUI thread 
so it can redraw the screen while a computation runs in 
the background.

But concurrency is hard. Not only are today’s lan-
guages and tools inadequate to transform applications 
into parallel programs, but also it is difficult to find 
parallelism in mainstream applications, and—worst of 
all—concurrency requires programmers to think in a way 
humans find difficult. 

Nevertheless, multicore machines are the future, and 
we must figure out how to program them. The rest of this 
article delves into some of the reasons why it is hard, and 
some possible directions for solutions.

CONSEQUENCES: A NEW ERA IN SOFTWARE
Today’s concurrent programming languages and tools are 
at a level comparable to sequential programming at the 
beginning of the structured programming era. Sema-
phores and coroutines are the assembler of concurrency, 
and locks and threads are the slightly higher-level struc-
tured constructs of concurrency. What we need is OO for 
concurrency—higher-level abstractions that help build 
concurrent programs, just as object-oriented abstractions 
help build large componentized programs.

For several reasons, the concurrency revolution is 
likely to be more disruptive than the OO revolution. 

First, concurrency will be integral to higher performance. 
Languages such as C ignored OO and remained usable for 
many programs. If concurrency becomes the sole path to 
higher-performance hardware, commercial and systems 
programming languages will be valued on their support 
for concurrent programming. Existing languages, such as 
C, will gain concurrent features beyond simple models 
such as pthreads. Languages that fail to support concur-
rent programming will gradually die away and remain 
useful only when modern hardware is unimportant.

The second reason that concurrency will be more 
disruptive than OO is that, although sequential program-
ming is hard, concurrent programming is demonstrably 
more difficult. For example, context-sensitive analysis of 
sequential programs is a fundamental technique for tak-
ing calling contexts into account when analyzing a pro-
gram. Concurrent programs also require synchronization 
analysis, but simultaneously performing both analyses is 
provably undecidable.2

Finally, humans are quickly overwhelmed by concur-
rency and find it much more difficult to reason about 
concurrent than sequential code. Even careful people 
miss possible interleavings among simple collections of 
partially ordered operations.

DIFFERENCES BETWEEN CLIENT AND  
SERVER APPLICATIONS
Concurrency is a challenging issue for client-side applica-
tions. For many server-based programs, however, concur-
rency is a “solved problem,” in that we routinely architect 
concurrent solutions that work well, although program-
ming them and ensuring they scale can still require a 
huge effort. These applications typically have an abun-
dance of parallelism, as they simultaneously handle many 
independent request streams. For example, a Web server 
or Web site independently executes thousands of copies 
of the same code on mostly nonoverlapping data.

In addition, these executions are well isolated and 
share state via an abstract data store, such as a database 
that supports highly concurrent access to structured data. 
The net effect is that code that shares data through a 
database can keep its “peaceful easy feeling”—the illusion 
of living in a tidy, single-threaded universe.

The world of client applications is not nearly as well 
structured and regular. A typical client application exe-
cutes a relatively small computation on behalf of a single 
user, so concurrency is found by dividing a computa-
tion into finer pieces. These pieces, say the user interface 
and program’s computation, interact and share data in 
myriad ways. What makes this type of program difficult 
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to execute concurrently are nonhomogeneous code; fine-
grained, complicated interactions; and pointer-based data 
structures.

PROGRAMMING MODELS
Today, you can express parallelism in a number of differ-
ent ways, each applicable to only a subset of programs. 
In many cases, it is difficult, without careful design and 
analysis, to know in advance which model is appropriate 
for a particular problem, and it is always tricky to com-
bine several models when a given application does not fit 
cleanly into a single paradigm.

These parallel programming models differ significantly 
in two dimensions: the granularity of the parallel opera-
tions and the degree of coupling between these tasks. Dif-
ferent points in this space favor different programming 
models, so let’s examine these axes in turn.

