
 1

Larrabee: A Many-Core x86 Architecture for Visual Computing

Larry Seiler1, Doug Carmean1, Eric Sprangle1, Tom Forsyth1, Michael Abrash2,

Pradeep Dubey1, Stephen Junkins1, Adam Lake1, Jeremy Sugerman3,

Robert Cavin1, Roger Espasa1, Ed Grochowski1, Toni Juan1, and Pat Hanrahan3

Abstract
123

This paper presents a many-core visual computing architecture
code named Larrabee, a new software rendering pipeline, a many-
core programming model, and performance analysis for several
applications. Larrabee uses multiple in-order x86 CPU cores that
are augmented by a wide vector processor unit, as well as some
fixed function logic blocks. This provides dramatically higher
performance per watt and per unit of area than out-of-order CPUs
on highly parallel workloads. It also greatly increases the
flexibility and programmability of the architecture as compared to
standard GPUs. A coherent on-die 2nd level cache allows efficient
inter-processor communication and high-bandwidth local data
access by CPU cores. Task scheduling is performed entirely with
software in Larrabee, rather than in fixed function logic. The
customizable software graphics rendering pipeline for this
architecture uses binning in order to reduce required memory
bandwidth, minimize lock contention, and increase opportunities
for parallelism relative to standard GPUs. The Larrabee native
programming model supports a variety of highly parallel
applications that use irregular data structures. Performance
analysis on those applications demonstrates Larrabee’s potential
for a broad range of parallel computation.

CCS: I.3.1 [Computer Graphics]: Hardware Architecture--
Graphics Processors, Parallel Processing; I.3.3 [Computer
Graphics]: Picture/Image Generation--Display Algorithms; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism--
Color, shading, shadowing, and texture

Keywords: graphics architecture, many-core computing, real-
time graphics, software rendering, throughput computing, visual
computing, parallel processing, SIMD, GPGPU.

1. Introduction

Modern GPUs are increasingly programmable in order to support
advanced graphics algorithms and other parallel applications.

1 Intel® Corporation: larry.seiler, doug.carmean, eric.sprangle,
tom.forsyth, pradeep.dubey, stephen.junkins, adam.t.lake,
robert.d.cavin, roger.espasa, edward.grochowski & toni.juan
@intel.com

2 RAD Game Tools: mikea@radgametools.com
3 Stanford University: yoel & hanrahan @cs.stanford.edu

© ACM, 2008. This is the author’s version of the work.
It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in
ACM Transactions on Graphics, 27, 3, 2008
http://doi.acm.org/10.1145/1360612.1360617

However, general purpose programmability of the graphics
pipeline is restricted by limitations on the memory model and by
fixed function blocks that schedule the parallel threads of
execution. For example, pixel processing order is controlled by
the rasterization logic and other dedicated scheduling logic.

This paper describes a highly parallel architecture that makes the
rendering pipeline completely programmable. The Larrabee
architecture is based on in-order CPU cores that run an extended
version of the x86 instruction set, including wide vector
processing operations and some specialized scalar instructions.
Figure 1 shows a schematic illustration of the architecture. The
cores each access their own subset of a coherent L2 cache to
provide high-bandwidth L2 cache access from each core and to
simplify data sharing and synchronization.

Larrabee is more flexible than current GPUs. Its CPU-like x86-
based architecture supports subroutines and page faulting. Some
operations that GPUs traditionally perform with fixed function
logic, such as rasterization and post-shader blending, are
performed entirely in software in Larrabee. Like GPUs, Larrabee
uses fixed function logic for texture filtering, but the cores assist
the fixed function logic, e.g. by supporting page faults.

Figure 1: Schematic of the Larrabee many-core architecture: The
number of CPU cores and the number and type of co-processors
and I/O blocks are implementation-dependent, as are the
positions of the CPU and non-CPU blocks on the chip.

This paper also describes a software rendering pipeline that runs
efficiently on this architecture. It uses binning to increase
parallelism and reduce memory bandwidth, while avoiding the
problems of some previous tile-based architectures. Implementing
the renderer in software allows existing features to be optimized
based on workload and allows new features to be added. For
example, programmable blending and order-independent
transparency fit easily into the Larrabee software pipeline.

