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ABSTRACT
Intel has recently introduced IntelR© Transactional Synchro-
nization Extensions (IntelR© TSX) in the Intel 4th Gen-
eration CoreTM Processors. With Intel TSX, a processor
can dynamically determine whether threads need to serial-
ize through lock-protected critical sections. In this paper, we
evaluate the first hardware implementation of Intel TSX us-
ing a set of high-performance computing (HPC) workloads,
and demonstrate that applying Intel TSX to these workloads
can provide significant performance improvements. On a set
of real-world HPC workloads, applying Intel TSX provides
an average speedup of 1.41x. When applied to a parallel
user-level TCP/IP stack, Intel TSX provides 1.31x average
bandwidth improvement on network intensive applications.
We also demonstrate the ease with which we were able to
apply Intel TSX to the various workloads.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and Reliability—perfor-
mance analysis and design aids; C.1.4 [Computer Sys-
tems Organization]: Processor Architectures—parallel ar-
chitectures; D.1.3 [Software]: Programming Techniques—
concurrent programming

General Terms
Performance, Measurement
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Transactional Memory, High-Performance Computing
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1. INTRODUCTION
Due to limits in technology scaling, software developers

have come to rely on thread-level parallelism to obtain sus-
tainable performance improvement. However, except for the
case where the computation is massively parallel (e.g., data-
parallel applications), performance of threaded applications
is often limited by how inter-thread synchronization is per-
formed. For example, using coarse-grained locks can limit
scalability, since the execution of lock-guarded critical sec-
tions is inherently serialized. Using fine-grained locks, in
contrast, may provide good scalability, but increases locking
overheads, and can often lead to subtle bugs.

Various proposals have been made over the years to ad-
dress the limitations of lock-based synchronization. Lock-
free algorithms support concurrent updates to data struc-
tures and do not require mutual exclusion through a lock.
However, such algorithms are very difficult to write and may
not perform as well as their lock-based counterparts. Hard-
ware transactional memory [11] and Oklahoma Update Pro-
tocol [26] propose hardware support to simplify the imple-
mentation of lock-free data structures. They rely on mech-
anisms other than locks to ensure forward progress. Spec-
ulative Lock Elision [22] proposes hardware support to ex-
pose concurrency in lock-based synchronization—the hard-
ware would optimistically execute critical sections without
serialization and serialize execution only when necessary. In
spite of these proposals, writing correct, high-performance
multi-threaded programs remains quite challenging.

Intel has introduced IntelR© Transactional Synchroniza-
tion Extensions (IntelR© TSX) in the Intel 4th Generation
CoreTM Processors [12] to improve the performance of crit-
ical sections. With Intel TSX, the hardware can dynami-
cally determine whether threads need to serialize through
lock-protected critical sections. Threads perform serializa-
tion only if required for correct execution. Hardware can
thus expose concurrency that would have been hidden due
to unnecessary synchronization.

In this paper we apply Intel TSX to a set of workloads in
the high-performance computing (HPC) domain and present
the first evaluation of the performance benefits when run-
ning on a processor with Intel TSX support. The evalua-
tion incorporates a broad spectrum of workloads, ranging
from kernels and benchmark suites to a set of real-world



workloads and a parallel user-level TCP/IP stack. Some
of the workloads were originally written to stress test a
throughput-oriented processor [24], and have been optimized
for the HPC domain. Nevertheless, applying Intel TSX to
these workloads provides an average speedup of 1.41x. Ap-
plying Intel TSX to a user-level TCP/IP stack provides an
average bandwidth improvement of 1.31x on a set of network
intensive applications. These results are in contrast to prior
work on other commercial implementations that show little
to no performance benefits [23, 29], or are limited to small
kernels and benchmarks [20, 6, 5].

We demonstrate multiple sources of performance gains.
The dynamic avoidance of unnecessary serialization allows
more concurrency and improves scalability. In other cases,
we reduce the cost of uncontended synchronization opera-
tions, and achieve performance gains even in single thread
executions. Much of the gain is achieved with changes just in
the synchronization library: In some cases, localized changes
in the application code results in additional gains.

Section 2 presents a brief overview of Intel TSX. We de-
scribe the experimental setup in Section 3 and outline how
we apply Intel TSX to the various workloads. Section 4 char-
acterizes Intel TSX using a suite of benchmarks. We evalu-
ate Intel TSX for these benchmarks without any source code
changes. In Section 5, we evaluate Intel TSX performance on
a set of real-world workloads. We also demonstrate two key
techniques to further improve performance: lockset elision
and transactional coarsening. These techniques are useful if
one can modify the source code to optimize for performance.
In Section 6, we apply Intel TSX to a large-scale software
system using a user-level TCP/IP stack and identify some
of the challenges, such as condition variables. We discuss
related work in Section 7 and conclude in Section 8.

2. INTELR© TRANSACTIONAL
SYNCHRONIZATION EXTENSIONS

Intel TSX provides developers an instruction set interface
to specify critical sections for transactional execution1. The
hardware executes these developer-specified critical sections
transactionally, and without explicit synchronization and se-
rialization. If the transactional execution completes success-
fully (transactional commit), then memory operations per-
formed during the transactional execution appear to have
occurred instantaneously, when viewed from other proces-
sors. However, if the processor cannot complete its transac-
tional execution successfully (transactional abort), then the
processor discards all transactional updates, restores archi-
tectural state, and resumes execution. The execution may
then need to serialize through locking if necessary, to ensure
forward progress. The mechanisms to track transactional
states, detect data conflicts, and commit atomically or roll-
back transactional states are all implemented in hardware.