Operations executed in parallel can range from single 
instructions, such as addition or multiplication, to com-
plex programs that take hours or days to run. Obviously, 
for small operations, the overhead costs of the parallel 
infrastructure are significant; for example, parallel instruc-
tion execution generally requires hardware support. 
Multicore processors reduce communication and syn-
chronization costs, as compared with conventional mul-
tiprocessors, which can reduce the overhead burden on 
smaller pieces of code. Still, in general, the finer grained 
the task, the more attention must be paid to the cost of 
spawning it as a separate task and providing its communi-
cation and synchronization.

The other dimension is the degree of coupling in the 
communication and synchronization between the opera-
tions. The ideal is none: operations run entirely inde-
pendently and produce distinct outputs. In this case, the 
operations can run in any order, incur no synchroniza-
tion or communications costs, and are easily programmed 
without the possibility of data races. This state of affairs 
is rare, as most concurrent programs share data among 
their operations. The complexity of ensuring correct and 
efficient operation increases as the operations become 
more diverse. The easiest case is executing the same code 
for each operation. This type of sharing is often regular 
and can be understood by analyzing only a single task. 
More challenging is irregular parallelism, in which the 
operations are distinct and the sharing patterns are more 
difficult to comprehend.

INDEPENDENT PARALLELISM 
Perhaps the simplest and best-behaved model is indepen-
dent parallelism (sometimes called “embarrassingly paral-

lel tasks”), in which one or more operations are applied 
independently to each item in a data collection.

Fine-grained data parallelism relies on the indepen-
dence of the operations executed concurrently. They 
should not share input data or results and should be 
executable without coordination. For example:

double A[100][100];
…
A = A * 2;

multiplies each element of a 100x100 array by 2 and 
stores the result in the same array location. Each of the 
10,000 multiplications proceeds independently and with-
out coordination with its peers. This is probably more 
concurrency than necessary for most computers, and 
its granularity is very fine, so a more practical approach 
would partition the matrix into n x m blocks and execute 
the operations on the blocks concurrently.

At the other end of the granularity axis, some applica-
tions, such as search engines, share only a large read-only 
database, so concurrently processing queries requires no 
coordination. Similarly, large simulations, which require 
many runs to explore a large space of input parameters, 
are another embarrassingly parallel application.

REGULAR PARALLELISM
The next step beyond independent parallelism is to apply 
the same operation to a collection of data when the com-
putations are mutually dependent. An operation on one 
piece of data is dependent on another operation if there 
is communication or synchronization between the two 
operations. 

For example, consider a stencil computation that 
replaces each point in an array, the average of its four 
nearest neighbors:

A[i, j] = (A[i-1, j] + A[i, j-1] + A[i+1, j] + A[i, j+1]) / 4;

This computation requires careful coordination to ensure 
that an array location is read by its neighbors before 
being replaced by its average. If space is no concern, 
then the averages can be computed into a new array. In 
general, other more structured computation strategies, 
such as traversing the array in a diagonal wavefront, will 
produce the same result, with better cache locality and 
lower memory consumption.

Regular parallel programs may require synchronization 
or carefully orchestrated execution strategies to produce 
the correct results, but unlike general parallelism, the 
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code behind the operations can be analyzed to determine 
how to execute them concurrently and what data they 
share. This advantage is sometimes hypothetical, since 
program analysis is an imprecise discipline, and suffi-
ciently complex programs are impossible for compilers to 
understand and restructure.

At the other end of the granularity axis, computa-
tions on a Web site are typically independent except for 
accesses to a common database. The computations run 
in parallel without a significant amount of coordination 
beyond the database transactions. This ensures that con-
current access to the same data is consistently resolved.

UNSTRUCTURED PARALLELISM 
The most general, and least disciplined, form of parallel-
ism is when the concurrent computations differ, so that 
their data accesses are not predictable and need to be 
coordinated through explicit synchronization. This is the 
form of parallelism most common in programs written 
using threads and explicit synchronization, in which 
each thread has a distinct role in the program. In general, 
it is difficult to say anything specific about this form of 
parallelism, except that conflicting data accesses in two 
threads need explicit synchronization; otherwise, the 
program will be nondeterministic.

