
Introduction

4/23/03 DRAFT: Readings in Computer Architecture 45

CHAPTER 9 Multiprocessors and Multicomputers

Morgan Kaufmann is pleased to present material from a preliminary draft of Readings in Computer Architecture;
the material is (c) Copyright 1999 Morgan Kaufmann Publishers. This material may not be used or distributed for
any commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that
this material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be
held liable for changes or alterations in the final edition.

9.1 Introduction

Most computers today use a single microprocessor as a central processor. Such systems—called
uniprocessors—satisfy most users because their processing power has been growing at a com-
pound annual rate of about 50%. Nevertheless, some users and applications desire more power.
On-line transaction processing (OLTP) systems wish to handle more users, weather forecasters
seek more fidelity in tomorrow’s forecast, and virtual reali ty systems wish to do more accurate
visual effects. If one wants to go five times faster, what are the alternatives to waiting four years
(1.54 ≈ 5 times)?

One approach to going faster is to try to build a faster processor using more gates in parallel and/
or with a more exotic technology. This is the approach used by supercomputers of the 1970s and
1980s. The Cray-1 [31], for example, used an 80 MHz clock in 1976. Microprocessors did not
reach this clock rate until the early 1990s.

DRAFT: Readings in Computer Architecture

46 DRAFT: Readings in Computer Architecture 4/23/03

Today, however, the exotic processor approach is not economically viable. Microprocessors pro-
vide the fastest computing engines by integrating tens (soon hundreds) of millions of transistors
together with short wires to form complex pipelines and integrated memory systems. Designs are
then carefully tuned and implemented with an expensive fabrication technology. A microproces-
sor’s sales must reach milli ons of units to adequately amortize up-front costs. A customized
microprocessor would not ship in enough volume to amortize the design and testing costs for
complex pipelines and integrated memory systems. A processor that is not a microprocessor
could use an exotic technology, but would have longer wires—and hence longer wire delays—
and the same design and testing cost problems.

Therefore, the only viable alternative for going faster than a uniprocessor is to employ multiple
microprocessors and connect them in some fashion so that they can cooperate on the same prob-
lem. Since uniprocessors have long separated memory systems and I/O systems, it should not be
surprising that the two alternatives for connecting processors are via the memory system and via
the I/O system. In either case, processors in these systems execute instructions independently,
and, therefore, are multiple instruction multiple data (MIMD) systems, not single instruction
multiple data (SIMD) systems, as were described in the previous chapter.

Shared-memory multiprocessors join multiple processors with a logically-shared memory. Hard-
ware ensures that a store by a processor to a physical address will be visible to all other proces-
sors. Thus, normal loads and stores can be used for communication. Shared memory
multiprocessors tend to also have a logically-shared I/O system. Implementing shared-memory
multiprocessors is challenging, because good performance dictates that the logically-shared
memory (and I/O) be physically distributed.

Multiple processors can alternatively be joined via the I/O system. With this approach each pro-
cessor can reside in a conventional computer node augmented with a network interface (NI). The
NI, which usually resides on an I/O bus, could be a standard NI (e.g., for Ethernet) that supports
standard network protocols (e.g., TCP/IP) to connect nodes with a local area network or even the
Internet. We do not examine this case further, but instead refer readers to networking texts, such
as Peterson and Davie [30]

We will instead examine systems that connect computers via custom NIs and/or custom net-
works. The NIs and networks of these systems—sometimes called multicomputers—vary from
specialized (e.g., for the Intel li ne of multicomputers) to something that is close to a local area
network (e.g., Myricom Myrinet [8]). Unlike shared-memory multiprocessors, multicomputers
do not use stores and loads for communication. Instead, hardware supports explicit mechanisms
for passing messages between one node and another. Implementing high-performance multicom-
puters is challenging, because it is hard to avoid inordinate software overhead sending and
receiving each message.