Intel TSX provides two software interfaces to specify crit-
ical sections. The Hardware Lock Elision (HLE) interface is
a legacy compatible instruction set extension (XACQUIRE
and XRELEASE prefixes) for programmers who would like
to run HLE-enabled software on legacy hardware, but would
also like to take advantage of the new transactional execu-

1Full specifications for Intel TSX can be found in [12].
Enabling and optimization guidelines can also be found
in [13]. Additional resources for Intel TSX can be found
at http://www.intel.com/software/tsx.

tion capabilities on hardware with Intel TSX support. Re-
stricted Transactional Memory (RTM) is a new instruction
set extension (comprising the XBEGIN and XEND instruc-
tions) for programmers who prefer a more flexible interface
than HLE. When an RTM region aborts, architectural state
is recovered, and execution restarts non-transactionally at
the fallback address provided with the XBEGIN instruction.

Intel TSX does not guarantee that a transactional exe-
cution will eventually commit. Numerous architectural and
microarchitectural conditions can cause aborts. Examples
include data conflicts, exceeding buffering capacity for trans-
actional states, and executing instructions that may always
abort (e.g., system calls). Software using RTM instructions
should not rely on the Intel TSX execution alone for for-
ward progress. The fallback path not using Intel TSX sup-
port must ensure forward progress, and it must be able to
run successfully without Intel TSX. Additionally, the trans-
actional path and the fallback path must co-exist without
incorrect interactions.

Software using the RTM instructions for lock elision must
test the lock during the transactional execution to ensure
correct interaction with another thread that may or already
has explicitly acquired the lock non-transactionally, and should
abort if not free. The software fallback handler should de-
fine a policy to retry transactional execution if the lock is
not free, and to explicitly acquire the lock if necessary.

When using the Intel TSX instructions to implement lock
elision, whether through the HLE or RTM interface, the
changes required to enable the use of these instructions are
limited to synchronization libraries, and do not require ap-
plication software changes.

The first implementation of Intel TSX on the 4th Genera-
tion CoreTM microarchitecture uses the first level (L1) data
cache to track transactional states. All tracking and data
conflict detection are done at the granularity of a cache line,
using physical addresses and the cache coherence protocol.
Eviction of a transactionally written line from the data cache
will cause a transactional abort. However, evictions of lines
that are only transactionally read do not cause an abort;
they are moved into a secondary structure for tracking, and
may result in an abort at some later time.

3. EXPERIMENTAL SETUP
We use an Intel 4th Generation CoreTM processor with

Intel TSX support. The processor has 4 cores with 2 Hyper-
Threads per core, for a total of 8 threads. Each core has
a 32 KB L1 data cache. We use Intel C/C++ compiler
for most of our studies, but for those applications utilizing
OpenMP, we also use GCC with libgomp to precisely control
the number of threads. We use inline assembly to emit bytes
for Intel TSX instructions, but intrinsics are also available
through compiler header files (e.g., <immintrin.h>).

Unless otherwise noted, we use thread affinity to bind
threads to cores so that as many cores are used as possible—
e.g., a 4 thread run will use a single thread on each of the 4
cores, while an 8 thread run will also use 4 cores, but with 2
threads per core. A minimum of 10 executions are averaged
to derive statistically meaningful results.

The workloads we use in this paper include transactional
memory benchmark suites (CLOMP-TM [23], STAMP [19],
and RMS-TM [16]), real-world applications from the HPC
domain, and a large-scale software system with a TCP/IP
stack running network intensive applications.



These workloads use synchronization libraries to coordi-
nate accesses to shared data. An application may either di-
rectly call these libraries, or invoke them indirectly through
macros or pragmas. These underlying libraries provide mul-
tiple mechanisms for synchronizing accesses to shared data.
If the shared data being updated is a single memory loca-
tion (an atomic operation), then the library can achieve this
through the use of an atomic instruction (such as LOCK-
prefixed instructions in the Intel 64 architecture). For more
complex usages, lock-protected critical sections are used.

We apply Intel TSX to the underlying synchronization
library, and do not require application source changes or an-
notations. Specifically, in this paper we use the RTM-based
interface to elide the relevant critical section locks specified
by the synchronization library, and execute the critical sec-
tion transactionally. If the transactional execution is unsuc-
cessful, then the lock may be explicitly acquired to ensure
forward progress. The decision to acquire the lock explicitly
is based on the number of times the transactional execution
has been tried but failed; for our hardware and workloads, 5
gave the best overall performance. To ensure correct inter-
action of the transactional execution with other threads that
may or already has explicitly acquired the lock, the state of
the lock is tested during the transactional execution.

4. EVALUATION ON TRANSACTIONAL
MEMORY BENCHMARKS

We start by using CLOMP-TM [23] microbenchmark to
characterize Intel TSX performance, and then use the STAMP
benchmark suite [19] to see how such performance translates
to workload performance. We also apply Intel TSX to RMS-
TM [16], and observe how it compares to fine-grained lock-
ing, and how it interacts with system calls during a trans-
actional execution.

These transactional memory (TM) benchmark suites use
macros and pragmas to invoke the underlying TM library. In
addition to a TM implementation, the library also provides
a lock-based critical section implementation, equivalent to a
conventional lock-based execution model using a global lock.
We apply Intel TSX to elide the global lock in the critical
section implementation.

4.1 CLOMP-TM Results
In this section we characterize Intel TSX performance

using the CLOMP-TM benchmark 1.6 [23]. CLOMP-TM
is a synthetic memory access generator that emulates the
synchronization characteristics of HPC applications; an un-
structured mesh is divided into partitions, where each parti-
tion is subdivided into zones. Threads concurrently modify
these zones to update the mesh.