THE PROBLEM OF SHARED STATE, AND  
WHY LOCKS AREN’T THE ANSWER
Another challenging aspect of unstructured parallelism is 
sharing unstructured state. A client application typically 
manipulates shared memory organized as unpredictably 
interconnected graphs of objects.

When two tasks try to access the same object, and one 
could modify its state, if we do nothing to coordinate 
the tasks, we have a data race. Races are bad, because the 
concurrent tasks can read and write inconsistent or cor-
rupted values.

There are a rich variety of synchronization devices 
that can prevent races. The simplest of these is a lock. 
Each task that wants to access a piece of shared data must 

acquire the lock for that data, perform its computation, 
and then release the lock so other operations on the data 
can proceed. Unfortunately, although locks work, they 
pose serious problems for modern software development.

A fundamental problem with locks is that they are 
not composable. You can’t take two correct lock-based 
pieces of code, combine them, and know that the result is 
still correct. Modern software development relies on the 
ability to compose libraries into larger programs, and so it 
is a serious difficulty that we cannot build on lock-based 
components without examining their implementations.

The composability issue arises primarily from the 
possibility of deadlock. In its simplest form, deadlock 
happens when two locks might be acquired by two tasks 
in opposite order: task T1 takes lock L1, task T2 takes lock 
L2, and then T1 tries to take L2 while T2 tries to take L1. 
Both block forever. Because this can happen any time 
two locks can be taken in opposite order, calling into 
code you don’t control while holding a lock is a recipe for 
deadlock.

That is exactly what extensible frameworks do, how-
ever, as they call virtual functions while holding a lock. 
Today’s best-of-breed commercial application frameworks 
all do this, including the .NET Frameworks and the Java 
standard libraries. We have gotten away with it because 
developers aren’t yet writing lots of heavily concur-
rent programs that do frequent locking. Many complex 
models attempt to deal with the deadlock problem—with 
backoff-and-retry protocols, for example—but they 
require strict discipline by programmers, and some intro-
duce their own problems (e.g., livelock).

Techniques for avoiding deadlock by guarantee-
ing locks will always be acquired in a safe order do not 
compose, either. For example, lock leveling and lock 
hierarchies prevent programs from acquiring locks in con-
flicting order by requiring that all locks at a given level be 
acquired at once in a predetermined order, and that while 
holding locks at one level, you can acquire additional 
locks only at higher levels. Such techniques work inside 
a module or framework maintained by a team (although 
they’re underused in practice), but they assume control 
of an entire code base. That severely restricts their use in 
extensible frameworks, add-in systems, and other situa-
tions that bring together code written by different parties. 

A more basic problem with locks is that they rely on 
programmers to strictly follow conventions. The rela-
tionship between a lock and the data that it protects is 
implicit, and it is preserved only through programmer 
discipline. A programmer must always remember to take 
the right lock at the right point before touching shared 
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data. Conventions governing locks in a program are 
sometimes written down, but they’re almost never stated 
precisely enough for a tool to check them.

Locks have other more subtle problems. Locking is 
a global program property, which is difficult to localize 
to a single procedure, class, or framework. All code that 
accesses a piece of shared state must know and obey the 
locking convention, regardless of who wrote the code or 
where it resides.

Attempts to make synchronization a local property 
do not work all the time. Consider a popular solution 
such as Java’s synchronized methods. Each of an object’s 
methods can take a lock on the object, so no two threads 
can directly manipulate the object’s state simultaneously. 
As long as an object’s state is accessed only by its meth-
ods and programmers remember to add the synchronized 
declaration, this approach works.

