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Abstract

This paper describes the system architecture of the Cray
BlackWidow scalable vector multiprocessor. The BlackWidow
system is a distributed shared memory (DSM) architecture that is
scalable to 32K processors, each with a 4-way dispatch scalar
execution unit and an 8-pipe vector unit capable of 20.8 Gflops
for 64-bit operations and 41.6 Gflops for 32-bit operations at
the prototype operating frequency of 1.3 GHz. Global memory
is directly accessible with processor loads and stores and is
globally coherent. The system supports thousands of outstanding
references to hide remote memory latencies, and provides a rich
suite of built-in synchronization primitives. Each BlackWidow
node is implemented as a 4-way SMP with up to 128 Gbytes
of DDR2 main memory capacity. The system supports common
programming models such as MPI and OpenMP, as well as global
address space languages such as UPC and CAF. We describe
the system architecture and microarchitecture of the processor,
memory controller, and router chips. We give preliminary
performance results and discuss design tradeoffs.
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1 Introduction

The Cray BlackWidow (BW) vector multiprocessor is de-
signed to run demanding applications with high communication
and memory bandwidth requirements. It uses a distributed shared
memory (DSM) architecture to provide the programmer with
the appearance of a large globally shared memory with direct
load/store access. BlackWidow integrates with Cray’s XT infras-
tructure to create a hybrid system, consisting of high bandwidth
vector compute nodes, service nodes based on the AMD Opteron
processor, and optionally other compute nodes based on AMD
Opterons, or FPGAs.

The BlackWidow system consists of four types of chips. The
BW processor chip includes a 4-way dispatch superscalar core, 8
vector pipes, L1 and L2 caches, and ports to local memory and
network. The Weaver memory controller chip provides an L3
cache shared across a 4-processor SMP node, memory directory
for hardware cache coherence, and DDR2 memory interfaces. The
YARC1[18] chip is a 64-port high-radix router that is used to im-
plement a folded-Clos network [4]. The StarGate FPGA provides
a communication protocol bridge between the BW interconenct
and the Cray XT [7][8] interconnect.

The Cray XT partition provides a set ofservice and input/output
(SIO) nodes, which provide login, programming environment, job
scheduling, system administration, global file system and other OS
services for the system. The SIO nodes are shared by the Black-
Widow compute nodes, optional Cray XT compute nodes, and any
other compute nodes in the system, providing a unified user en-
vironment. This supports applications with heterogeneous work
flows that exchange data between the scalar (XT) and vector (BW)
nodes through the common file system or via direct memory-to-
memory communication.

Unlike conventional microprocessors, each BW processor sup-
ports abundant memory level parallelism with up to 4K outstand-
ing global memory references per processor. Latency hiding and
efficient synchronization are central to the BW design, and the
network must therefore provide high global bandwidth, while also
providing low latency for efficient synchronization. The high-
radix folded-Clos network [18] allows the system to scale up to
32K processors with a worst-case diameter of seven hops.

1YARC stands for ’Yet Another Router Chip’, and is also Cray spelled
backwards.



The BlackWidow system has a number of innovative attributes,
including:

• scalable address translation that allows all of physical mem-
ory to be mapped simultaneously,

• load buffers to provide abundant concurrency for global
memory references,

• decoupled vector load-store and execution units, allowing
dynamic tolerance of memory latency,

• decoupled vector and scalar execution units, allowing run-
ahead scalar execution with efficient scalar-vector synchro-
nization primitives,

• vector atomic memory operations (AMOs) with a small
cache co-located with each memory bank for efficient read-
modify-write operations to main memory,

• a highly banked cache hierarchy with hashing to avoid stride
sensitivity,

• a high-bandwidth memory system optimized for good effi-
ciency on small granularity accesses, and

• a cache coherence protocol optimized for migratory sharing
and efficient scaling to large system size, combined with a
relaxed memory consistency model with release and acquire
semantics to exploit concurrency of global memory refer-
ences.

In this paper, we present the architecture of the Cray Black-
Widow multiprocessor. As a starting point, we describe the node
organization, packaging and system topology in Section 2. We de-
scribe the BW processor microarchitecture in Section 3, the mem-
ory system in Section 4, and a number of reliability features in
Section 5. Section 6 presents preliminary performance results.
Section 7 highlights prior related work. Finally, Section 8 sum-
marizes the key attributes of the BlackWidow system architecture.

2 BlackWidow System Overview

The BlackWidow system is built upon four-processor SMP
nodes, interconnected with a high-radix folded-Clos (a.k.a. fat-
tree) network. This section describes the node organization, net-
work topology and physical packaging of the system.

2.1 Node Organization

Figure 1 shows a block diagram of a BlackWidow compute
node consisting of four BW processors, and 16 Weaver chips
with their associated DDR2 memory parts co-located on a mem-
ory daughter card (MDC). The processor to memory channels
between each BW chip and Weaver chip use a 4-bit wide 5.0
Gbaud serializer/deserializer (SerDes) for an aggregate channel
bandwidth of 16×2.5 Gbytes/s = 40 Gbytes/s per direction — 160
Gbytes/s per direction for each node.

The Weaver chips serve as pin expanders, converting a small
number of high-speed differential signals from the BW processors
into a large number of single-ended signals that interface to com-
modity DDR2 memory parts. Each Weaver chip manages four
DDR2 memory channels, each with a 40-bit-wide data/ECC path.
The 32-bit data path, coupled with the four-deep memory access

Figure 1. BlackWidow node organization.

bursts of DDR2, provides a minimum transfer granularity of only
16 bytes. Thus the BlackWidow memory daughter card has twice
the peak data bandwidth and four times the single-word bandwidth
of a standard 72-bit-wide DIMM. Each of the eight MDCs con-
tains 20 or 40 memory parts, providing up to 128 Gbytes of mem-
ory capacity per node using 1-Gbit memory parts.