Parallel computing has had a significant impact on computing. Furthermore, we expect it to be
even more important in the future. Traditionally, it has been a way to speed high-end applications
at any cost. Today, we recognize that it can also be cost-effective [41]. A p-processor system is
cost-effective relative to a uniprocessor if its speed improvement in executing a workload
exceeds its cost premium versus the uniprocessor. In many cases, the cost premium for adding
additional processors is low, because substantial costs go into the memory and I/O systems. In
1995, for example, an eight-processor Sili con Graphics Challenge XL with 1GB memory cost
2.5 times a comparable uniprocessor [41]. Thus, the 8-processor XL was cost-effective for all
workloads it could speed up by more than 2.5 times.

Parallel Computer Software

4/23/03 DRAFT: Readings in Computer Architecture 47

The next sections discuss parallel computer software, shared memory multiprocessors, and mul-
ticomputers. More background on parallel software and hardware can be found in Almasi and
Gottlieb [3] and Culler, Singh, and Gupta [13]. Both books significantly influenced the ideas pre-
sented here.

9.2 Parallel Computer Software

Modern parallel systems have three interface levels: user programming model, application
binary interface (ABI), and the hardware. Compilers and libraries work to map applications to an
ABI. ABIs are implemented on hardware via operating system services and device drivers. To
design parallel hardware we must understand some about these interfaces and the software that
converts between them.

9.2.1 Programming Models

For uniprocessors, programming discussions sometimes consider the relative merits of alterna-
tive programming languages, such as Fortran, C, C++, or Java. These languages are actually very
similar and make similar demands on hardware. When programming parallel computers, how-
ever, a debate on Fortran vs. C is secondary to more fundamental issues such as whether data
sharing is done by writing a variable or sending a message. These issues determine the program-
ming model used.

The four most popular programming models are sequential, data parallel, shared memory, and
message passing. With the sequential model, programmers write regular uniprocessor programs
and rely on system software—mostly compilers—to parallelize their code and data . This
approach relieves programmers of the burden of parallelization and is successful in some cases,
but is not robust enough for general use despite decades of work.

With the data parallel model, programmers write code that is sequential in control flow but par-
allel in data operations (e.g., in High Performance Fortran). Assume that all the following vari-
ables represent matrices:

A = B + C

E = A * D

With data parallel, all processors would appear to execute the many additions in the matrix add
before any began the multiplies and adds of the matrix multiply. In many ways, data parallel pro-
gramming is an abstraction of SIMD processing. It can be wildly successful, but many other
important programs work poorly with it or cannot be easily expressed.

The shared memory model is based on multiple sequential threads sharing data through shared
variables. It provides the same model as a multi-tasking uniprocessor. It has achieved great suc-
cess in small to medium-sized systems (less than 30 processors) for applications such as on-line
transaction processing and scientific simulation. The greatest challenge of shared memory pro-
gramming is including sufficient synchronization so that data communication is meaningful (e.g.,
a load does not read data before the store that writes it executes).

DRAFT: Readings in Computer Architecture

48 DRAFT: Readings in Computer Architecture 4/23/03

Finally, the message passing model allows programming with conventional uniprocessor lan-
guages augmented with explicit calls for communication. In most cases, communication is initi -
ated with a send call that copies data from a buffer and sends it to a destination. An application
usually obtains the communicated data with a receive call that copies data into a specified buffer.
If the data is not yet available, the receive call can block or return a not-ready flag. The message
passing model closely resembles the model used in network computing. Message passing has had
many successes, but can make it difficult to correctly implement complex, pointer-based data
structures.

9.2.2 Application Binary Interfaces (ABIs)

Over most of the history of parallel computing there has been no separation between program-
ming model and hardware. Rather machines were characterized by the programming model that
they supported. Data parallel or SIMD machines include the Illinois Illiac IV and Thinking
Machines CM-1. Message passing machines include the Caltech Cosmic Cube, Intel Hypercube,
and Intel Paragon. Shared memory machines include CMU C.mmp, Sequent Balance, and SGI
2000.

Today we understand that programming models and hardware are different. Any hardware can
support any programming model. Modern systems use a compiler and libraries to map an appli -
cation to an application binary interface (ABI). They then use operating system services and
device drivers to implement an ABI on hardware. The challenge then is to identify ABIs and
hardware mechanisms that work well .