Specifically, each zone is pre-wired to deposit a value to a
set of other zones, scatter zones, which involves (1) reading
the coordinate of a scatter zone, (2) doing some computa-
tion, and (3) depositing the new value back to the scatter
zone. Since threads may be updating the same zone, value
deposits need to be synchronized. Conflict probability can
be adjusted by controlling how the zones are wired; and by
changing the number of scatters per zone, the amount of
work done in a critical section can be adjusted.

To compare Intel TSX performance against existing syn-
chronization methods, we use the benchmark to reproduce
the experiment conducted in [23]. Here, threads do not
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Figure 1: CLOMP-TM benchmark results for 4
threads. Intel TSX version (Large TM) out-
performs atomic instruction-based version (Small
Atomic) when at least 3 or 4 scatter zone updates
are batched.

contend for memory locations, and to avoid artifacts from
L1 data cache sharing among threads, we disable Hyper-
Threading (i.e., we use 4 threads).

Figure 1 shows the results. In the figure, Small Atomic
denotes the case where a LOCK-prefixed instruction is used
to enforce atomicity on a single scatter zone value update;
this is equivalent to using #pragma omp atomic. Likewise,
Small Critical denotes the use of a lock, equivalent to
#pragma omp critical, for each scatter zone update. Large
Critical denotes the case where for each zone, we batch the
scatter zone updates (and the accompanying index and value
computation code) under a critical section guarded by a sin-
gle lock. Small TM and Large TM map the lock-guarded
critical sections in Small Critical and Large Critical into
calls into the Intel TSX-enabled synchronization library.

The X-axis denotes the number of scatters for each zone,
and at each scatter count, the speedup is against the execu-
tion time of the corresponding serial version.

When we synchronize on each scatter zone update, while
the LOCK prefix-based version (Small Atomic) is the fastest,
Intel TSX version (Small TM) is not too much worse. The
version that uses lock (Small Critical), however, performs
a lot worse. In contrast, batching a set of scatter zone up-
dates into a single critical section allows better amortization
of the synchronization costs. Especially, Intel TSX with
batching (Large TM) outperforms even Small Atomic
once we batch at least 3∼4 updates. Batching with lock
(Large Critical), however, suffers from lock contentions,
and remains slow.

Compared to the results presented in [23], which requires
5 to 10 updates to be batched before its transactional execu-
tion outperforms atomic updates, Intel TSX exhibits lower
overhead. However, the scale at which the transactional ex-
ecution is implemented on [23] is different (16 cores per chip,
4 threads per core). Therefore, a direct comparison cannot
be made.

4.2 STAMP Results
STAMP [19] is a benchmark suite extensively used by the

transactional memory community. Compared to CLOMP-
TM, its workloads are much closer to a realistic application.
We use the benchmark suite (0.9.10) to see how Intel TSX
performance translates into application performance.
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Figure 2: STAMP benchmark results. Intel TSX provides low single thread overhead, while outperforming a
software transactional memory (TL2 [7]) in many cases.

Workload
1 thread 2 threads 4 threads 8 threads
tl2 tsx tl2 tsx tl2 tsx tl2 tsx

bayes 0 64 1 91 2 89 6 94
genome 0 6 0 11 1 19 1 88
intruder 0 6 32 11 50 31 57 74
kmeans 0 0 15 26 35 71 55 96
labyrinth 0 87 4 95 8 100 16 97
ssca2 0 0 0 1 0 1 0 1
vacation 0 38 2 51 6 52 9 99
yada 0 46 46 68 58 84 65 92

Table 1: Transactional abort rates (%) for the
STAMP benchmark suite. Figures of particular in-
terest are highlighted.

Specifically, some STAMP workloads use critical sections
with medium/large memory footprint. Memory accesses
within a critical section that are required for synchronization
correctness have been manually annotated for use by soft-
ware transactional memory (STM) implementations. STMs
rely on instrumenting memory accesses within a transac-
tional region to track transactional reads and writes, and
such annotation allows STMs to only track necessary ac-
cesses. When using a lock-based execution, these annotated
accesses get mapped to regular loads and stores, and are
synchronized using the underlying locking mechanism.

Figure 2 shows the execution time of different synchro-
nization schemes implemented by the underlying TM library.
We use the native input with high contention configuration.

The execution time in the figure is normalized to the single
thread execution time of the sgl version. sgl represents the
case where the TM library implements transactional regions
as critical sections protected through a single global lock.
This scheme forces all transactional regions to serialize, and
thus prevents scaling if critical sections comprise a signif-
icant fraction of an application’s execution. As expected,
with increasing thread count, workloads do not scale.

tl2 represents the performance where the TM library im-
plements transactional regions using the STM included in
the benchmark distribution, called TL2 [7]. Overall, by
leveraging the annotations to only track crucial memory ac-
cesses, STM provides good scalability. However, except for
labyrinth, it suffers significant single thread overhead. This
is because STM has to instrument the annotated memory
accesses within a transactional region. On a single-threaded
execution, it still pays this overhead, but cannot exploit con-
currency to make up for the performance loss.

Intel TSX, however, does not require any instrumenta-
tion. In the figure, tsx represents the performance where
we apply Intel TSX to transactionally elide the single global
lock in sgl. As can be seen, the Intel TSX-enhanced library
shows radically improved single thread performance. Specif-
ically, the performance is comparable to single global lock.
With more threads, however, Intel TSX scales significantly

better than single global lock, and in many cases, outper-
forms STM. With both good single-thread performance and
good scalability, a programmer may elect to apply Intel TSX
over coarse-grained locks, instead of the conversion effort to
fine-grained locks or suffering the high overheads of STM.