Finally, this paper describes a programming model that supports
more general parallel applications, such as image processing,
physical simulation, and medical & financial analytics. Larrabee’s
support for irregular data structures and its scatter-gather
capability make it suitable for these throughput applications as
demonstrated by our scalability and performance analysis.

 2

2. Previous Work

Recent years have seen the evolution of commodity graphics
hardware from fixed function units toward an increasingly
programmable graphics pipeline, offering greater flexibility and
performance to graphics programmers [Blythe 2006]. Real-time
graphics APIs evolved to expose this functionality with high level
shading languages such as Cg [Mark et al. 2003], HLSL
[Microsoft 2007] and GLSL [Kessenich et al. 2006]. Additionally,
a number of arithmetically intensive workloads perform very well
on GPU-like architectures [GPGPU 2007; Owens et al. 2007].

2.1 PC Graphics Processor Architectures

Multi-processing graphics hardware has been around for decades.
The key ideas behind these architectures are described by Fuchs et
al. [1989], Molnar et al. [1992], Foley et al. [1996], and Stoll et al.
[2001]. The motivation has always been to leverage the data
parallel nature of rendering to gain maximum performance and
visual fidelity. Early architectures were complex systems with
multiple boards and many specialized chips. The modern graphics
architecture is a single chip that fits into the form factor of a PC or
other graphics platform [Kelley et al. 1992; Kelley et al. 1994;
Torborg & Kajiya 1996]. Recent architectures implement the
Microsoft DirectX* 10 API, including the Nvidia GeForce* 8
[Nvidia 2008] and the ATI Radeon* HD 3800 series [AMD 2008].

Figure 2 shows a simplified version of the DirectX 10 pipeline
[Blythe 2006]. The programmable OpenGL pipeline is following
a similar architectural direction [Rost 2004]. In early
implementations, each stage required separate programmable
units, but the most recent architectures use a unified shader
model. Rasterization and texture filter operations are still largely
fixed function in modern GPUs, so changes to the supported
features require a new chip design, as well as a new API version.

Figure 2: Simplified DirectX10 Pipeline: Yellow components are
programmable by the user, green are fixed function. Memory
access, stream output, and texture filtering stages are omitted.

Recent research brings the computational capabilities of
commodity graphics hardware to bear on a variety of problems
including collision detection, financial modeling, and signal
processing [Owens et al. 2007]. There are several aspects of GPU
architectures that lend themselves to these workloads.
Performance increases are most dramatic when the compute to
bandwidth ratio is high. That occurs when the application
primarily uses regular data structures and requires many
arithmetic operations for each data item being processed.

2.2 Taxonomy of Rendering Methods

Molnar et al. [1994] classified graphics architectures by the
primary stage in the graphics pipeline where sorting for
parallelism occurs. Eldridge [2001] expanded this taxonomy and
performed a detailed comparison of parallel rendering systems.
Both use sort-middle to refer to sorting after geometry processing
but before rasterization. Molnar et al. use sort-last sparse and

Eldridge uses sort-last fragment to refer to sorting before
fragment processing, that is, before depth test and alpha blending.
Since their work was done before the introduction of pixel
shaders, no clear distinction is provided for sorting after
computing coverage but before executing the pixel shader. In this
paper we treat this alternative as a variant of sort-middle.

Current GPUs often use Eldridge’s sort-last fragment. This allows
pixel shader results to be sorted into a small number of screen-
aligned regions just before depth testing and blending. Often these
screen aligned regions are associated with individual memory
controllers, to allow more efficient memory accesses. Sort-last
fragment allows immediate mode rendering with relatively short
FIFO buffers for sorting the data. However, if a pixel is accessed
multiple times at widely separated intervals, it typically must be
read from and written to memory multiple times.