2.2 Network Topology

To reduce the cost and the latency of the network, BlackWidow
uses a high-radix, folded-Clos topology, which is modified to per-
mit sidelinks amongst multiple peer subtrees. Deterministic rout-
ing is performed using a hash function to obliviously balance net-
work traffic while maintaining point-to-point ordering on a cache
line basis. A BlackWidow system of up to 1024 processors can
be constructed by connecting up to 32 rank 1 (R1) subtrees, each
with 32 processors, to rank 2 (R2) routers. A system with up to
4608 processors can be constructed by connecting up to nine 512-
processor R2 subtrees via side links. Up to 16K processors may be
connected by a rank 3 (R3) network where up to 32 512-processor
R2 subtrees are connected by R3 routers. Multiple R3 subtrees can
be interconnected using sidelinks to scale up to 32K processors.

The BlackWidow system topology and packaging scheme en-
ables very flexible provisioning of network bandwidth. For in-
stance, by only using a single rank 1 router module, instead of two
as shown in Figure 2(a), the port bandwidth of each processor is
reduced in half — halving both the cost of the network and its
global bandwidth. An additional bandwidth taper can be achieved
by connecting only a subset of the rank 1 to rank 2 network ca-
bles, reducing cabling cost and R2 router cost at the expense of
the bandwidth taper as shown by the 1

4
taper in Figure 2(b).

The YARC chip is a high-radix router2 used in the network of
the Cray BlackWidow multiprocessor. Using YARC routers, each
with 64 3-bit wide ports, the BlackWidow scales up to 32K proces-
sors using a folded-Clos [4] topology with a worst-case diameter

2Each YARC port has a peak data rate of 6.25 Gb/s in each direc-
tion, however, to tolerate longer network cables, we reduced the target
frequency to 5.0 Gb/s



of seven hops. Each YARC router has an aggregate bandwidth
of 1.9 Tb/s. YARC uses a hierarchical organization [14] to over-
come the quadratic scaling of conventional input-buffered routers.
A two-level hierarchy is organized as an 8×8 array of tiles. This
organization simplifies arbitration with a minimal loss in perfor-
mance. The tiled organization also resulted in a modular design
that could be implemented in a short period of time.

2.3 System Packaging

Each compute module contains two compute nodes, as shown
in Figure 3(a) providing a dense packaging solution with eight
BW processors and 32 MDCs. At the next level of the hierar-
chy, as shown in Figure 3(b), a set of eight compute modules and
four router cards, each containing two YARC router chips, are
connected via a midplane within a chassis. The router cards are
mounted orthogonally to the compute blades, and each router chip
connects to 32 of the 64 processors in the chassis. The chassis
contains two rank-1 sub-trees, as shown in Figure 2(a).

All routing within a rank-1 sub-tree is carried via PCB traces
within the chassis. All routing between rank-1 sub-trees is carried
over cables, which leave the back of the router cards. Two chassis
are contained within one compute cabinet for a total of 128 BW
processors providing an aggregate of≈2.6 Tflops per cabinet. The
BlackWidow system consists of one or more cabinets intercon-
nected with the necessary cables using the high-radix folded-Clos
[18] network. Systems above 256 processors include standalone
router cabinets containing rank-2 or rank-3 routers.

(a) Rank 1 network.

(b) Rank 2 network, shown with a 1
4

taper.

Figure 2. The BlackWidow high-radix network.

(a) BlackWidow compute module with two nodes.

(b) Chassis with 8 compute modules and 4 network cards.

Figure 3. BlackWidow system packaging.

3 BW Processor Microarchitecture

Unlike the Cray X1 which used an 8-die multi-chip module
(MCM) and was implemented in 180nm ASIC technology, each
BW processor is a single chip in 90nm technology. Each BW pro-
cessor is a semi-custom ASIC, where full custom design is used to
implement functional unit groups (FUGs) of the 8-pipe vector unit,
multi-ported register files, scalar execution units, and L1 cache
structures. Standard cells are used for the L2 cache and processor
to memory ports. The BW processor is able to achieve higher sus-
tained performance, relative to a convention superscalar design, by
exploiting data-level parallelism and hiding memory latency. La-
tency hiding is achieved with a decoupled microarchitecture that
exposes more parallelism by (i) decoupling execution of the scalar
and vector units enabling run-ahead execution of the scalar unit,
(ii) decoupling the vector load-store unit (VLSU) from the vector
execution unit (VXU), and (iii) allowing vector store instructions
to execute in the VLSU before their data has been produced by
the VXU, enabling subsequent load instructions to execute while
maintaining memory ordering.
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Figure 4. Block diagram of the BlackWidow 8-pipe vector unit, with detail of pipe 0.

3.1 Vector Unit

The BW vector unit is organized as eight pipes3 (Figure 4)
where each pipe is associated with 16 elements of every vector
register. The functional units operate at Sclk rate (1.3 GHz in
the BlackWidow prototype) while the control for the vector unit
executes at Lclk rate (half frequency of Sclk). The BW vector
structure has three main units: vector dispatch unit (VDU), vector
execute unit (VXU) and vector load/store unit (VLSU). All three
vector units are decoupled from the scalar processor and are also
decoupled from each other. The vector unit has a total of 24 func-
tional units operating at Sclk rate, a cross-pipe functional unit with
a bit matrix multiply (BMM), and a functional unit that operates
on vector masks.

The vector unit has a large vector register (VR) file that has 32
physical vector registers with a maximum vector length (MaxVL)
of 128 elements. The vector unit also has a vector carry register
(VC) that is 1-bit wide and MaxVL long which is used to support
extended integer arithmetic. The vector unit has two other register
sets that are used to control the vector operations of both the VXU
and VLSU. A Vector Length Register (VL) is used to control the
length of each vector operation. The vector unit also has 32 vector
mask registers (VM) that are 1-bit wide and MaxVL long. The
VMs are used to control vector operations on a per element basis.