Today’s parallel systems have evolved to two classes of ABIs: shared memory and messaging.
The shared memory ABI presents applications with an interface similar to a multi -tasking unipro-
cessor. Compiler and libraries map applications written in user programming models to the
shared memory ABI. Mapping the sequential programming and data parallel programming mod-
els to a shared memory ABI requires extensive compiler support. Supporting shared memory is
straightforward. Implementing message passing requires only a library that implements send and
receive calls in shared memory.

The messaging ABI presents applications with an interface similar to communicating on a net-
work. Nodes have separate memory and separate I/O spaces, but can exchange data through mes-
sages. Mapping user programming models to the message passing ABI is challenging.
Implementing sequential and data parallel programming models on a message passing ABI
requires even better compiler support than with a shared memory ABI, because the cost of unnec-
essary messages is usually higher than the cost of unnecessary memory references. Implementing
the shared memory programming model on a message passing ABI is also hard when good per-
formance is required. Supporting message passing program on a message passing ABI, however,
requires only a straightforward library. The most popular such library for scientific programming
is Message Passing Interface (MPI) [35, 18].

9.2.3 Hardware

Finally, one must implement the two ABIs, shared memory and messaging, on the two classes of
hardware platforms—multiprocessors and multicomputers.

Shared-Memory Multiprocessors

4/23/03 DRAFT: Readings in Computer Architecture 49

• Shared memory ABI on a shared-memory multiprocessor. The most significant challenge is
developing an operating system that runs well on many processors.

• Messaging ABI on a shared-memory multiprocessor. Communication can be done with stan-
dard operating system mechanisms, provided they perform well enough.

• Shared memory ABI on a multicomputer. This is hard. Li and Hudak [28], discussed later,
give some answers for sharing memory, but sharing I/O must also be implemented.

• Messaging ABI on a multicomputer. This can be implemented with a standard operating sys-
tem with standard networking. The challenge is obtaining good messaging performance,
especially if the operating system is involved on every message.

The relationships between programming model, ABI, and hardware can be confusing, but mak-
ing these distinctions can be important. There are results, for example, that show that (a) message
passing programming on a shared memory ABI on a multiprocessor can lead to higher perfor-
mance than either (b) shared memory programming on a shared memory ABI on a multiproces-
sor or (c) message passing programming on a messaging ABI on a multicomputer.

Now for a quiz. What is the difference between (a) a shared memory program on a messaging
ABI on a multicomputer and (b) a shared memory program on a shared memory ABI on a multi -
computer? Answer. In (a) compilers or libraries would convert accesses to shared variables into
messages (e.g., Berkeley Split -C [12]). In (b) the application actually uses load and store instruc-
tions and the system makes things work correctly (e.g,. Li and Hudak’s Ivy [28]).

9.3 Shared-Memory Multiprocessors

This section examines the evolution of shared memory multiprocessors. In these machines a pro-
cessor can use normal memory-referencing instructions (e.g., loads and stores) to access all
memory and all processors can access the same memory location with the same address.

Most shared-memory multiprocessors allow processors to have caches. Caches work by making
a copy of data that is still associated with the data’s original address. Insuring that processors
(and devices) obtain and update the most recent copy of data is the cache coherence problem and
is usually solved by a cache coherence protocol (e.g., Goodman’s write-once described in Chap-
ter FOO). Multiprocessors that use cache coherence often get the designation CC, while those
that don’t are NCC.

Multiprocessors also differ on whether all accesses to memory encounter a similar delay (uni-
form memory access or UMA) or not (non-UMA or NUMA). This leads to four basic categories to
multiprocessors: NCC-UMA, NCC-NUMA, CC-UMA, and CC-NUMA.1 CC-UMAs are also
called symmetric multiprocessors (SMPs).

9.3.1 Wulf and Harbison’s “ Reflections in a pool of processors/An experience repor t on C.mmp/

1. NCC-UMA and NCC-NUMA machines are often called UMAs and NUMAs, respectfully. We include
the prefix NCC to avoid ambiguity.