There are at least three major problems with synchro-
nized methods. First, they are not appropriate for types 
whose methods call virtual functions on other objects 
(e.g., Java’s Vector and .NET’s SyncHashTable), because 
calling into third-party code while holding a lock opens 
the possibility of deadlock. Second, synchronized methods 
can perform too much locking, by acquiring and releas-
ing locks on all object instances, even those never shared 
across threads (typically the majority). Third, synchro-
nized methods can also perform too little locking, by 
not preserving atomicity when a program calls multiple 
methods on an object or on different objects. As a simple 
example of the latter, consider a banking transfer:

account1.Credit(amount); account2.Debit(amount)

Per-object locking protects each call, but does not prevent 
another thread from seeing the inconsistent state of the 
two accounts between the calls. Operations of this type, 
whose atomicity does not correspond to a method call 
boundary, require additional, explicit synchronization.

LOCK ALTERNATIVES
For completeness, we note two major alternatives to 
locks. The first is lock-free programming. By relying on a 
deep knowledge of a processor’s memory model, it is pos-
sible to create data structures that can be shared without 
explicit locking. Lock-free programming is difficult and 
fragile; inventing a new lock-free data-structure imple-
mentation is still often a publishable result.

The second alternative is transactional memory, which 
brings the central idea of transactions from databases 
into programming languages. Programmers write their 

programs as a series of explicitly atomic blocks, which 
appear to execute indivisibly, so concurrently execut-
ing operations see the shared state strictly before or after 
an atomic action executes. Although many people view 
transactional memory as a promising direction, it is still a 
subject of active research.

WHAT WE NEED IN PROGRAMMING LANGUAGES
We need higher-level language abstractions, including 
evolutionary extensions to current imperative languages, 
so that existing applications can incrementally become 
concurrent. The programming model must make concur-
rency easy to understand and reason about, not only dur-
ing initial development but also during maintenance.

EXPLICIT, IMPLICIT, AND AUTOMATIC PARALLELIZATION 
Explicit programming models provide abstractions that 
require programmers to state exactly where concurrency 
can occur. The major advantage of expressing concur-
rency explicitly is that it allows programmers to take full 
advantage of their application domain knowledge and 
express the full potential concurrency in the application. 
It has drawbacks, however. It requires new higher-level 
programming abstractions and a higher level of program-
mer proficiency in the presence of shared data.

Implicit programming models hide concurrency 
inside libraries or behind APIs, so that a caller retains a 
sequential worldview while the library performs the work 
in parallel. This approach lets naïve programmers safely 
use concurrency. Its main drawback is that some kinds of 
concurrency-related performance gains can’t be realized 
this way. Also, it is difficult to design interfaces that do 
not expose the concurrency in any circumstance—for 
example, when a program applies the operation to several 
instances of the same data.

Another widely studied approach is automatic paral-
lelization, where a compiler attempts to find parallel-
ism, typically in programs written in a conventional 
language such as Fortran. As appealing as it may seem, 
this approach has not worked well in practice. Accurate 
program analysis is necessary to understand a program’s 
potential behavior. This analysis is challenging for simple 
languages such as Fortran, and far more difficult for 
languages, such as C, that manipulate pointer-based data. 
Moreover, sequential programs often use sequential algo-
rithms and contain little concurrency.

IMPERATIVE AND FUNCTIONAL LANGUAGES. 
Popular commercial programming languages (e.g., Pascal, 
C, C++, Java, C#) are imperative languages in which a 
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programmer specifies step-by-step changes to variables 
and data structures. Fine-grained control constructs (e.g., 
for loops), low-level data manipulations, and shared 
mutable object instances make programs in these lan-
guages difficult to analyze and automatically parallelize.

The common belief is that functional languages, such 
as Scheme, ML, or Haskell, could eliminate this difficulty 
because they are naturally suited to concurrency. Pro-
grams written in these languages manipulate immutable 
object instances, which pose no concurrency hazards. 
Moreover, without side effects, programs seem to have 
fewer constraints on execution order.

In practice, however, functional languages are not 
necessarily conducive to concurrency. The parallelism 
exposed in functional programs is typically at the level 
of procedure calls, which is impractically fine-grained for 
conventional parallel processors. Moreover, most func-
tional languages allow some side effects to mutable state, 
and code that uses these features is difficult to parallelize 
automatically. 