The VXU is capable of issuing, in order, one vector instruction
per Lclk. The VXU can perform both 64-bit and 32-bit vector
operations, with the majority of 32-bit operations being performed
at twice the rate of 64-bit operations. Vector chaining is supported
among the functional units and from functional units to memory.
The VLSU can issue, in-order, one load/store instruction per Lclk.
It can generate 16 memory references per Lclk for strided loads,
gathers, strided stores, or scatters.

The latency to load data from L2 cache or main memory is
hidden by decoupling the VXU and the VLSU, thereby allowing
the VLSU to run ahead of the VXU. As soon as a vector load/store

3Some refer to these as lanes.

instruction gets its scalar operands, it is placed in a queue ready to
translate in the VLSU. Translated addresses are then immediately
sent to the L2 data cache. This decoupling between the VXU and
the VLSU is achieved by replicating the VL and VM registers in
both units and at the same time allowing instructions that modify
the VL or VM registers to execute redundantly in both units.

To support decoupling of the VLSU from the VXU, the vector
unit has a load buffer (LdBuf) that support up to 4K outstanding
64-bit memory references. The LdBuf is used as a rename buffer
for vector load instructions, extending the size of the physical vec-
tor register file, until these instructions are ready to write the vec-
tor register file. Arithmetic instructions are queued and executed
in order once operands become available. Load buffers are signif-
icantly more efficient than general-purpose register renaming with
respect to their use of physical register space. In a full renam-
ing scheme, physical registers are reserved for all register targets
within a loop for each iteration that is unrolled. Load buffers re-
name only the load targets, allowing a given number of physical
registers to enable much deeper unrolling.

For stores, translated addresses are sent immediately to the L2
data cache even if the corresponding store data is not available.
The VLSU saves steering information for the store data in the store
address buffer (StAdrBuf). The processor is capable of having
up to 4K outstanding vector store addresses before their data has
been generated. Store addresses are also sent to the vector store
combining buffer (VSCB), which is a data structure in front of
each bank of the L2 cache. The VSCB allows subsequent vector
or scalar loads to bypass earlier vector stores waiting on their data,
allowing loop unrolling while preserving memory ordering.

The LdBuf and StAdrBuf facilitate communication between
the VXU and VLSU. The size of the LdBuf and StAdrBuf deter-
mines the number of instructions that the VLSU is allowed to work
ahead of the VXU. To further widen the window of instructions
that can be executed in parallel, vector instructions that cannot trap
are marked ready to graduate before they even start executing.
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Figure 5. Block diagram of the 4-way superscalar processor.

3.2 Scalar Processor

The BW scalar processor is a 4-way-dispatch superscalar that
runs concurrently with the vector unit, so many of the scalar op-
erations are hidden underneath vector execution. It has five main
units: Instruction Fetch Unit (IFU), the Dispatch Unit (DU), the
AS Unit (ASU), the Scalar Load/Store Unit (SLSU), and the Con-
trol Unit (CU). The BW scalar processor dispatches, in-order, up
to four instructions per Lclk. It executes instructions out-of-order
within the various units and it can graduate in-order up to four in-
structions per Lclk. The scalar processor also implements specu-
lative execution, register renaming, and branch prediction to allow
greater out-of-order execution. It can predict up to four branch or
jump instructions and uses a Branch History Table (BHT), a Jump
Target Buffer (JTB), and Jump Return Stack (JRS) for improved
branch prediction (Figure 5).

The scalar processor has two main 64-bit wide register files,
A-Registers (AR) and S-Registers (SR). The ARs are used mainly
for address generation. There are 64 logical ARs and 128 physi-
cal ARs that are renamed. The SRs are used for both integer and
floating-point operations. There are 64 logical SRs and 128 re-
named physical SRs.

The BW scalar processor can have 128 speculative instructions
in-flight4, and it is capable of issuing up to four integer instructions
that use the A-Registers per Lclk and up to six integer/floating
instructions per Lclk that use the S-Registers. Furthermore, the
SLSU is completely decoupled from of the rest of the scalar units
and it can issue, in-order, one load or store per Lclk. The scalar
processor is also able to issue two branch instructions per Lclk,
which allows two branch predictions to be resolved per Lclk.

The scalar processor implements two first level caches one for
instructions (Icache) and the other one for scalar data (L1 Dcache).
The Icache is 16KB, two-way set associative with a cache line
size of eight instructions (32 bytes) that are allocated in blocks
of four cache lines. The L1 Dcache is write-through 16KB, two-
way set associative with a 32-byte cache line size. The Icache
is virtually indexed and virtually tagged, while the L1 Dcache is

4Many more non-speculative instructions can be in-flight.

virtually indexed and physically tagged.

4 BlackWidow Memory Architecture

The BlackWidow system is designed to run distributed mem-
ory applications (e.g.: MPI, shmem, UPC, CAF). The machine is
globally cache coherent, but allows only memory from the local
SMP node to be cached. All remote references are performed as
Gets/Puts directly to/from local registers, and are never cached.
This provides two benefits. First, it reduces overhead for the
expected case of explicit communication between nodes. A Put
causes data to flow directly across the network to the target node.
If the target line is in the cache, the BlackWidow system will up-
date the cache directly, avoiding any access to main memory by
either the Put or subsequent load. A write operation in a ccNUMA
machine, on the other hand, causes a line to be fetched from the
target node and placed dirty into the writer’s cache, only to have
to be fetched via another remote operation later when the target
attempts to access the data. Second, by never caching off-node
data, system reliability is significantly improved. If processors are
allowed to cache and modify memory from across a machine, then
a single failed processor can corrupt memory across the entire ma-
chine. A failed processor in the BlackWidow system can corrupt
memory only from its local node.