Although we provide results on all the workloads for com-
pleteness, results on bayes and kmeans should be dis-
counted, because their execution is strongly dependent on
the order of various parallel computations—thus, a slower
synchronization scheme may result in faster benchmark ex-
ecution, and vice versa. Specifically, bayes utilizes a hill-
climbing strategy that combines local and global search [19].
We notice that executions with STM consistently get stuck
in local minima, terminating the search earlier but return-
ing inferior results. Similarly, kmeans iterates its algorithm
until the cluster search converges; we notice that an im-
plementation using Intel TSX always converges faster than
STM. We suspect both cases are related to how this specific
STM implementation handles floating point variables, and
are currently investigating the issue.

Table 1 shows transactional abort percentage that gives
more insight into TL2 and Intel TSX behavior. We collect
Intel TSX statistics through Linux perf. First to note is
the non-trivial abort rate of Intel TSX with only one thread.
These aborts are mostly due to the effective capacity limit of
the set-associative L1 data cache for medium/large critical
sections. Hyper-Threading, on the other hand, increases the
pressure on the L1, compounding the capacity issue. Thus,
in the table, Intel TSX sees significantly higher transactional
abort rates with 8 threads than with 4 threads.

Overall, while STAMP tries to cover diverse transactional
characteristics, we see that some workloads stopped critical
section refinement at medium/large footprint; this would
not have been a problem for STMs with virtually unlim-
ited buffer size. STMs also manage to avoid capacity is-
sues through their heavy use of selective annotation (e.g., for
labyrinth, a 14 MB copy of a global structure to thread-
local memory is not annotated). Such manual annotation
requires significant effort, especially in a large-scale software
system [10], and is not possible with high-level transactional
programming constructs [27].

However, due to its low overhead, Intel TSX provides
speedup over STM in many cases where its capacity-induced
abort rate is reasonable.

4.3 RMS-TM Results
The STAMP benchmark suite is written from the ground-

up specifically to evaluate transactional memory implemen-
tations. In contrast, RMS-TM [16] adapts a set of exist-
ing workloads to use transactional memory. As a result,
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Figure 3: RMS-TM benchmark results. Intel TSX provides comparable performance to fine-grained locking,
even when system calls are made during a transactional execution.

Workload Description Threading Sync
Txn Technique

Lockset StatC DynC

graphCluster Performs min-cut graph clustering. Kernel 4 of SSCA2 [1]. OpenMP locks
√ √

ua Unstructured Adaptive (UA) from NAS Parallel Benchmarks
suite [9]. Solves a set of heat equations on an adaptive mesh.

OpenMP atomics
√ √

physicsSolver Uses PSOR to solve a set of 3-D force constraints on groups of
blocks.

PThread locks
√ √

nufft Non-uniform FFT. Baseline reported in [15]. OpenMP locks
√

histogram Parallel image histogram construction. PThread atomics
√

canneal VLSI router from PARSEC [2]. Performs simulated annealing. PThread lock-free

Table 2: Real-world workloads used in this study. Sync denotes the synchronization mechanism used by the
original code. Txn Technique represents the transactional optimization techniques we apply (Lockset = Lockset
Elision, StatC = Static Coarsening, and DynC = Dynamic Coarsening).

workloads in RMS-TM exhibit different characteristics from
STAMP. Specifically, compared to the medium/large trans-
actions used by STAMP, RMS-TM utilizes fine-grained locks.
Therefore, the critical sections exhibit moderate footprint,
and as in high-level transactional programming languages [27],
no manual annotation is performed. On the other hand,
the workloads perform (non-transactional) memory alloca-
tion and I/O within critical sections.

We use the RMS-TM benchmark suite to observe how In-
tel TSX-based synchronization fares in scenarios that are
(1) either already optimized (through fine-grained locks) or
are (2) not always friendly for transactional execution (i.e.,
memory allocation and I/O within critical sections). Specifi-
cally, we disable the TM-MEM and TM-FILE flags to perform na-
tive memory management and file operations within trans-
actional regions, and use the larger input set provided by
the benchmark. Figure 3 shows the results.

We compare the speedup of Intel TSX (tsx) to fine-grained
locking (fgl), relative to fine-grained locking with a single
thread. With fine-grained locking, RMS-TM workloads scale
reasonably well. Using Intel TSX provides comparable per-
formance, demonstrating that memory allocation and I/O
within a transactional region do not require special handling,
nor necessarily impact performance to a significant degree.
As long as such a condition is detected early and the lock
is acquired, system calls may not be a performance issue.
We also observe that Hyper-Threading has less performance
impact on Intel TSX, primarily because the data footprints
are moderate as compared to some STAMP workloads.

Figure 3 also shows the performance when we use single
global lock (sgl) to synchronize all critical sections. Here,
macros that mark critical sections are mapped to acquire
and release a single global lock, instead. Therefore, the code
section that is being synchronized is the same as Intel TSX.

Guarding the critical sections with fine-grained locks or a
single global lock does not make significant performance dif-
ferences, except in fluidanimate with lots of small critical
sections, and utilitymine with more than 30% of execution

spent in critical sections [16]. Here, single global lock fails
to scale, while Intel TSX effectively exploits the parallelism,
providing comparable performance to fine-grained locking.

5. EVALUATION ON
REAL-WORLD WORKLOADS

In this section, we apply and evaluate Intel TSX on a set of
real-world workloads. These applications use different types
of synchronization mechanisms: lock-based critical sections,
atomic operations, and lock-free data structures. Applying
Intel TSX to the lock-based critical sections is straightfor-
ward. However, we modified the source code so that we
could also apply Intel TSX to code regions that use atomic
operations and lock-free data structures.