DRAFT: Readings in Computer Architecture

50 DRAFT: Readings in Computer Architecture 4/23/03

Hydra”

Wulf and Harbison [42] summarize a seminal 1970s research project on multiprocessor hardware
and operating systems. This project, begun at Carnegie Mellon University in 1972, developed the
C.mmp hardware and the Hydra operating system. C.mmp provided uniform-delay access from
all 16 DEC PDP-11 processors to 16 interleaved memory modules using a crossbar switch, but
no caches. It pioneered a NCC-UMA architecture using of off-the-shelf components. Hydra was
a symmetric operating system (no master-slave relationships) that also separated policy from ker-
nel mechanisms and used capabilit ies.

Wulf and Harbison’s paper is also notable as one of the most thorough and balanced research
project retrospectives we have ever seen. If all research projects were as forthcoming about their
technical and non-technical successes and failures as C.mmp, we could all learn much more from
each other. Readers wishing to probe further into this era should also read about C.mmp’s succes-
sor CMU CM* [36]

9.3.2 Lampor t’s “ How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs”

As architects began to consider performance optimization for shared-memory systems—such as
write buffers and caches—it became useful to define exactly what correct shared memory should
do. In a uniprocessor, a load to memory should return the value of the last store to the same
address. In a multi-tasking uniprocessor, a load should return the value of the last store to the
same address, but now this store could be from the load’s thread or from another thread that was
multiplexed onto the processor since the load’s thread last stored this address.

Lamport uses this sort of reasoning to define sequential consistency (SC) [24]. Informally, a mul-
tiprocessor implements SC if it always behaves like a multi-tasking uniprocessor. Lamport for-
malizes this with a total order of all memory operations that respects the program order at each
processor. Implementations of SC must keep performance optimizations—such as write buffers
and caches—hidden from programmers.

To improve performance, other memory consistency models have been proposed and deployed.
Some models expose first-in-first-out write buffers to programmers: processor consistency,
SPARC TSO, and Intel IA-32. Other models allow some memory operations to be completely out
of order: weak consistency, release consistency, DEC/Compaq Alpha, IBM PowerPC, and Sun
RMO. Adve and Gharachorloo [1] provide a contemporary tutorial on alternative models, while
Hill [21] argues that speculative execution should drive shared memory multiprocessors back to
sequential consistency.

9.3.3 Snooping Cache Coherence

Goodman’s “Using Cache Memory to Reduce Processor-Memory Traffic” [17] appears in Chap-
ter 6 and is described more fully there. What is important for this chapter is Goodman’s definition
of the write-once protocol, the first snooping cache coherence protocol. On the first write to a
block, the write-once protocol performs a write-through that also invalidates other cached copies.
On subsequent writes, write-back is used. Write-once spawned a series of alternative snooping
protocols that were then unified with the MOESI framework [37].

Shared-Memory Multiprocessors

4/23/03 DRAFT: Readings in Computer Architecture 51

More importantly, snooping protocols have led to the most successful class of commercial multi -
processors: CC-UMAs or symmetric multiprocessors (SMPs). An early commercial SMP is the
Sequent Balance [39]. An example of the state of the art is Sun UltraEnterprise 5000 [34]. Its bus
supports up to 112 simultaneous transactions from up to 30 CPUs and updates coherence state
immediately after a transaction begins and regardless of the order of data transfers.

9.3.4 Censier and Feautr ier’s “ A New Solution to Coherence Problems in Multicache Systems”

Censier and Feautrier [10] present the first directory cache coherence protocol approach suitable
for scaling to a large number of processors. This paper predates the invention of snooping, but is
only now becoming important in commercial systems. Each block in memory has a directory
entry that provides information on the block’s caching status. The directory entry is at a known
location, regardless of where the block is cached. Censier and Feautrier’s directory entry has a bit
to identify which processor caches a block. This scheme was later classified as DirnNB by Agar-
wal et al. [2]. In each cache, two state bits identify whether a block is modified (and therefore
exclusive), valid (but unmodified and potentially shared), or invalid. On a processor read of an
invalid block or a processor write of an unmodified block, a request is sent to the directory, which
may in turn send messages to obtain the block or invalidate soon-to-be-stale copies.