This section describes the address translation mechanism that
determines if a memory reference is local or remote and maps it
to a physical memory address. It then describes the memory hier-
archy accessed by the physical address, and provides a high-level
overview of the cache coherence mechanism.

4.1 Address Translation

Virtual memory addresses used for instruction and data refer-
ence must be translated from a virtual address to a physical address
before memory is accessed. Figure 6(a) shows the virtual address
format. The memory region identifies one of three memory re-
gions: useg (translated user space), kseg (translated kernel space),
and kphys (untranslated physical memory access by the kernel).



The machine supports two address translation granularities, se-
lectable under OS control. In node-granularity, VA[54..42] are
treated as a virtual node number, and VA[41..0] are treated as
a node memory offset. This supports a hierarchical program-
ming model in which the processors within a node are used to
exploit shared memory parallelism underneath a distributed mem-
ory model across nodes. In processor-granularity, VA[54..40] are
treated as a virtual processor number, and VA[39..0] are treated as
a processor memory offset. This supports a pure distributed mem-
ory model.

Figure 6(b) shows the 57-bit physical memory address, which
consists of four fields. The upper 2-bits specify an address space,
which identifies if the request is destined to main memory or a
memory-mapped control register (it is also used by the hardware to
indicate a partially translated remote access). All of the memory-
mapped registers in the machine are globally accessible via di-
rect loads and stores (though most are accessible only to the OS).
Address bits PA[55:42] identify the physical node number. Bits
PA[41:40] identify either the BW processor for memory-mapped
register access, or the quartile of physical memory on the node for
main memory references. The remainder of the node’s memory
offset is given by bits PA[36:0], which allows up to 128 Gbytes of
physically addressable memory per processor, or 512 GB per node.
Memory pages are spread uniformly across the node, and are ac-
cessible to all processors within the node with uniform bandwidth
and latency.

BlackWidow supports both source and remote address trans-
lation. The source-based translation uses traditional translation
look-aside buffers (TLBs), which map from the virtual address to a
physical address in a single step. Each processor contains three in-
dependent 136-entry TLBs for translating instruction, scalar, and
vector references, respectively. The vector TLB is replicated ×8
for bandwidth.

Figure 7 shows the remote address translation process. The
virtual address shown at the top is first checked to determine if it
is local or remote, by examining the virtual node/processor field
according to the current translation granularity. Local references
are translated using source translation as described above. Re-
mote references are translated by first mapping the virtual proces-
sor number to a physical processor number using a node transla-
tion table (NTT) at the source. The NTT provides a maximum of

(a) virtual address format

(b) physical address format

Figure 6. BlackWidow address formats.
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2K unique translations. For systems with greater than 2K proces-
sors, the NTT supports coarser-grain translations of 2, 4, 8, or 16
processors (in which case, the bottom 1, 2, 3, or 4 bits of the vir-
tual processor number are passed straight through translation and
the upper address bits are used to index into the NTT).

The remaining remote virtual address (RVA) is then sent to the
target processor, where is it is translated to a local physical address
using a 64K-entry remote translation table (RTT). Thus, each pro-
cessor needs page translation information about its own node only,
which scales efficiently to large numbers of nodes. This mecha-
nism allows the entire system memory to be mapped simultane-
ously, enabling random accesses to all of global memory with no
translation faults.

4.2 Memory Hierarchy

Each BW processor has a 16KB L1 data cache, a 16KB instruc-
tion cache, and a 512 KB unified L2 cache. The L1 cache is 2-way
associative, and used only for scalar memory references. The L2
cache is 4-way associative and is divided into 32 banks to support
high load and store bandwidth to the BW processor. Vector refer-
ences are sent directly to the L2 cache. To avoid stride sensitivity,
the address is hashed before the request is presented to the banks.
The L2 cache provides a peak of 166 GB/s of load bandwidth at
the prototype processor frequency of 1.3 GHz.

The BlackWidow vector cache was designed for high band-



width (32 independent banks/controllers) rather than a high hit rate
(only 512KB). High hit rates are important in traditional scalar
machines primarily to reduce effective memory latency. In Black-
Widow, however, if even a single vector load element out of 128
misses in the cache, then the load will effectively experience main
memory latencies. As a result, the processor is designed to tolerate
memory latencies, and the goal of the cache is not to reduce mem-
ory latency so much as to reduce the required memory bandwidth.
The cache hit rate need only be sufficient to reduce the main mem-
ory traffic by the ratio of memory bandwidth to cache bandwidth.
The memory concurrency of the processor, however, must be large
enough to cover cache bandwidth at memory latency.

The L3 cache, implemented on the Weaver chips, is 8MB and
16-way associative. The L3 cache is shared by the four BW pro-
cessors within the local node. Each Weaver chip has four memory
directory structures and their associated memory manager that in-
terfaces to the DDR2 memory channels.

The cache hierarchy is inclusive, where the contents of the L2
caches are a strict subset of the L3, and the contents of each L1
Dcache is a subset of the associated L2 cache. Replacement poli-
cies are designed to minimize interference with lower levels of the
hierarchy. The L2 replacement policy favors retaining lines that
are present in the scalar L1 cache. This prevents a vector loop from
sweeping through the L2 cache and wiping out the L1 cache. Sim-
ilarly, the L3 replacement policy favors retaining lines currently
held in an L2 cache within a node. The BlackWidow cache line
size is 32 bytes, and the minimum access size is 32-bits (single
word).

4.3 Coherence

All of the caches in the system are kept coherent via hard-
ware state machines. The L1 scalar data caches are managed as
write-through to the L2 caches, and therefore never contain dirty
data. This allows vector references to hit out of the L2 without
interrogating the L1 caches. The L2 caches are managed as write-
back caches. The L3 cache implements a directory-based protocol
among the four-processor SMP node.