For each workload, we start with a straightforward trans-
lation, and then consider optimizations to improve the per-
formance of transactional synchronization.

5.1 Workloads
Table 2 shows the workloads we use for this study. These

workloads cover various threading and synchronization schemes,
and some represent computations typically found in the HPC
domain. In fact, physicsSolver and histogram were used
to stress test a throughput-oriented processor [24].

Specifically, graphCluster is Kernel 4 of the SSCA2 bench-
mark [1]. The ssca2 workload in STAMP, in contrast, re-
implements Kernel 1 for transactional memory from the
ground-up. graphCluster partitions a graph into clusters
while minimizing edge cut costs. Vertices are observed in
parallel, and based on the neighbors, they may be added/re-
moved from the cluster. The original application uses per-
vertex locks to synchronize updates on the vertex status.

ua is the Unstructured Adaptive workload from NAS Par-
allel Benchmarks suite [9]. To handle the adaptively refined
mesh, ua utilizes the Mortar Element Method [9], where
thread-local computations performed on collocation points
are dynamically gathered (i.e., reduced) to mortars on a
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Figure 4: Intel TSX performance on real-world workloads.

global grid. Since the grid dynamically changes, gathers on
each mortar require synchronization—the original applica-
tion uses atomic operations. Reduced values are later scat-
tered back to collocation points.

physicsSolver iteratively resolves constraints between pairs
of objects, computing the force exerted on each other to pre-
vent inter-penetration. A key critical section updates the to-
tal force exerted on both objects in a given pair. Since each
object may be involved in multiple pair-wise interactions,
the original application acquires a pair of locks to resolve
each constraint, one lock for each object.

nufft performs 3-D non-uniform FFT. We use the base-
line version reported in [15]. Specifically, we focus on the ad-
joint NUFFT operator, which reduces a set of non-uniformly
spaced spectral indices onto a uniform spectral grid. Since
the reduction combines an unpredictable set of non-uniform
indices for each grid point, it requires synchronization. The
original application uses an array of locks for this.

histogram is an image histogram construction workload.
Multiple threads directly update the shared histogram; thus,
the updates require synchronization. The original applica-
tion uses an atomic operation for each bin update. While
simple, histogram comprises the core compute of many HPC
workloads, such as the two-point correlation function in as-
trophysics [3], and radix sort [17].

Lastly, canneal is a routing workload from PARSEC [2].
It performs simulated annealing, where each thread tries to
randomly swap two elements to improve solution quality. To
perform this swap in an atomic fashion, the original appli-
cation implements sophisticated lock-free synchronization.

5.2 Unoptimized Performance Results
For these workloads, we map the lock-based critical sec-

tions to calls into the Intel TSX-enhanced synchronization
library. The library converts these into critical sections pro-
tected by a single global lock, and applies Intel TSX to elide
that lock. For atomic operations, we convert the LOCK-
prefixed operation into a regular operation, and protect the
update using a global lock-based critical section. This is
then mapped into a call to the Intel TSX-enabled synchro-
nization library. For the lock-free algorithms, we replace
the entire algorithm to use global lock-based critical sec-
tions, discarding the atomic instructions and version check-
ing codes from the original algorithm. Intel TSX-based syn-
chronization library is then applied.

Figure 4 shows the results. In the figure, baseline rep-
resents the performance of the original, lock- and atomics-
based code. tsx.init represents the performance of the Intel
TSX-enabled version. We discuss tsx.coarsen later.

Even with straightforward porting, Intel TSX provides a

myLock = omp tes t l o ck (&vLock [w ] ) ;
i f (myLock) {

// Non−b lock ing path
. . . update graph . . .
omp unset lock(&vLock [w ] ) ;

} else {
// Blocking path
omp set lock (&vLock [w ] ) ;
. . . update graph . . .
omp unset lock(&vLock [w ] ) ;

}

Listing 1: graphCluster code example.

noticeable performance improvement. For example, nufft
has significant concurrency within a critical section hidden
under lock contention, which we exploit with transactional
execution. For canneal, we confirm the observation in [5]:
Replacing the complicated lock-free algorithm with a trans-
actional region not only makes the code much simpler, but
since some atomic read-time checks can now be removed,
provides significant performance improvement as well.

5.2.1 Lockset Elision
For graphCluster and physicsSolver, on the other hand,

we find lockset elision to be the key reason for performance
improvement. On these workloads, for some critical sections,
a set of locks need to be acquired before we can enter the
section. Lock acquisitions typically involve costly atomic
operations, and the overhead of acquiring a set of locks can
be even higher. By replacing a set of lock acquisitions with a
single transactional begin, we can reduce the overheads—we
call this lockset elision. We similarly replace the set of lock
releases with a single transactional commit.

For example, for physicsSolver, we substitute a single
transactional begin for a set of two lock acquisitions, one for
each object in the pair that is being processed.

Lockset elision can be more subtle. Listing 1 shows an
example from graphCluster. To synchronize when updat-
ing a vertex, the original code utilizes two critical sections, a
non-blocking path and a blocking path. Using omp_test_lock()2,
a thread first tries to acquire the lock in a non-blocking fash-
ion. If it succeeds, the thread enters the non-blocking path.
If the non-blocking lock acquisition fails, the thread enters
the blocking path, and calls omp_set_lock() to invoke the
blocking lock acquisition code.