These languages reintroduce mutable state for reasons 
of expressibility and efficiency. In a purely functional lan-
guage, aggregate data structures, such as arrays or trees, 
are updated by producing a copy containing a modified 
value. This technique is semantically attractive but can be 
terrible for performance (linear algorithms easily become 
quadratic). In addition, functional updates do nothing to 
discourage the writing of a strictly sequential algorithm, 
in which each operation waits until the previous opera-
tion updates the program’s state.

The real contribution of functional languages to 
concurrency comes in the higher-level programming 
style commonly employed in these languages, in which 
operations such as map or map-reduce apply computa-
tions to all elements of an aggregate data structure. These 
higher-level operations are rich sources of concurrency. 
This style of programming, fortunately, is not inherently 
tied to functional languages, but is valuable in imperative 
programs. 

For example, Google Fellows Jeffrey Dean and Sanjay 

Ghemawat describe how Google uses Map-Reduce to 
express large-scale distributed computations.3 Imperative 
languages can judiciously add functional style extensions 
and thereby benefit from those features. This is important 
because the industry can’t just start over. To preserve the 
huge investment in the world’s current software, it is 
essential to incrementally add support for concurrency, 
while preserving software developers’ expertise and train-
ing in imperative languages. 

BETTER ABSTRACTIONS 
Most of today’s languages offer explicit programming at 
the level of threads and locks. These abstractions are low-
level and difficult to reason about systematically. Because 
these constructs are a poor basis for building abstractions, 
they encourage multithreaded programming with its 
problems of arbitrary blocking and reentrancy. 

Higher-level abstractions allow programmers to 
express tasks with inherent concurrency, which a runtime 
system can then combine and schedule to fit the hard-
ware on the actual machine. This will enable applications 
that perform better on newer hardware. In addition, for 
mainstream development, programmers will value the 
illusion of sequential execution within a task.

Two basic examples of higher-level abstractions are 
asynchronous calls and futures. An asynchronous call is a 
function or method call that is nonblocking. The caller 
continues executing and, conceptually, a message is sent 
to a task, or fork, to execute operation independently. 
A future is a mechanism for returning a result from an 
asynchronous call; it is a placeholder for the value that 
has not yet materialized. 

Another example of a higher-level abstraction is an 
active object, which conceptually runs on its own thread 
so that creating 1,000 such objects conceptually cre-
ates 1,000 potential threads of execution. An active 
object behaves as a monitor, in that only one method 
of the object executes at a given time, but it requires no 
traditional locking. Rather, method calls from outside 
an active object are asynchronous messages, marshaled, 
queued, and pumped by the object. Active objects have 
many designs, from specialized actor languages to COM 
single-threaded apartments callable from traditional C 
code, and many design variables. 

Other higher-level abstractions are needed, such as 
protocols to describe and check asynchronous message 
exchange. Together they should bring together a consis-
tent programming model that can express typical applica-
tion concurrency requirements across all of the major 
granularity levels.

Software 
and the  
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WHAT WE NEED IN TOOLS
Parallel programming, because of its unfamiliarity and 
intrinsic difficulty, is going to require better programming 
tools to systematically find defects, help debug programs, 
find performance bottlenecks, and aid in testing. Without 
these tools, concurrency will become an impediment that 
reduces developer and tester productivity and makes con-
current software more expensive and of lower quality.

Concurrency introduces new types of programming 
errors, beyond those all too familiar in sequential code. 
Data races (resulting from inadequate synchronization 
and deadlocks) and livelocks (resulting from improper 
synchronization) are difficult defects to find and under-
stand, since their behavior is often nondeterministic and 
difficult to reproduce. Conventional methods of debug-
ging, such as reexecuting a program with a breakpoint set 
earlier in its execution, do not work well for concurrent 
programs whose execution paths and behaviors may vary 
from one execution to the next.