Each of the 32 L2 cache banks on a processor implements its
own coherence protocol engine. All requests are sent through the
protocol pipeline, and are either serviced immediately, or shunted
into a replay queue for later processing. The L2 cache maintains a
state, dirty mask and replay bit for every cache line. The L2 also
provides a backmap structure for maintaining L1 Dcache inclusion
information. The backmap is able to track the silent evictions from
the L1 Dcache.

The dirty mask is cleared when a line is allocated in the cache,
and keeps track of all 32-bit words written since allocation. On a
write miss allocation, only words not being written by the vector
store are fetched from memory. Stride-1 vector stores are thus
able to allocate into the L2 and L3 caches without fetching any
data from main memory. On Writeback events, only dirty 8-byte
quantities are written back to the L3 cache, and only dirty 16-byte
quantities (the main memory access granularity) are written back
to DRAM. The replay bit indicates a transient line that has one
or more matching requests in the replay queue. This is used to
prevent a later request from passing an earlier replayed request.

Each bank maintains a vector store combining buffer (VSCB)
that tracks pending vector write and atomic memory operation

(AMO) addresses (including words within the cacheline) that are
currently waiting for their vector data. Since the address and data
are sent independently to the cache interface, the VSCB is used
to combine the store address with its associated data before it is
presented to the L2 coherence engine. A load can read part of a
line even though another part of the line is waiting for vector data
from a previous store. This prevents inter-iteration dependencies
due to false sharing of a cache line. The VSCB allows later vec-
tor or scalar loads to bypass earlier vector stores waiting for their
data. It also provides ordering with respect to other local requests
that arrive after a vector write/AMO but before the corresponding
vector data.

Each of the Weaver memory controller chips contains four sub-
sections, each containing a directory protocol engine, a piece of
the local L3 cache containing 128KB of data, and a memory man-
ager, which handles all memory traffic for the corresponding por-
tion of L3. The directory data structure maintains a simple bit-
vector sharing set for each of the L2 lines, and tracks whether the
lines are shared, or exclusive to an L2 cache (which may have dirt-
ied the line). The memory directory state is integrated with the L3
cache controller state. A global state in the L3 is used to indicate
that data is present in L3 and is consistent with main memory al-
though the data is not cached by any processors. This reduces the
number of fill requests to the memory managers for migratory data
sharing patterns.

Cache data arrays are protected using a single-bit error correc-
tion and double-bit error detection (SECDED) code. If a corrupted
line is evicted from the cache, the data is poisoned with a known
bad ECC code when the cache data is written back to main mem-
ory. Evicting a corrupted cache line will not cause an immediate
exception, instead the exception is deferred until the corrupted data
is consumed.

Three virtual channels (VCs) are necessary to avoid deadlock
and provide three-legged cache transactions within the SMP node.
Requests and responses are segregated on VC0 and VC1, respec-
tively. Cache interventions are sent on VC1, and intervention
replies travel on VC2. The memory directory is guaranteed to
sink any incoming VC2 packet, and is allowed to block incom-
ing requests on VC0 (i.e. no retry nacks are used) while waiting to
resolve transient states. Blocked requests are temporarily shunted
into replay queues, allowing other, unrelated requests to be ser-
viced. The instruction cache is kept coherent via explicit flushing
by software when there is a possibility that the contents are stale.

4.4 Memory Consistency

The BlackWidow system implements the NV-2 instruction set
architecture, which precisely defines the memory ordering guar-
antees that programs can assume. Individual load/store instruc-
tions can provide cache hints, such as “no allocate,” to the hard-
ware. The hints allow the hardware to optimize caching behavior
for performance, but do not change the functional behavior of the
instruction.

4.4.1 Single processor ordering

The hardware provides minimal guarantees on the ordering of the
effects of vector memory reference operations with respect to each



other and to scalar memory references. Explicit memory synchro-
nization instructions must be used to guarantee memory ordering
between multiple vector memory references and between vector
and scalar memory references. The program order is a total order-
ing relation between operations on a single processor as a sequence
observed by a simple fetch/execute cycle. A dependence order is
a partial ordering relation, a subset of program order, where two
operations x and y are ordered with respect to dependence if x is
earlier than y in program order, and at least one of the following
conditions hold:

• operations x and y are scalar references or atomic memory
operations (AMOs) to the same address,

• a synchronization instruction executes between memory ref-
erences x and y in program order that orders x and y,

• y has a true dependence on x,

• x and y are elements of the same ordered scatter instruction,

• x and y are elements of a vector store with as stride value of
zero, or

• x and y are elements of the same vector atomic memory op-
eration (VAMO).

Operations that are ordered by dependence will appear to each
processor issuing them to execute in program order. They will not
necessarily appear to execute in the same order by other proces-
sors in the system. A suite of Lsync instructions are available to
provide additional intra-processor ordering when needed.

4.4.2 Multiple processor ordering

There are three ordering rules that apply only to memory refer-
ences performed and observed by multiple processors: (i) writes to
the same 32-bit (single word) are serialized – that is, for any given
program execution, writes to a given location occur in some se-
quential order and no processor can observe any other order, (ii) a
write is considered globally visible when no processor can read the
value produced by an earlier write in the serialized order of writes
to that location, and (iii) no processor can read a value written
by another processor before that value becomes globally visible.
When ordering between multiple processors is required, a Gsync
instruction is used to ensure that all earlier writes are visible and all
earlier reads are bound to a value. For more efficient lock manip-
ulation, release (Gsync R) and acquire (Gsync A) instruction
variants provide only the necessary ordering guarantees to support
inter-processor synchronization for locks and critical sections.