Prior to Censier and Feautrier, Tang [38] developed a coherence protocol more suitable for a
small number of processors, because it duplicated cache tags for all processors at the memory
controller.

9.3.5 Lenoski, et al.’s “ The Stanford DASH Multiprocessor”

A decade after Censier and Feautrier’s directory proposal Stanford University implemented a
refinement of the idea in the DASH shared memory multiprocessor prototype. Stanford DASH
[27] connected up to 16 SGI four-way SMPs using two two-dimensional mesh network. It imple-
mented shared memory with a CC-NUMA architecture using a distributed directory protocol.
The project is notable for many research ideas on coherence protocols, memory consistency
models, benchmarking, etc. Equally important, DASH “put it all together” to explore race-condi-
tion, deadlock, and other implementation issues. This exploration cleared the way for commer-
cial follow-ons, such as the SGI Origin 2000 [25].

9.3.6 Hagersten, Landin, and Har idi’s “ DDM--A Cache-Only Memory Architecture”

Hagersten et al. [19] observe that CC-NUMA machines pay substantial memory cost to keep
locally-cached copies of data from more distant memory modules. To counter this waste they
propose to turn all memory into cache so that data used at one node need not also exist at a
remote node where it is not used. This architecture was dubbed cache-only memory architecture
(COMA). Key challenges for implementing COMA include finding data that has no permanent
home and replacing data from a cache when it does not currently exist elsewhere in the system.
These ideas were independently developed for the KSR-1, a commercial machine from Kendall
Square Research [32]. To date, there have been no commercially-successful COMA machines,
but researchers are still looking at ways to modify the idea to make it less complex to implement.

DRAFT: Readings in Computer Architecture

52 DRAFT: Readings in Computer Architecture 4/23/03

9.3.7 Multiprocessors Today and Tomorrow

Shared memory multiprocessors are now commonly used for servers and larger computers. Most
of these are symmetric multiprocessors—CC-UMAs that use a bus. A few large machines, such
as the Silicon Graphics Origin 2000, employ the CC-NUMA design. The Cray T3E is a NCC-
NUMA [33]. We are not aware of any current NCC-UMAs.

For the cost-effectiveness arguments given we expect more desktop machines to become SMPs
(CC-UMAs). SMPs will continue to flourish for low end servers, while directory-based CC-
NUMAs become more widely deployed at the high-end. Exactly what size will divide SMPs
from CC-NUMA will depend on the relative ingenuity of the engineers designing these systems.
We expect NCC-NUMAs and NCC-UMAs to die out, because coherent caching is important for
obtaining good performance on general purpose user and system software.

9.4 Multicomputing

This section concentrates on systems that do not globally share memory. Instead, nodes contain
one or more processors, locally-shared memory, optional I/O devices, and an interconnection net-
work interface. Processors use normal memory-referencing instructions to obtain data within a
node, but obtain remote data with other mechanisms. At the extreme, a collection of hosts on the
internet meets the above definition. We, however, will concentrate on systems that are more
strongly coupled. These systems are sometimes called multicomputers or NORMAs (NO Remote
Memory Access).

9.4.1 Athas and Seitz’s “The Cosmic Cube”

Athas and Seitz [7] describes the Caltech Cosmic Cube. The Cosmic Cube pioneered the multi-
computer hardware architecture and message-passing programming model. It included 64 nodes
connected by a hypercube network. Each node contained an Intel 8086/8087 processor and 128K
bytes of memory. It was programmed with message passing. With message passing, per-node
programs are augmented with explicit send() and receive() calls to perform internode
communication.

9.4.2 Multicomputer Follow-ons

The Caltech Cosmic Cube led to a series of Intel multicomputers, including the iPSC/1, iPSC/2
and Paragon, and influenced all other multicomputers vendors. These machines were employed
by scientists at research labs and universities, but they did not enjoy broad commercial success.
One problem is that message passing overheads have been large (>> 1 ms). A second is that these
machines targeted message-passing exclusively, and this programming model is too limiting for
many applications.