Sort middle algorithms have been called binning, tiling, chunking,
bucket, and zone rendering [Hsieh et al. 2001; Chen et al. 1998].
This method processes vertices to produce screen coordinates for
primitives, which are sorted into bins based on their location on
the screen. Each bin is associated with a tile region on the screen,
which can be sized to fit into on-chip cache so that only one
access to memory is needed per pixel regardless of the depth
complexity. One problem is that primitives that overlap multiple
tiles must be stored in multiple bins, which increases the memory
bandwidth needed for them. Molnar et al. [1994], Chen et al.
[1998], and Eldridge [2001] concluded that the impact of overlap
is limited, especially when primitives are small compared to
region size, which occurs as the triangle count of a scene
increases. The PowerVR* MBX and SGX series [PowerVR 2008],
the Intel® Graphics Media Accelerator 900 Series [Lake 2005],
the ARM Mali* [Stevens 2006], and Talisman [Torborg & Kajiya
1996] have been generally classified as sort middle architectures.

2.3 General Purpose CPU Architectures

In 1995, Intel introduced the Pentium® Pro processor, which used
out-of-order 3-wide instruction execution in response to the
demand for increasing single-stream performance [Gwennap
1995]. Out-of-order architectures identify independent instruction
streams that can be executed in parallel. The logic to identify
these instructions consumes die area as well as power. Later CPU
generations used even more elaborate techniques to increase
single-stream performance at ever increasing penalties in area and
power relative to performance. It has been observed that, within
the same process technology, a new microprocessor design with
1.5x to 1.7x the performance consumes 2x to 3x the die area
[Pollack 1999] and 2x to 2.5x the power [Grochowski et al. 2004].

For highly parallel algorithms, more performance can be gained
by packing multiple cores onto the die instead of increasing single
stream performance. The IBM Cell* was designed with these high
throughput workloads in mind [Pham et al. 2005]. Cell includes a
single Power* Processor core, its L2 cache, and a set of high
throughput cores. These cores each contain a local memory store
that is incoherent with the rest of the memory system. The local
store has a guaranteed latency for data delivery, which allows a
simpler execution pipeline than a system with a coherent cache
hierarchy. It requires the user to manually manage the data
contents through software-programmed DMA operations.

Intel, Intel Core, Pentium and Xeon are trademarks of Intel
Corporation in the U.S. and other countries.
* Other names & brands may be claimed as the property of others.

 3

CPUs can also use multi-threading to gain parallelism. Niagara is
a multi-core general purpose microprocessor [Kongetira et al.
2005] featuring eight in-order cores, each capable of executing
four simultaneous threads, and a shared cache. But given its focus
on commercial server workloads, Niagara lacks architectural
elements critical for visual computing, such as SIMD floating-
point execution, scatter-gather, or fixed function texture support.

3. Larrabee Hardware Architecture

Figure 1 above shows a block diagram of the basic Larrabee
architecture. Larrabee is designed around multiple instantiations
of an in-order CPU core that is augmented with a wide vector
processor (VPU). Cores communicate through a high-bandwidth
interconnect network with some fixed function logic, memory I/O
interfaces, and other necessary I/O logic, depending on the exact
application. For example, an implementation of Larrabee as a
stand-alone GPU would typically include a PCIe bus.

The data in Table 1 motivates Larrabee’s use of in-order cores
with wide VPUs. The middle column shows the peak performance
of a modern out-of-order CPU, the Intel® Core™2 Duo processor.
The right-hand column shows a test CPU design based on the
Pentium® processor, which was introduced in 1992 and used dual-
issue in-order instruction execution [Alpert 1993]. The Pentium
processor core was modified to support four threads and a 16-
wide VPU. The final two rows specify the number of non-vector
instructions that can be issued per clock by one CPU and the total
number of vector operations that can be issued per clock. The two
configurations use roughly the same area and power.

CPU cores: 2 out-of-order 10 in-order

Instruction issue: 4 per clock 2 per clock

VPU per core: 4-wide SSE 16-wide

L2 cache size: 4 MB 4 MB

Single-stream: 4 per clock 2 per clock

Vector throughput: 8 per clock 160 per clock

Table 1: Out-of-order vs. in-order CPU comparison: designing
the processor for increased throughput can result in ½ the peak
single-stream performance, but 20x the peak vector throughput
with roughly the same area and power. This difference is 40x in
FLOPS, since the wide VPU supports fused multiply-add but SSE
doesn’t. These in-order cores are not Larrabee, but are similar.