5 Robust System Design

The BlackWidow memory system is highly parallel, with 64
independent memory controllers for each four-way node, provid-
ing a maximum memory capacity of 128 Gbytes of DDR2 memory
with up to 640 2-Gbit DDR2 devices per node. With an estimated
SER of 10 FIT per DDR2 device, we are faced with the daunting
task of building reliable systems [15] from increasingly unreliable
components [13].

Large memory structures and inter-chip communication paths
are all protected with SECDED and CRC codes. Furthermore,
each memory reference is tagged with a k bit which indicates

whether the reference was generated by a user-level application
(k=0), or the operating system (k=1). This information allows
the system software handling the exception to easily differentiate
errors occurring at the user-level (which would result in an appli-
cation failure) from those taken at the system-level (which could
result in a system crash).

The fault-tolerant DRAM scheduling, and hardware support for
scrubbing, auto-retry, and spare-bit insertion address the growing
problem of soft errors in DRAM devices. Many of these tech-
niques work transparently together to improve both application
and system reliability.

5.1 Memory Scrubbing

Assuming that soft errors follow a uniform distribution in
memory, the longer a word of data lives in DRAM, the more likely
it will be exposed to the effects of any number of soft errors. In
the worst case, a sufficient number of bits will be upset resulting in
silent data corruption. The Weaver memory manager implements
a hardware-based memory scrubbing engine capable of cycling
through memory, reading and correcting any single-bit errors by
writing back corrected data. In order to make the scrubbing engine
as non-intrusive as possible, it is desirable to perform scrub reads
when the DRAM channel is idle. At the same time, certain quality
of service (QoS) guarantees must be made, ensuring that the entire
DRAM part is scrubbed with a specifiable frequency. To satisfy
these requirements, the Weaver memory manager uses a scheme
in which a DRAM scrub cycle is broken up into fixed periods,
each of which includes a single scrub read request. Each scrub pe-
riod is divided into two distinct time regions, the first will perform
an early scrub read if no other traffic is present at the eight-to-one
bank request arbiter. However, at some point the scrub request
must be considered a priority, and in the second phase of each pe-
riod, user requests will be blocked to make way for the pending
scrub request.

5.2 Memory Request Auto-Retry

In addition to conventional ECC, Weaver implements a request
auto-retry mechanism for read operations that experience non-
poisoned multi-bit errors (MBE). The retry protocol allows mul-
tiple attempts to read the memory and disambiguate a persistent
MBE soft error that caused multiple “bit flips” in the memory de-
vice from a soft error induced by electrical noise, operating tem-
perature variance, or marginal electrical signaling. Furthermore, it
is possible for a combination of errors to exist simultaneously and
give the appearance of a single event causing multiple-bit errors.
For example, a single bit flip event in main memory, combined
with electrical noise on the memory interface pins can result in a
soft error that contains multiple bits in error. By retrying a faulty
memory read operation, the hardware can distinguish between an
intermittent error and a persistent error.

All memory references that return a non-poisoned error re-
sponse are retried. When an MBE is detected, the memory se-
quencer will immediately (subject to the bank cycle time of the
device) schedule the retry operation. Arbitration logic in the mem-
ory sequencer gives the retry request priority so that no other re-
quests are allowed to be reordered in front of the retry operation;
that is, the next reference to the bank where the MBE occurred is



guaranteed to be the retry. This retry operation is attempted and,
if the retry fails, the memory sequencer returns an error response
and the error is logged as a persistent MBE in the error table. An
exception is raised to the operating system so the application that
observes the error can be terminated, and the memory page with
the faulty location can be removed from the free-page list.

5.3 Spare-bit Insertion

The five ×8 DDR2 devices in a memory channel provide 40
bits worth of storage, with 32 bits for data and 7 bits for ECC. The
remaining unused bit can be multiplexed into the data path using
a series of two-to-one multiplexers to replace faulty bits in mem-
ory. The control of each mux is selected individually according to
the bit position that is to be skipped so that the “spare” bit is used
instead. The spare-bit logic is an adjunct to the refresh/scrubbing
logic. If a spare-bit insertion sequence is active, the scrub logic
will perform a 32-byte read-modify-write sequence to insert the
new spare-bit selection. Since, the spare-bit cannot be inserted in-
stantaneously, there is a mechanism to track which memory words
use the newly inserted spare-bit location and which use the pre-
vious bit position. A single address pointer is used to mark the
boundary between locations that use the new bit position and those
locations with the old spare-bit locations.

In order to determine which bit positions make for good spare-
bit candidates, a set of single-bit error histograms are provided –
with a bin for each of the 40 bit positions. These histograms track
the location of all single bit errors and can be periodically polled
by system software. Commonly observed single-bit errors will be
exposed by reading the histogram registers and examining the fre-
quency of errors. Using the histogram data provides an informed
decision about which failing bit to replace with spare-bit insertion.

6 Performance Results and Discussion

This section describes our preliminary results on prototype
hardware and discusses design trade-offs. Our early performance
evaluation was performed on a system containing 11 compute
blades (22 compute nodes) organized as a rank 1.5 fat-tree net-
work. The BW processor clock frequency was running at the pro-
totype frequency of 1.3 GHz, the processor-to-memory SerDes
were running at 5.0 GHz, and network SerDes links were oper-
ating at 2.5 Gbps (50% of the target frequency for a production
system).

We compared the BlackWidow system against an HP XC300
system using Intel Woodcrest processors. Table 1 summarizes the
system configurations that are being compared. We show results
for the HPCC [11] benchmark suite in Table 2 and also the aero-
dynamic computational fluid dynamics (CFD) code OVERFLOW in
Table 3.

The BlackWidow L2 cache delivers 166 Gbytes/s of load band-
width for each BW processor at 1.3 GHz, for a ratio of 8 bytes per
flop. The main memory system delivers 122 Gbytes/s load band-
width for the four-processor node or ≈1.5 bytes per flop. This
high bandwidth is necessary to sustain high fraction of peak on
real applications.