Many efforts have sought to reduce message passing overhead. We mention four here. The
Thinking Machines CM-5 [26] was a commercial multicomputer that moved its network inter-
face (NI) from the I/O to the memory bus. Furthermore, it mapped the NI into user-space so that
user-level software could send and receive messages with uncached loads and stores. Protection
was still maintained with a partitionable network and special context switch mechanisms. A spe-

Multicomputing

4/23/03 DRAFT: Readings in Computer Architecture 53

cial network supported rapid global reductions for many associative operations (e.g., the sum of
integers where each node contributes one number).

Berkeley active messages [40] was a software-only idea that sought to move the message abstrac-
tion down to something close to what hardware could actually implement. An active message
contains a handler address and zero or more arguments. Messages arriving at their destination
spawn a thread that begins execution at the handler address. There is no explicit receive() call .

The MIT J-Machine [29] explored connecting many small nodes (e.g., 1024). Each node contains
1 Mbyte of memory and a custom “message-driven processor.” Particularly interesting is the pro-
cessor’s custom support for communication (message send instructions and a hardware receive/
dispatch queue), synchronization (through tags), and naming (with instructions for loading and
querying an associative table).

A final way multicomputers are evolving is toward greater exploitation of standard hardware and
software. The IBM SP/2 [reference] uses workstation boards running IBM’s standard Unix, but
adds a custom NI and custom network and wraps everything in a custom box. Other systems use
conventional workstations placed close together and connected with a custom local area network,
such as Myricom Myrinet. Finally, one can run systems like Oak Ridge Parallel Virtual Machine
(PVM) [15] to harness idle workstations from across your organization’s desktops.

9.4.3 Li and Hudak’s “Memory Coherence in Shared Virtual Memory Systems”

Li and Hudak [28] do not present a new multicomputer. Instead, they present Ivy—the first
implementation of the shared memory ABI on a multicomputer (actually a network of worksta-
tions). This kind of a system—now called a software distributed shared memory system1—
allows shared-memory application binaries to issues loads and stores and transparently insures
that shared memory behaves correctly (e.g., sequentially consistently) across the system. The key
is using standard virtual memory page protection—valid and writable—to simulate caching state.
On a load or store to an inappropriate page, hardware generates a page fault that gets forwarded
to Ivy so that it can send messages (following a directory protocol) to obtain the data and resume
the application.

Substantial subsequent work [4, 5] seeks to ameliorate two key problems with Ivy: (1) false shar-
ing due to maintaining coherence on whole pages and (2) long message delays between loosely-
coupled machines. Some solutions blur the distinction between software distributed shared mem-
ory and COMA by maintaining coherence on cache blocks but naming locally-cached remote
data with virtual memory hardware [20, 22]. Like COMA, DSM ideas cannot yet claim any sub-
stantial commercial successes.

1. Machines like the SGI Origin 2000 are called hardware distributed shared memory machines. Some use
DSM to refer to both software and hardware distributed shared memory machines, while others reserve
DSM for software distributed shared memory machines only.

DRAFT: Readings in Computer Architecture

54 DRAFT: Readings in Computer Architecture 4/23/03

9.4.4 Multicomputers Today and Tomorrow

Today the most successful multicomputers have nodes that are (or are similar to) workstations.
The most successful product is the IBM SP/2. More widely deployed are hundreds of sites that
employ “networks of workstations” [6]. These are not optimal computing systems, but the mar-
ginal cost for employing them can be nearly zero, since the workstations are already deployed on
people’s desks. In our opinion, however multicomputers will become less important than multi -
processors for large-scale computation, because the overheads of messages bleed away too much
performance.

Multicomputers, however, are and will continue to flourish in high-availability computing. Avail-
ability is the probabilit y at a given time that enough of the system is up to perform a given task.
High-availability is important for web servers and critical for data bases. Multicomputers are a
natural fit for high-availabili ty, because it is relatively straightforward to isolate multicomputer
nodes when a node crashes. This allows an n-node system to continue to be available at (n-1)/n
throughput while another node is re-booting.

Highly-available multicomputers wil l continue to evolve. Today, most multicomputers are con-
nected with standard local area networks (e.g., 100Mb/sec ethernet), but some use custom local
area networks like Myricom Myrinet. Some people argue that custom local area networks will
evolve into a new class of networks—called system area networks—that provide better band-
width and latency than local area networks [23].