The test design in Table 1 is not identical to Larrabee. To provide
a more direct comparison, the in-order core test design uses the
same process and clock rate as the out-of-order cores and includes
no fixed function graphics logic. This comparison motivates
design decisions for Larrabee since it shows that a wide VPU with
a simple in-order core allows CPUs to reach a dramatically higher
computational density for parallel applications.

Sections 3.1 to 3.5 below describe the key features of the Larrabee
architecture: the CPU core, the scalar unit and cache control
instructions, the vector processor, the interprocessor ring network,
and the choices for what is implemented in fixed function logic.

3.1 Larrabee Core and Caches

Figure 3 shows a schematic of a single Larrabee CPU core, plus
its connection to the on-die interconnect network and the core’s
local subset of the L2 cache. The instruction decoder supports the
standard Pentium processor x86 instruction set, with the addition
of new instructions that are described in Sections 3.2 and 3.3. To

simplify the design the scalar and vector units use separate
register sets. Data transferred between them is written to memory
and then read back in from the L1 cache.

Larrabee’s L1 cache allows low-latency accesses to cache
memory into the scalar and vector units. Together with Larrabee’s
load-op VPU instructions, this means that the L1 cache can be
treated somewhat like an extended register file. This significantly
improves the performance of many algorithms, especially with the
cache control instructions described Section 3.2. The single-
threaded Pentium processor provided an 8KB Icache and 8KB
Dcache. We specify a 32KB Icache and 32KB Dcache to support
four execution threads per CPU core.

Figure 3: Larrabee CPU core and associated system blocks: the
CPU is derived from the Pentium processor in-order design, plus
64-bit instructions, multi-threading and a wide VPU. Each core
has fast access to its 256KB local subset of a coherent 2nd level
cache. L1 cache sizes are 32KB for Icache and 32KB for Dcache.
Ring network accesses pass through the L2 cache for coherency.

Larrabee’s global 2nd level (L2) cache is divided into separate
local subsets, one per CPU core. Each CPU has a fast direct
access path to its own local subset of the L2 cache. Data read by a
CPU core is stored in its L2 cache subset and can be accessed
quickly, in parallel with other CPUs accessing their own local L2
cache subsets. Data written by a CPU core is stored in its own L2
cache subset and is flushed from other subsets, if necessary. The
ring network ensures coherency for shared data, as described in
Section 3.4. We specify 256KB for each L2 cache subset. This
supports large tile sizes for software rendering, as described in
Section 4.1.

3.2 Scalar Unit and Cache Control Instructions

Larrabee’s scalar pipeline is derived from the dual-issue Pentium
processor, which uses a short, inexpensive execution pipeline.
Larrabee provides modern additions such as multi-threading, 64-
bit extensions, and sophisticated prefetching. The cores support
the full Pentium processor x86 instruction set so they can run
existing code including operating system kernels and applications.
Larrabee adds new scalar instructions such as bit count and bit
scan, which finds the next set bit within a register.

Larrabee also adds new instructions and instruction modes for
explicit cache control. Examples include instructions to prefetch
data into the L1 or L2 caches and instruction modes to reduce the
priority of a cache line. For example, streaming data typically
sweeps existing data out of a cache. Larrabee is able to mark each
streaming cache line for early eviction after it is accessed. These
cache control instructions also allow the L2 cache to be used
similarly to a scratchpad memory, while remaining fully coherent.

Within a single core, synchronizing access to shared memory by
multiple threads is inexpensive. The threads on a single core share
the same local L1 cache, so a single atomic semaphore read
within the L1 cache is sufficient. Synchronizing access between

 4

multiple cores is more expensive, since it requires inter-processor
locks. This is a well known problem in multi-processor design.

Multi-issue CPU cores often lose performance due to the
difficulty of finding instructions that can execute together.
Larrabee’s dual-issue decoder has a high multi-issue rate in code
that we’ve tested. The pairing rules for the primary and secondary
instruction pipes are deterministic, which allows compilers to
perform offline analysis with a wider scope than a runtime out-of-
order instruction picker can. All instructions can issue on the
primary pipeline, which minimizes the combinatorial problems
for a compiler. The secondary pipeline can execute a large subset
of the scalar x86 instruction set, including loads, stores, simple
ALU operations, branches, cache manipulation instructions, and
vector stores. Because the secondary pipeline is relatively small
and cheap, the area and power wasted by failing to dual-issue on
every cycle is small. In our analysis, it is relatively easy for
compilers to schedule dual-issue instructions.