Systematic defect detection tools are extremely valu-
able in this world. These tools use static program analysis 
to systematically explore all possible executions of a 
program; thus, they can catch errors that are impossible 
to reproduce. Although similar techniques, such as model 
checking, have been used with great success for finding 
defects in hardware, which is inherently concurrent, 
software is more difficult. The state space of a typical 
program is far larger than that of most hardware, so tech-
niques that systematically explore an artifact’s states have 
much more work to do. In both cases, modularity and 
abstraction are the keys to making the analysis tractable. 
In hardware model testing, if you can break off the ALU 
(arithmetic logic unit) and analyze it independently of 
the register file, your task becomes much more tractable. 

That brings us to a second reason why software is more 
difficulty to analyze: it is far harder to carve off pieces of 
a program, analyze them in isolation, and then combine 
the results to see how they work together. Shared state, 
unspecified interfaces, and undocumented interactions 
make this task much more challenging for software.

Defect detection tools for concurrent software 
comprise an active area of research. One promising 
technique from Microsoft Research called KISS (Keep it 
Strictly Sequential)4 transforms a threaded program into 
a sequential program whose execution behavior includes 
all possible interleaves of the original threads that involve 
no more than two context switches. The transformed 
program can then be analyzed by the large number of 
existing sequential tools, which then become concurrent 
defect detection tools for this bounded model.

Even with advances such as these, programmers are 
still going to need good debuggers that let them under-
stand the complex and difficult-to-reproduce interac-
tions in their parallel programs. There are two general 
techniques for collecting this information. The first is 
better logging facilities that track which messages were 
sent to which process or which thread accessed which 
object, so that a developer can look back and understand 
a program’s partially ordered execution. Developers 
will also want the ability to follow causality trails across 
threads (e.g., which messages to one active object, when 
executed, led to which other messages to other active 
objects?), replay and reorder messages in queues, step 
through asynchronous call patterns including callbacks, 
and otherwise inspect the concurrent execution of their 
code. The second approach is reverse execution, which 
permits a programmer to back up in a program’s execu-
tion history and reexecute some code. Replay debugging 
is an old idea, but its cost and complexity have been 

barriers to adoption. Recently, virtual machine monitors 
have reduced both factors.5 In a concurrent world, this 
technique will likely become a necessity.

Performance debugging and tuning will require new 
tools in a concurrent world as well. Concurrency intro-
duces new performance bottlenecks, such as lock con-
tention, cache coherence overheads, and lock convoys, 
which are often difficult to identify with simple profil-
ers. New tools that are more aware of the underlying 
computer architecture and the concurrent structure of a 
program will be better able to identify these problems.

Testing, too, must change. Concurrent programs, 
because of their nondeterministic behaviors, are more 
difficult to test. Simple code coverage metrics, which 
track whether a statement or branch has executed, need 
to be extended to take into account the other code that 
is executing concurrently, or else testing will provide 

Debugging  
and tuning will require  
new tools in a concurrent world as well.
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an unrealistically optimistic picture of how completely 
a program has been exercised. Moreover, simple stress 
tests will need to be augmented by more systematic 
techniques that use model-checking-like techniques to 
explore systems’ state spaces. For example, Verisoft has 
been very successful in using these techniques to find 
errors in concurrent telephone switching software.6 
Today, many concurrent applications use length of stress 
testing to gain confidence that the application is unlikely 
to contain serious races. In the future, that will increas-
ingly be insufficient, and software developers will need to 
be able to prove their product’s quality through rigorous 
deterministic testing instead of relying on a probabilistic 
confidence based on stress tests.

PARALLELISM IS KEY
The concurrency revolution is primarily a software revo-
lution. The difficult problem is not building multicore 
hardware, but programming it in a way that lets main-
stream applications benefit from the continued exponen-
tial growth in CPU performance.

The software industry needs to get back into the state 
where existing applications run faster on new hardware. 
To do that, we must begin writing concurrent applica-
tions containing at least dozens, and preferably hundreds, 
of separable tasks (not all of which need be active at a 
given point).

Concurrency also opens the possibility of new, richer 
computer interfaces and far more robust and functional 
software. This requires a new burst of imagination to find 
and exploit new uses for the exponentially increasing 
potential of new processors.