Table 2 shows a comparison for a subset of HPCC Benchmarks
for three processor (socket) counts using the results from an HP

Table 1. System configurations for benchmarking.

System Name XC3000 BlackWidow
Manufacturer HP Cray
Chip Intel Woodcrest Cray BlackWidow
Processor type Core 2 Duo BW
Processor speed 3.0 GHz 1.3 GHz
Socket peak 24 Gflops 20.8 Gflops
Processor count 32-128 32-88
Threads 1 1
Interconnect InfiniBand 4× YARC 12×

5.0 Gb/s (DDR) 2.5 Gb/s
MPI HP MPI 02.02.05.00 Cray MPICH2 1.0.4

XC3000 [5] system with Intel Woodcrest (Core 2 duo) processors
[12] and the Cray BlackWidow system. The WoodCrest socket
has two cores and the Blackwidow socket only one core, however,
we are comparing only socket-to-socket. For EP-DGEMM, WC
achieves about 78% of peak and BW about 88% of peak. For
PTRANS the BlackWidow system shows a 4.8× advantage over
the Woodcrest system, even though BlackWidow is operating only
50% of target network bandwidth (which is less than 1

2
the sig-

naling rate of the Woodcrest system in this comparison). At 64
sockets the BlackWidow system has a 3.8× bandwidth advantage
over the Woodcrest system for PTRANS, and 4.6× for Random
Ring. We expect both PTRANS and Random Ring bandwidth per-
formance to increase substantially at target network bandwidth for
the BlackWidow system.

On BlackWidow, the update loop of the G-RA (Global Rando-
mAccess) benchmark is concisely implemented as a PGAS loop
using either CAF (See Figure8) or UPC. Because of vector atomic
updates and global addressability of the BlackWidow system, the
64-core CAF version of G-RA shows an enormous advantage over
the Woodcrest system — a factor of 135×! On the BlackWidow
system the CAF version of G-RA is totally dominated by network
bandwidth, so we expect the factor of 135 to grow to 270× at
target network SerDes rate. With a full fat-tree network, rather
than a rank 1.5 network, the BlackWidow system would show even
higher GUPS performance.

For EP-STREAMS the BlackWidow system shows a 16× ad-
vantage over the Woodcrest system. This is a reflection of BWs
ability to deliver high memory bandwidth when an application re-

*** GUP (CAF for multipe PEs)

integer, parameter :: ransize=512

do i=1, pe_updates/ransize
!dir$ concurrent
do j=1,ransize
if ( ran(j) < 0) then
q = 7

else
q = 0

endif
ran(j) = shiftl(ran(j),1) .xor. q
idx =shiftr(iand(ran(j),ixmask)*nimages,l2pes)
ipe =shiftr(idx,l2pe_tabsz)
ioff =iand(idx, pe_tabsz-1)
table(ioff+1)[ipe+1]=table(ioff+1)[ipe+1] .xor. two

enddo
enddo

Figure 8. Co-array Fortran (CAF) implementation of G-RA
(RandomAccess) benchmark.



Table 2. HPCC benchmarks for an HP XC3000 system with Intel Woodcrest (WC) and a BlackWidow (BW) prototype system.

Number G-PTRANS G-RAa EP-STREAM EP-DGEMM RandomRing
System of (Gbytes/s) (GUPS) (Gbytes/s) (GFlops) (Gbytes/s) (µs)

sockets system triad bandwidth latency
16 5.142 0.0415 49.15 1.536 9.29 0.300 8.87

HP XC3000 32 8.978 0.0446 98.56 1.540 9.49 0.272 8.99
(Woodcrest) 64 17.62 0.0402 197.6 1.544 9.26 0.242 9.17

16 17.06 1.47 399.8 24.99 18.70 1.39 9.52
BlackWidow 32 24.62 2.75 752.3 23.51 18.36 1.20 10.43

64 67.03 5.41 1619 25.31 17.98 1.12 11.57

aBlackWidow results use Co-Array Fortran (CAF) (Figure 8) implementation.

quires it. Similarly, even at 50% network bandwidth and rank 1.5
network, the BlackWidow system delivers 4.8× higher Random
Ring bandwidth than the Woodcrest system. The BlackWidow
system is designed to achieve very high network bandwidth for
demanding operations like global transposing. Random ring la-
tency is about 21% faster on the Woodcrest system than the BW
system. However, with the option of CAF or UPC on the Black-
Widow system a user can reduce network latency considerably.

Table 3 shows a comparison between the BlackWidow
and Clovertown systems for two standard benchmarks of the
OVERFLOW aerodynamics code. For the purposes of this paper
the benchmarks are labeled as “test1” and “test2”. Each test case
has the same number of grids (7) and the same number of points
(1.119 million). Test1 runs 100 time steps on a coarse grid, then
100 time steps on a medium grid and then 20 time steps on a fine
grid. Test2 runs 100 time steps on a coarse grid, 100 time steps on
a medium grid and then 400 time steps on the fine grid. Since test2
runs longer on the fine grid, test2 sees a longer effective vector
length over the course of the run. OVERFLOW generally requires
high memory bandwidth, so we choose that code to illustrate the
BlackWidow systems ability to deliver high memory bandwidth
on a real application. In terms of characterizing test1 compared to
test2, test2 has finer grids, which translates to longer vector length
operations on BlackWidow, compared to test1.

As can be seen from the results of Table 3, the BW proces-
sor holds a 4× to 6× advantage over a single core of the Clover-
town system. When four MPI processes are running, the Black-
Widow holds a 4.8× to 8.9× advantage over the Clovertown sys-
tem. These results illustrate that BW is designed to deliver high
memory bandwidth on applications like OVERFLOW, for which
time-to-solution is important.