Finally, Larrabee supports four threads of execution, with separate
register sets per thread. Switching threads covers cases where the
compiler is unable to schedule code without stalls. Switching
threads also covers part of the latency to load from the L2 cache
to the L1 cache, for those cases when data cannot be prefetched
into the L1 cache in advance. Cache use is more effective when
multiple threads running on the same core use the same dataset,
e.g. rendering triangles to the same tile.

3.3 Vector Processing Unit

Larrabee gains its computational density from the 16-wide vector
processing unit (VPU), which executes integer, single-precision
float, and double-precision float instructions. The VPU and its
registers are approximately one third the area of the CPU core but
provide most of the integer and floating point performance. Figure
4 shows a block diagram of the VPU with the L1 cache.

Figure 4: Vector unit block diagram: the VPU supports 3-
operand instructions. It supports swizzling the register inputs and
numeric conversion and replication on the memory input. Mask
registers allow predicating the resulting vector writes.

We chose a 16-wide VPU as a tradeoff between increased
computational density and the difficulty of obtaining high
utilization for wider VPUs. Early analysis suggested 88%
utilization for typical pixel shader workloads if 16 lanes process
16 separate pixels one component at a time, that is, with separate
instructions to process red, green, etc., for 16 pixels at a time,
instead of processing multiple color channels at once. The Nvidia
GeForce 8 operates in a similar fashion, organizing its scalar
SIMD processors in groups of 32 that execute the same
instruction [Nickolls et al. 2008]. The main difference is that in
Larrabee the loop control, cache management, and other such
operations are code that runs in parallel with the VPU, instead of
being implemented as fixed function logic.

Larrabee VPU instructions allow up to three source operands, one
of which can come directly from the L1 cache. If the data has

been prefetched into the cache, as described in Section 3.2, then
the L1 cache is in effect an extended register file. 8-bit unorm, 8-
bit uint, 16-bit sint and 16-bit float data can be read from the
cache and converted to 32-bit floats or 32-bit integers with no loss
of performance. This significantly increases the amount of data
that can be stored in the caches and also reduces the need for
separate data conversion instructions.

The next stage is to align the data from registers and memory with
the processing lanes in the VPU. Register data can be swizzled in
a variety of ways, e.g. to support matrix multiplication. Data from
memory can be replicated across the VPU lanes. This is a
common operation in both graphics and non-graphics parallel data
processing, which significantly increases the cache efficiency.

The VPU supports a wide variety of instructions on both integer
and floating point data types. The instruction set provides the
standard arithmetic operations, including fused multiply-add, and
the standard logical operations, including instructions to extract
non-byte-aligned fields from pixels. These are all load-op
instructions, which read from registers or memory and write the
result to a vector register. Additional load and store instructions
support a wider variety of conversions between floating point
values and the less common or more complex data formats found
on most GPUs. Using separate instructions for these formats saves
significant area and power at a small performance cost.

The VPU instruction set also includes gather and scatter support,
that is, loads and stores from non-contiguous addresses. Instead of
loading a 16-wide vector from a single address, 16 elements are
loaded from or stored to up to 16 different addresses that are
specified in another vector register. This allows 16 shader
instances to be run in parallel, each of which appears to run
serially, even when performing array accesses with computed
indices. The speed of gather/scatter is limited by the cache, which
typically only accesses one cache line per cycle. However, many
workloads have highly coherent access patterns, and therefore
take much less than 16 cycles to execute.

Finally, Larrabee VPU instructions can be predicated by a mask
register, which has one bit per vector lane. The mask controls
which parts of a vector register or memory location are written
and which are left untouched. For example, a scalar if-then-else
control structure can be mapped onto the VPU by using an
instruction to set a mask register based on a comparison, and then
executing both if and else clauses with opposite polarities of the
mask register controlling whether to write results. Clauses can be
skipped entirely if the mask register is all zeros or all ones. This
reduces branch misprediction penalties for small clauses and gives
the compiler’s instruction scheduler greater freedom.