To enable such applications, programming language 
designers, system builders, and programming tool 
creators need to start thinking seriously about parallel-
ism and find techniques better than the low-level tools 
of threads and explicit synchronization that are today’s 
basic building blocks of parallel programs. We need 
higher-level parallel constructs that more clearly express a 
programmer’s intent, so that the parallel architecture of a 

program is more visible, easily understood, and verifiable 
by tools. Q
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M
ulticore is the new hot topic in the latest round of 
CPUs from Intel, AMD, Sun, etc. With clock speed 
increases becoming more and more diffi cult to 

achieve, vendors have turned to multicore CPUs as the 
best way to gain additional performance. Customers are 
excited about the promise of more performance through 
parallel processors for the same real estate investment.  

For a handful of popular server-based enterprise appli-
cations, that may be true, but for desktop applications I 
wouldn’t depend on that promise being fulfi lled anytime 
soon. The expectation for multicore CPUs on the desktop 
is to have all our desktop applications fully using all 
the processor cores on the chip. Each application would 
gracefully increase its performance as more and more pro-
cessors became available for use. Just like past increases 
in clock speed and application bandwidth, increasing the 
number of processor cores should produce similar perfor-
mance enhancements. It works for the popular enterprise 
applications, so why not for desktop applications? Sounds 
reasonable, right? Don’t count on it.  

Sure, the major enterprise applications such as Oracle, 
WebLogic, DB2, and Apache are designed to take full 
advantage of multiple processors and are architected to 
be MT (multithreaded). They have to be for the large SMP 
(symmetric multiprocessing) servers that are the meat and 
potatoes of their market. 

Even though the concept of using concurrent CPUs to 
increase overall software performance has been around 
for at least 35 years, remarkably little in the way of devel-
opment tools has made it to the commercial marketplace. 
As a result, the vast majority of applications are single-
threaded. Although multicore CPUs will allow you to 
share a mix of applications across multiple processors, 
individual application performance will remain bounded 
by the speed of an individual processor. Application per-
formance will remain the same regardless of whether you 
have one or 100 processors because each application can 
run on only one processor at any given time.  

With the possible exception of Java, there are no 
widely used commercial development languages with MT 
extensions. Realistically, until now there has not been 
much of a need. The widespread availability of com-

mercial SMP systems did 
not really arrive until the 
early 1990s, and even then 
multithreaded applications 
came slowly.  

When I was at Sun, the company rewrote SunOS to 
take advantage of its new multithreading architecture. 
It was a long and painful process. Initially, subsystems 
were rewritten with locks at either end so they would be 
assured to run as one big single thread (MT-safe) and then 
rewritten again to be fully MT optimized (MT-hot) for 
maximal concurrency. Everything was designed by hand 
and there were no tools to manage the complexity.  

Around the same time, Sun implemented a set of user 
MT libraries that applications could use. As larger SMP 
servers started to appear on Sun’s roadmap, the major 
enterprise application vendors saw that they too had to 
make the investment in converting their software to MT. 
The experience was equally painful and similar to the 
SunOS MT rewrite. Recognizing the need to make these 
applications run MT-hot in order to sell their new SMP 
servers, Sun leveraged its experience by assigning  engi-
neers to these companies to help them in their migration.  

The situation today is quickly becoming a replay 
of what happened 10 years ago. Application vendors 
requiring more CPU bandwidth can no longer count 
on increased clock speeds for better performance and 
functionality. Most large-scale client-side applications are 
written in C or C++ and historically have been designed 
to be single-threaded. Making applications MT-hot is 
still a labor-intensive redelivery process. Although a few 
vendors, most notably in the multimedia area, have made 
some MT enhancements to their applications, they have 
just started to pick off the low-hanging fruit. With multi-
core CPUs, widespread desktop performance and func-
tionality improvements are still years away.  

What have the development tool vendors been doing 
as MT architectures have evolved during the past decade 
or so? It’s not as if anyone in the computer industry did 
not see this coming. What can we expect in the future? 
Given where the industry is today, the introduction of 
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