When there is little contention for the locks, if the OpenMP
implementation has lower lock acquisition overhead for
omp_test_lock() than omp_set_lock(), this code will be

2The OpenMP specification [21] defines that ‘These routines
attempt to set an OpenMP lock but do not suspend execu-
tion of the task executing the routine.’ That is, the routine
is a try-lock operation, despite the name.



// Compute co l l o ca t i on point ind ices
i l 1 , i l 2 , i l 3 , i l 4 = . . . ;

// Compute mortar ind ices
ig1 , ig2 , ig3 , i g4 = . . . ;

#pragma omp atomic
tmor [ i g1 ] += tx [ i l 1 ]∗ th i rd ;

#pragma omp atomic
tmor [ i g2 ] += tx [ i l 2 ]∗ th i rd ;

#pragma omp atomic
tmor [ i g3 ] += tx [ i l 3 ]∗ th i rd ;

#pragma omp atomic
tmor [ i g4 ] += tx [ i l 4 ]∗ th i rd ;

Listing 2: ua code example.

for ( int y = sta r t r ow ; y < end row ; y++) {
for ( int x = 0 ; x < width ; x++) {

i f ( x % TXNGRAN == 0)
TM BEGIN( ) ;

// Update histogram bin
UPDATE BIN(x ) ;
i f ( x % TXNGRAN == TXNGRAN − 1)

TMEND( ) ;
}
s r c p t r += width ;

}

Listing 3: histogram code example.

more efficient than using omp_set_lock() everywhere. How-
ever, under high contention, the code performs an additional
lock check just to find that the non-blocking path cannot be
taken. These two lock checks can be replaced with a single
transactional begin, reducing overheads.

5.2.2 Transactional Coarsening
In contrast, our initial ua and histogram ports to trans-

actional execution are slower than the original code; these
workloads use LOCK prefix-based atomics to perform in-
dividually synchronized updates to shared data structures.
As seen in Section 4.1, using a critical section to perform
an update of a single memory location, whether using In-
tel TSX or not, has higher overhead than atomics (in Fig-
ure 1, compare Small TM and Small Atomic). On the
other hand, batching the updates can amortize overheads;
for CLOMP-TM, batching just a few updates allows trans-
actional execution to outperform atomics (i.e., Large TM
performs better than Small Atomic at that point).

We consider transactional coarsening, or applying batch-
ing to our applications. Specifically, we apply two tech-
niques: static and dynamic coarsening. Static coarsening
merges different critical sections (or atomic updates) into
one transactional region, at the source code level. Listing 2
shows a code example from ua. The code snippet shows
the gather phase, where atomics are used to synchronize the
reduction on the dynamically changing grid. Our original
port places each atomic update into its own transactional
region, and removes the now-unnecessary atomic pragmas.
To amortize the synchronization overhead, we now place all
of these updates in a single transactional region.

In contrast, dynamic coarsening combines multiple dy-
namic instances of the same transactional region. Listing 3
shows a histogram code section amenable to dynamic coars-
ening. Basically, the code skips some XBEGIN and XEND
instances based on the loop index, to combine TXN GRAN
updates into a single transactional region. We explore the
best value for TXN GRAN later.

We expect that dynamic coarsening could be easily ap-

plied with compiler loop unrolling, or through lightweight
runtimes. Static coarsening requires more complex static
analysis, but is still amenable to automation.

5.3 Optimized Performance Results
We selectively apply transactional coarsening to our work-

loads. Table 2 shows the specific techniques we apply. In
Figure 4, tsx.coarsen demonstrates the performance after
coarsening. We see that for those two workloads where In-
tel TSX performed worse than the baseline (i.e., ua and
histogram), Intel TSX now provides a significant speedup.
Other workloads benefit from transactional coarsening as
well: On average, with 8 threads, Intel TSX provides 1.41x
speedup over the baseline. Transactional coarsening may
not change scalability noticeably, but by reducing the over-
head even in single thread, absolute performance is higher
for all thread counts.

5.4 Discussion

5.4.1 Alternative Optimizations
Implementing the equivalent of lockset elision or trans-

actional coarsening using traditional synchronization con-
structs is difficult. The only static method is to increase the
granularity of a critical section. While this could improve
performance at low thread counts, coarse-grained locks may
not scale. Techniques like multiple granularity locking could
be used to dynamically adapt locking granularity, but this
is challenging for the programmers to use. Further, it can
sometimes be nontrivial to determine prior to a critical sec-
tion which set of shared locations will be accessed.

In contrast, with Intel TSX-based synchronization, one
can readily convert multiple lock acquisitions or critical sec-
tions into a single transactional region, to better amortize
the overhead while not significantly sacrificing scalability.
Similarly, workloads that perform synchronized updates on
multiple memory locations using atomic operations will also
benefit by merging them into a single transactional region.
In these situations, Intel TSX can improve performance over
even fine-grained locking.

5.4.2 Conflict-Free Approaches
Lock- or atomics-based synchronization assumes that con-

current threads perform possibly conflicting updates directly
to a shared data structure, and serializes the conflicting ac-
cesses. Some HPC applications instead use a conflict-free
approach, where concurrent updates are pre-arranged to be
independent. Arranging those updates requires effort and
causes overheads, but can skip synchronization for each up-
date. Privatization and barrier-based synchronization are
two popular mechanisms used.

Under privatization, each thread (or processor, or node)
maintains a local copy of the shared data structure on which
it performs modifications. Once the updates are done, the
application reduces the copies, merging the updates. Creat-
ing the copies and performing the reduction, however, are
overheads that increase with the size of the shared data
structure. Privatization therefore scales only if the number
of updates is large, relative to the size of the data structure.