The VPU also uses these masks for packed load and store
instructions, which access enabled elements from sequential
locations in memory. This enables the programmer to bundle
sparse strands of execution satisfying complex branch conditions
into a format more efficient for vector computation.

3.4 Inter-Processor Ring Network

Larrabee uses a bi-directional ring network to allow agents such
as CPU cores, L2 caches and other logic blocks to communicate
with each other within the chip. When scaling to more than 16
cores, we use multiple short linked rings.

Each ring data-path is 512-bits wide per direction. All the routing
decisions are made before injecting messages into the network.
For example, each agent can accept a message from one direction

 5

on even clocks and from the other direction on odd clocks. This
simplifies the routing logic and means that no storage is required
in the routers once the message is in the network. The result is
high bandwidth with minimal contention at a very low cost.

Larrabee’s L2 cache is designed to provide each core with high
bandwidth access to memory addresses that are not written by
other cores, and therefore are stored in the core’s local L2 subset.
Each core can access its own subset of the L2 cache in parallel,
without communicating with other cores. However, before
allocating a new line in the L2 cache, the ring network is used to
check for data sharing, in order to maintain data coherency.

The inter-processor network also provides a path for the L2
caches to access memory. A typical high-end implementation
would include multiple memory interfaces of standard design,
spread around the inter-processor network to reduce congestion.
Latency around the on-die network increases memory access
times, but the extra ring latency is typically very small compared
to the latency of DRAM access.

Finally, the on-die inter-processor network allows fixed function
logic agents to be accessed by the CPU cores and in turn to access
L2 caches and memory. As with memory controllers, these would
typically be spread around the ring network to reduce congestion.

3.5 Fixed Function Logic

Modern GPUs contain fixed function logic for a variety of
graphics tasks, including texture filtering, display processing,
post-shader alpha blending, rasterization, and interpolation. In this
paper, rasterization refers solely to finding the coverage of a
primitive, and interpolation refers to finding the values of
parameters at covered sample positions in the primitive. Fixed
function logic typically requires FIFOs for load balancing. It can
be difficult to properly size these logic blocks and their FIFOs to
avoid both wasted area and performance bottlenecks.

Larrabee uses software in place of fixed function logic when a
software implementation provides sufficient performance. In
particular, Larrabee does not include fixed function logic for
rasterization, interpolation, or post-shader alpha blending. This
allows Larrabee to add new features and optimizations, as well as
allowing these tasks to be implemented in different places in the
rendering pipeline, depending what is most efficient for a
particular application. Implementing them in software also allows
Larrabee to allocate to each the performance it requires, instead of
designing hardware to meet peak performance requirements.
Sections 4.4 and 4.5 describe the software algorithms used and
Section 5.5 shows the percentage of processing time required by
these operations for three game workloads.

Larrabee includes texture filter logic because this operation
cannot be efficiently performed in software on the cores. Our
analysis shows that software texture filtering on our cores would
take 12x to 40x longer than our fixed function logic, depending on
whether decompression is required. There are four basic reasons:
• Texture filtering still most commonly uses 8-bit color

components, which can be filtered more efficiently in
dedicated logic than in the 32-bit wide VPU lanes.

• Efficiently selecting unaligned 2x2 quads to filter requires a
specialized kind of pipelined gather logic.

• Loading texture data into the VPU for filtering requires an
impractical amount of register file bandwidth.

• On-the-fly texture decompression is dramatically more
efficient in dedicated hardware than in CPU code.

The Larrabee texture filter logic is internally quite similar to
typical GPU texture logic. It provides 32KB of texture cache per
core and supports all the usual operations, such as DirectX 10
compressed texture formats, mipmapping, anisotropic filtering,
etc. Cores pass commands to the texture units through the L2
cache and receive results the same way. The texture units perform
virtual to physical page translation and report any page misses to
the core, which retries the texture filter command after the page is
in memory. Larrabee can also perform texture operations directly
on the cores when the performance is fast enough in software.