Finally, it is possible that there will be a blurring of the line between multicomputers and multi -
processors. One thrust toward making this happen is an effort to allow multicomputers to shared
information without the operating system being involved with every message. Efforts, such as
DEC Memory Channel [16] and Compaq/Intel/Microsoft’s Virtual Interface Architecture [14],
can move multicomputer communication bandwidths and latencies closer to those of multipro-
cessors. Alternatively, multiprocessors could be made more like multicomputers if parts the sys-
tem can continue to be available even as other parts crash. Techniques like those used in Stanford
HIVE [11] and DISCO [9] are steps in this direction.

9.5 References

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Consistency Models: A Tutorial.
IEEE Computer, 29(12):66–76, December 1996.

[2] Anant Agarwal, Richard Simoni, Mark Horowitz, and John Hennessy. An Evaluation of Directory
Schemes for Cache Coherence. In Proceedings of the 15th Annual International Symposium on
Computer Architecture, pages 280–289, 1988.

[3] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin / Cummings Publishing
Company, Inc., 1994.

[4] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakrishnan Ra-
jamony, Weimin Yu, and Willy Zwanepoel. TreadMarks: Shared Memory Computing on Net-
works of Workstations. IEEE Computer, 29(2):18–28, February 1996.

[5] Jelica Protic andA Milo Tomasevic andA Veljko Milutinovic. Distributed Shared Memory: Con-
cepts and Systems. IEEE Parallel & Distributed Technology, Systems, & Applications, 4(2):63–
79, Summer 1996.

References

4/23/03 DRAFT: Readings in Computer Architecture 55

[6] Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW team. A Case for NOW
(Networks of Workstations). IEEE Micro, 15(1):54–64, February 1995.

[7] William C. Athas and Charles L. Seitz. Multicomputers: Message-Passing Concurrent Comput-
ers. IEEE Computer, 21(8):9–25, August 1988.

[8] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L. Seitz,
Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE
Micro, 15(1):29–36, February 1995.

[9] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco: Running Com-
modity Operating Systems on Scalable Multiprocessors. ACM Transactions on Computer Sys-
tems, 15(4):412–447, November 1997.

[10] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems in Multicache Sys-
tems. IEEE Transactions on Computers, C-27(12):1112–1118, December 1978.

[11] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan Teeodosiu, and Anoop
Gupta. Hive: Fault Containment for Shared-Memory Multiprocessors. In Proceedings of the 15th
ACM Symposium on Operating System Principles (SOSP), pages 12–25, December 1995.

[12] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and
K. Yelick. Parallel Programming in Split-C. In Proceedings of Supercomputing ’93, pages 262–
273, November 1993.

[13] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Architecture: A Hardware/Soft-
ware Approach. Morgan Kaufmann, 1998.

[14] Dave Dunning, Greg Regnier, Gary McAlpine, Don Cameron, Bill Shubert, Frank Berry,
Anne Marie Merritt, Ed Gronke, and Chris Dodd. The Virtual Interface Architecture. IEEE Micro,
18(2):66–76, March/April 1998.

[15] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: A Users’
Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994. The book is available
electronically, the url is t ftp://www.-netlib.-org-/-pvm3-/-book-/-pvm-book.-ps.

[16] Richard B. Gillett. Memory Channel Network for PCI. IEEE Micro, 16(1):12–18, February 1996.

[17] J. R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In Proc. Tenth In-
ternational Symposium on Computer Architecture, pages 124–131. NA, June 1983.

[18] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir.
MPI—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press, 1998.

[19] Erik Hagersten, Anders Landin, and Seif Haridi. DDM–A Cache-Only Memory Architecture.
IEEE Computer, 25(9):44–54, September 1992.

[20] Erik Hagersten, Ashley Saulsbury, and Anders Landin. Simple COMA Node Implementations. In
Proceedings of the 27th Hawaii International Conference on System Sciences, January 1994.

[21] Mark D. Hill. Multiprocessors Should Support Simple Memory Consistency Models. IEEE Com-
puter, 31(8):28–34, August 1998.