With barriers, we eliminate the possibility of conflicts by
separating updates that access the same part of the shared
data structure into different groups. The application then
executes one group of updates at a time in parallel, with a
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(a) histogram performance results.
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(b) physicsSolver performance results.
Figure 5: Comparison of different synchronization schemes. Execution time is normalized to baseline (atomic
and mutex, respectively) with a single thread. tsx.gran* represent different transactional granularities.

barrier between each group to enforce any dependencies be-
tween groups. Here, the barriers and formation of the groups
are overheads. Also, if the groups are not large enough, this
scheme may introduce load imbalance.

Figure 5 demonstrates two cases where the overheads of
these conflict-free schemes outweigh the benefits (i.e., smaller
number of synchronizations). In Figure 5a, atomic de-
notes the baseline version of histogram that uses atomics
for each update. In contrast, privatize denotes an alter-
nate version that privatizes the histogram. In Figure 5b,
mutex denotes the performance of the baseline physics-
Solver, and barrier denotes an implementation that uses
barrier-based synchronization. For this workload, we omit
the time for forming the groups of independent tasks, since
those groups are used repeatedly, amortizing the overhead.
In both graphs, tsx.gran* denote the performance of Intel
TSX across varying transactional granularities. Execution
time is normalized to that of the baseline with one thread.

In these experiments, while both privatization and barri-
ers provide good performance with low thread counts, they
do not scale. For histogram, the number of histogram bins
is large relative to the number of items being binned. There-
fore, the reduction overhead eventually dominates the exe-
cution time. For physicsSolver, the input scene has a few
objects with many updates, causing large load imbalance.

In these cases, an approach with more synchronization is
faster. At 8 threads, even locks and atomics outperform the
conflict-free approaches. This may not be true in all appli-
cations, nor for all inputs and input parameters—the best
performing scheme will depend on several factors, including
the overhead for a single synchronization operation. How-
ever, as Figure 5 (and our earlier results) demonstrates, Intel
TSX can reduce such overheads; and as the overhead de-
creases, conflict-free approaches look relatively worse. Com-
bined with the promise of significantly easier parallelization,
Intel TSX makes an approach with more synchronization
more attractive.

5.4.3 Choosing the Right Granularity
Figure 5 also shows workload performance sensitivity to

transactional coarsening (the tsx.gran* lines—a larger num-
ber indicates coarser transactional regions). In general, coars-
ening improves performance by better amortizing the trans-
actional overheads. However, as the transactional region/-
footprint gets larger, it becomes more prone to conflicts.
Thus, we expect (and observe) a performance inflection point

as we increase transactional granularity; e.g., in Figure 5b,
at 8 threads, largest granularity (tsx.gran3) does not pro-
vide the best performance. A hardware or runtime-assisted
approach to dynamically adjust transactional coarsening could
be necessary.

6. EVALUATION IN
LARGE-SCALE SOFTWARE SYSTEMS

In the previous section, we focused on improving individ-
ual workload performance through Intel TSX. In this section
we explore how Intel TSX can be applied in a large software
framework, to benefit a larger set of workloads that utilize
the framework. In particular, we apply Intel TSX to a par-
allel user-level TCP/IP stack, and measure the performance
of some network intensive applications. Findings should be
beneficial to OS, hypervisor, and library development.

6.1 Case Study: User-Level TCP/IP Stack
Version 3.0 of the PARSEC benchmark suite3 includes a

multithreaded user-level TCP/IP stack, which is a user-level
port of a BSD network stack. In the stack, all the syn-
chronization constructs—locks, condition variables, etc.—
and routines are implemented in a single locking module,
which acts as a wrapper to the underlying PThread library.

We replace the PThread library with an Intel TSX-enabled
synchronization library that uses RTM instructions to elide
the locks; in this scenario, we use the existing critical section
locks in the stack. Instruction-based specification of a trans-
actional region does not require lock acquisition and release
to be in the same code scope. As reported in [28, 25], how-
ever, using scoped transactional programming constructs to
achieve the same can be non-trivial. By enhancing the lock-
ing module with Intel TSX, all the workloads utilizing this
TCP/IP stack can take advantage of Intel TSX without any
changes to the workload code.

One significant challenge we faced, however, is the interac-
tion with condition variables. For reference, Listings 4 and 5
show the PThread condition variable wait and signal rou-
tines, respectively. Since we substitute pthread_mutex_lock()
with XBEGIN, in Listing 4, when a thread finds it needs to
call pthread_cond_wait(), it does not hold a PThread lock
to call the function with.

With Intel TSX, a relatively straightforward workaround
would be to just unconditionally abort the transactional exe-

3http://parsec.cs.princeton.edu/parsec3-doc.htm



pthread mutex lock(& lock ) ;

while ( monitor s t a t e not true ) {
// Wait t i l l condi t ion met
pthread cond wait (&lock , &cond ) ;

}

pthread mutex unlock(& lock ) ;

Listing 4: PThread condition variable wait routine.

pthread mutex lock(& lock ) ;

. . . update monitor s t a t e to true . . .

// Signal wait ing thread
pth r ead cond s i gna l (&cond ) ;

pthread mutex unlock(& lock ) ;

Listing 5: PThread condition variable signal routine.

cution upon encountering pthread_cond_wait(), and to ac-
quire the lock. Once a thread acquires the lock in the fall-
back handler, it could use the lock to manipulate the condi-
tion variable. However, transactional aborts could limit the
performance benefits from Intel TSX-based synchronization.

The signaling thread, on the other hand, experiences simi-
lar issues in Listing 5, since calling pthread_cond_signal()

may lead to a system call, which would abort the transac-
tional execution.