Table 3.OVERFLOW benchmark comparing BlackWidow
and Intel Woodcrest processors.

Overflow 2.0aa
Processor Num of Num of test1 test2

(GHz) Sockets MPI processes (sec) (sec)

Clovertownb 1 1 310 3634
2.33 GHz 2 4 168 1977

BlackWidow 1 1 71 574
1.3 GHz 4 4 35 222

bUsing the Intel compiler on a dual-socket Xeon 5345 motherboard,
each operating at 2.33 GHz with 2×4 MB cache, 1.3 GHz front-side bus,
and 8×2Gbyte of FBDIMM 667 ECC/REG main memory.

The benchmark results of Tables 2 and 3 give evidence that
the BlackWidow system is designed to deliver very high mem-
ory and network bandwidth for demanding applications. Other
special features like vector atomic updates, global addressability,
and a state-of-the-art vectorizing compiler enable uniquely high
performance on demanding algorithms. Codes that run well from
cache, on the other hand, or that do not vectorize well, are better
suited for commodity microprocessors. The BlackWidow nodes
are therefore well suited for inclusion in a hybrid system.

7 Related Work

The predecessor to the Cray BlackWidow was the Cray X1
[6][1] multiprocessor which introduced a new instruction set archi-
tecture (NV-1) to the traditional Cray vector machines. The Cray
X1 provided a multi-chip module (MCM) processor with a total of
12.8 Gflops. The X1 was the first globally cache-coherent [19] dis-
tributed shared memory vector machine [20][3]. The X1 was the
first machine to implement a decoupled vector microarchitecture.
The NV-1 ISA introduced new synchronization primitives to allow
decoupling between the vector and scalar execution units, and de-
coupling between the vector load-store unit (VLSU) and the vector
execution unit (VXU). Run-ahead execution and vector-scalar de-
coupling [10][21] and subsequent work [2] showed the benefits of
a decoupled vector microarchitecture. The Cray X1 showed sig-
nificant performance benefits [22] for vector codes, however, it
was less cost-competitive for codes that did not exhibit a high de-
gree of parallelism.The authors of [17] compare several parallel
vector architectures, and show the advantages that parallel vector
machines bring to bear on four scientific applications: FVCAM,
LBMHD3D, PARATEC, and GTC.

The Tarantula [9] machine extended the Alpha EV8 microar-
chitecure and ISA to directly support vector operations of up to
128 64-bit elements. This included modifications to the EV8
cache coherence protocol and attached directly to the EV8’s L2
cache interface. They showed that with an aggressive superscalar
execution unit and conventional cache hierarchy, combined with
an efficient vector engine (Vbox), they could achieve significant
speedup — up to 5× speedup, relative to the baseline EV8 de-
sign, on floating-point intensive scientific workloads. Further-
more, they showed that vector extensions to the EV8 provided sig-
nificant “real computation” per transistor and per watt ratios, with
Tarantula providing 0.55 Gflops/watt compared to the CMP-EV8
baseline design of 0.16 Gflops/watt.



The NEC SX-8 [16] operates at 2 GHz, twice the frequency
of the SX-6, and contains 4 vector pipes to produce a peak of 16
Gflops per processor. The SX-8 has an 8-processor node which are
then clustered together via a custom IXS network. Similar to the
BlackWidow, it uses commodity DDR2 memory parts. The SX-8
main memory provides 41 Gbytes/s of peak STREAM bandwidth
or 2.56 bytes/flop, approximately 2× that of the BlackWidow. The
SX-8 is designed to provide high memory bandwidth within an
SMP node, and does not provide global addressability across the
machine. Inter-node bandwidth is modest by comparison, and the
the machine scales to at most 512 nodes (4K processors).

8 Conclusion

The performance of a parallel computer system is often lim-
ited by the memory and network latency and bandwidth charac-
teristics. The BlackWidow system is designed for applications
with high memory and network bandwidth requirements. In this
paper we describe the BlackWidow system architecture in terms
of the system topology, packaging, processor, memory and net-
work architecture. The BlackWidow system scales to 32K pro-
cessors, providing floating-point intensive applications with 20.8
Gflops per processor operating at the prototype frequency of 1.3
GHz, and 122 GB/s of local memory load bandwidth within a
4-processor SMP node. The cache and memory architecture are
highly banked to support a high degree of memory concurrency
and efficiently support irregular access patterns (non-unit strides
and gather/scatter).

We describe BW processor microarchitecture which allows de-
coupling between the vector load/store unit and vector execution
units. The BW superscalar processor runs concurrently with the
vector unit allowing many of the scalar operations to be hidden
underneath vector execution. Unlike a multi-core superscalar pro-
cessor, which can only tolerate a handful of outstanding cache
misses, the load buffer in the BW vector unit supports up to 4K
outstanding global memory references.

A scalable address translation mechanism allows all the system
memory to be mapped simultaneously. All the caches in the sys-
tem are kept coherent using hardware coherence engines in the L2
and L3 caches. The L3 cache implements a directory-based proto-
col among the four-processor SMP node, but all remote references
are performed as Get/Put operations directly to/from local regis-
ters. By not caching remote memory references, we reduce the
overhead of explicit communication between nodes. The relaxed
memory consistency model allows abundant parallelism in the
memory system, and the NV-2 ISA defines primitives for efficient
synchronization of vector-scalar execution and multi-processor or-
dering.

The BlackWidow system is designed for high single-processor
performance, especially for codes with demanding memory or
communication requirements. Simple packaging allows much
lower cost per processor than previous Cray vector systems, and
the architecture is designed to scale efficiently to large processor
counts. BlackWidow interfaces with a Cray XT system to create
a hybrid system with a unified user environment and file system.
In this context, the BlackWidow processor provides accelerated
performance on the subset of codes that are well suited for vector-
ization and/or a more aggressive memory system and network.
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