[22] Mark D. Hill, James R. Larus, and David A. Wood. Tempest: A Substrate for Portable Parallel
Programs. In COMPCON ’95, pages 327–332, San Francisco, California, March 1995. IEEE
Computer Society.

[23] Robert W. Horst. TNet: A Reliable System Area Network. IEEE Micro, 15(1):37–45, February
1995.

[24] Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs. IEEE Transactions on Computers, C-28(9):690–691, September 1979.

[25] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Proc.

DRAFT: Readings in Computer Architecture

56 DRAFT: Readings in Computer Architecture 4/23/03

24th Annual International Symposium on Computer Architecture, pages 241–251, June 1997.

[26] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N. Gan-
mukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St. Pierre, David S.
Wells, Monica C. Wong, Shaw-Wen Yang, and Robert Zak. The Network Architecture of the
Connection Machine CM-5. In Proceedings of the Fifth ACM Symposium on Parallel Algorithms
and Architectures (SPAA), July 1993.

[27] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta,
John Hennessy, Mark Horowitz, and Monica Lam. The Stanford DASH Multiprocessor. IEEE
Computer, 25(3):63–79, March 1992.

[28] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM Transac-
tions on Computer Systems, 7(4):321–359, November 1989.

[29] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The J-Machine Multicomputer:
An Architectural Evaluation. In Proc. 20th Annual International Symposium on Computer Archi-
tecture, pages 224–235, May 1993.

[30] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach. Morgan Kauf-
mann, 1996.

[31] Richard M. Russell. The Cray-1 Computer System. Communications of the ACM, 21(1):63–72,
January 1978.

[32] Rafael H. Saavedra, R. Stockton Gaines, and Michael J. Carlton. Micro Benchmark Analysis of
the KSR1. In Proceedings of Supercomputing ’93, pages 202–213, November 1993.

[33] Steven L. Scott. Synchronization and Communication in the T3E Multiprocessor. In Proc. 7th In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, pages 26–36, October 1996.

[34] Ashok Singhal, David Broniarczyk, Fred Cerauskis, Jeff Price, Leo Yaun, Chris Cheng, Drew Do-
blar, Steve Fosth, Nalini Agarwal, Kenneth Harvery, Erik Hagersten, and Bjorn Liencres. Giga-
plane: A High Performance Bus of Large SMPs. In Proc. IEEE Hot Interconnects, pages 41–52,
August 1996.

[35] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI—The Complete Reference:
Volume 1, The MPI Core. MIT Press, 1998.

[36] Richard J. Swan, S. H. Fuller, and Daniel P. Siewiorek. Cm* – A Modular, Multi-Microprocessor.
In Proceedings AFIPS National Computer Conference, pages 637–644, 1977.

[37] Paul Sweazey and Alan Jay Smith. A Class of Compatible Cache Consistency Protocols and their
Support by the IEEE Futurebus. In Proceedings of the 13th Annual International Symposium on
Computer Architecture, pages 414–423, June 1986.

[38] C. K. Tang. Cache System Design in the Tightly Compled Multiprocessor System. In Proc.
AFIPS National Computing Conference, pages 749–753, June 1976.

[39] Thakkar, Gifford, and Fielland. Balance: A Shared Memory Multiprocessor System. In Proc. 2nd
Int. Conf. on Supercomputing, pages 93–101, 1987.

[40] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active
Messages: a Mechanism for Integrating Communication and Computation. In Proceedings of the
19th Annual International Symposium on Computer Architecture, pages 256–266, May 1992.

[41] David A. Wood and Mark D. Hill. Cost-Effective Parallel Computing. IEEE Computer, 28(2):69–
72, February 1995.

[42] W. A. Wulf and S. P. Harbison. Reflections in a pool of processors/An experience report on C.m
mp/Hydra. In Proc. Nation Computer Conference (AFIPS). NA, June 1978.

References

4/23/03 DRAFT: Readings in Computer Architecture 57

DRAFT: Readings in Computer Architecture

58 DRAFT: Readings in Computer Architecture 4/23/03