Since PThread condition variables are tightly coupled with
the locking mechanism, applying Intel TSX to locks requires
handling the condition variables as well. Such issues with
condition variables have also been reported in other case
studies of large-scale software systems [30, 28, 25].

Therefore, we implement a transactional execution-aware
condition variable [8]. Instead of the PThread condition
variables, this implementation uses Linux futex, which does
not require holding a lock. Specifically, to reduce transac-
tional aborts, a thread tries to commit partial results when
it finds the need to wait on a condition variable. Once it
commits, the thread calls futex to atomically put itself on
the waiters list. The signaling thread, in contrast, registers
a callback if it finds the need to signal a condition variable.
Upon a transactional commit, the thread will execute the
callback to update the futex. Once the waiting thread re-
sumes, it starts the transactional execution again. We next
compare the performance of the abovementioned implemen-
tation options for condition variables.

6.2 Performance Results and Analysis
We evaluate different implementations of the TCP/IP stack

on three PARSEC workloads that leverage the stack. These
workloads are organized in a client-server fashion, where the
client sends the input data over the network, and the server
compresses or analyzes the data.

Figure 6 shows the performance of the workloads, normal-
ized to mutex, the original TCP/IP stack implementation
using PThread locks and condition variables. In the graph,
we report the server-side read bandwidth, since it lies on
the critical path of the execution. For accurate measure-
ments, workloads with pipeline parallelism (i.e., netferret
and netdedup) have been set to execute the input stages
in full before executing the rest of the pipeline.

Our first Intel TSX-based implementation, tsx.abort, is
the version where we apply Intel TSX to transactionally ex-
ecute critical sections, but abort the transactional execution
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Figure 6: Intel TSX performance on user-level
TCP/IP stack. Reports server-side read bandwidth.

pthread mutex lock(& lock ) ;

while ( monitor s t a t e not true ) {
// Busy−wait t i l l condi t ion met
pthread mutex unlock(& lock ) ;
pthread mutex lock(& lock ) ;

}

pthread mutex unlock(& lock ) ;

Listing 6: Busy-wait substitution for conditional wait.

whenever we have to update a condition variable. The per-
formance drops drastically on netferret, since the workload
sends/receives many small packets over the network.

Our second implementation, tsx.cond, uses the trans-
actional execution-aware condition variable. This imple-
mentation has much better performance on netferret than
tsx.abort, and even provides some benefit over mutex.
However, the other workloads observe little benefit, so the
average performance is very similar to mutex.

With performance analysis tools, we identify there exists
certain delay to putting a thread to sleep and waking it up,
and while Intel TSX speeds up the rest of the code, this delay
dominates the critical path of the network stack. As a last
resort, we replace the wait routine in Listing 4 with busy
waiting, as shown in Listing 6. While crude, this waiting
conforms to the blocking monitor semantics [18].

In Figure 6, mutex.busywait and tsx.busywait show
the performance of such busy waiting with PThread locks
and Intel TSX, respectively. As can be seen, the Intel TSX-
enabled stack with busy waiting provides significant perfor-
mance improvement on all the workloads, albeit with some
wasted CPU cycles and energy. This demonstrates that in-
creased speculation via redundant execution, i.e., spinning,
can translate into application level performance.

7. RELATED WORK
Other commercial designs for transactional execution ex-

ists. Sun MicrosystemsR© announced transactional execu-
tion capability in its Rock [6] processor. However, it was
not made commercially available. IBMR© introduced trans-
actional support to its Blue GeneR©/Q line of supercomput-
ers [29], later extending it to System zR© mainframes [14].
Vega processors from Azul SystemsR© also had hardware sup-
port for transactional execution. This was used to elide locks
in the JavaTM stack [4]. In general, industrial implementa-
tions (1) detect transactional conflicts at the time of access,
and (2) buffer modifications on the on-chip storage (e.g.,
caches). Such designs incur the least modifications to the
existing cache coherence and core designs.

These designs, however, differ in where they buffer spec-
ulative updates, and whether they provide register check-



pointing. For example, Blue Gene/Q utilizes the L2 cache,
Rock [6] and System z utilize store queues (store caches), and
the first Intel TSX implementation uses the L1 data cache
to buffer speculative writes. The choice of buffering location
has microarchitectural implications, such as the capacity for
speculative states, latency of commits, and messaging be-
tween caches. Intel TSX, Blue Gene/Q, and System z have
sufficient buffering capacity to handle moderate-sized trans-
actional regions, except for Rock, which can hold 32 lines.
For Rock, System z, and Intel TSX, hardware provides reg-
ister checkpointing, while Blue Gene/Q relies on software.
Such difference may have been a factor in the reported Blue
Gene/Q performance results [23].

8. CONCLUSION
We describe Intel Transactional Synchronization Exten-

sions and show that the first implementation has significant
performance potential. Using a set of transactional memory
benchmark suites running on a processor with Intel TSX
support, we first demonstrate that Intel TSX has low over-
heads. Next, we show that on a set of real-world, high-
performance computing workloads, Intel TSX provides 1.41x
average speedup over lock- and atomics-based implementa-
tions. Finally, we apply Intel TSX-based synchronization
to a parallel user-level TCP/IP stack. We observe an av-
erage of 1.31x bandwidth improvement on a set of network
intensive applications.

Through our work with the benchmarks and applications,
we also developed techniques to best utilize Intel TSX. In
particular, lockset elision and transactional coarsening pro-
vide significant benefits. We also encountered a significant
challenge in making condition variables transactional execution-
aware. While we present a solution that provides good per-
formance, library-level support for transactional condition
variables may be necessary.
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