4. Larrabee Software Renderer

The key issue for achieving high performance for any parallel
rendering algorithm is to divide the rendering task into many
subtasks that can be load balanced and executed in parallel with
very few synchronization points. Larrabee allows more options
for parallelism than typical GPUs due to its flexible memory
model and software-controlled scheduling.

This section describes a sort-middle software renderer designed
for the Larrabee architecture that uses binning for load balancing.
Section 5 provides performance studies for this software renderer.

4.1 Stages of Software Rendering

For simplicity, first we will consider rendering to a single set of
render targets, such as a pixel buffer and a depth/stencil buffer.
These render targets and the rendering commands that modify
them are together called an RTset. Section 4.2 discusses more
complex cases involving multiple RTsets.

The rendering commands for an RTset are typically specified by
graphics APIs as a series of rendering state changes, followed by
a batch of triangles rendered using that current device state.
Rather than use the concept of a current state internally, the
Larrabee renderer captures the rendering state in a single fully-
specified structure. It then groups the batches of triangles and tags
each batch with the state it uses. This batch of triangles and the
state it uses is called a primitive set or PrimSet. This is roughly
equivalent to the DirectX DrawPrimitive call, although there is
not an exact 1:1 correspondence between the two.

Figure 5 shows the broad structure for rendering the PrimSets of a
single RTset. The surface being rendered is split into tiles of
pixels. Each tile has a bin that will be filled with the triangles
from a PrimSet that intersect that tile. The set of bins for the
whole RTset is called a bin set. The terms tile and bin are
sometimes used interchangeably. The distinction in this paper is
that a tile is the actual pixel data, while the bin is the set of
primitives that affect that tile. In the same way that each tile has a
bin, each RTset (set of render target tiles and associated PrimSets)
has a single bin set (set of bins that contain the primitives).

Figure 5: Larrabee Software Renderer Structure: Multiple sets of
primitives (PrimSets) can be processed in parallel to fill per-tile
bins, which are later processed in parallel to render screen tiles.

 6

Tile size is chosen so that the target surfaces in the RTset for that
tile will all fit in a core’s L2 cache. Thus an RTset with many
color channels, or with large high-precision data formats, will use
a smaller tile size than one with fewer or low-precision channels.
To simplify the code, tiles are usually square and a power-of-two
in size, typically ranging in size from 32x32 to 128x128. An
application with 32-bit depth and 32-bit color can use a 128x128
tile and fill only half of the core’s 256KB L2 cache subset.

As long as a tile fits within the L2 cache, rendering speed does not
change substantially for different tile sizes. The main impact of
using smaller tiles is that some triangles in the scene will hit more
than one tile and require processing in each of those tiles – this is
termed bin spread. Smaller tiles increase bin spread, but it is not a
large increase. Typically we see bin spread of less than 5% in
modern workloads. That is, the number of triangles processed
across the system is less than 5% higher than the number for a
single large bin covering the entire render target.

There are two phases to the processing. In the front-end, each
PrimSet is given a sequence ID to identify where in the rendering
stream it was submitted. This is used by the back-end to ensure
correct ordering, as discussed below. The PrimSet is then assigned
to a single core, which performs vertex shading, tessellation,
geometry shading, culling and clipping to produce triangles (or
other primitives). The core then rasterizes each triangle to
determine which tiles it touches and which samples it covers
within each of those tiles. The result is a series of X,Y coordinates
and sample coverage masks for each triangle. This data is stored
in the bins along with indices that reference the vertex data.

Once all front-end processing for the RTset has finished and every
triangle has been added to the bin for each tile that it touched,
back-end processing is performed. Here, each tile is assigned to a
single core, which shades each triangle from the associated bin,
including requesting texture sampling from the co-processors. The
back-end also performs depth, stencil and blending operations.

Unlike some other tile-based rendering methods, there is no
attempt at perfect occlusion culling before shading, reordering of
shading, or any other non-standard rendering methods. When
taking commands from a DirectX or OpenGL command stream,
rendering for a single tile is performed in the order in which the
commands are submitted. Using a conventional rendering pipeline
within each tile avoids surprises in either functionality or
performance and works consistently well across a broad spectrum
of existing applications.

4.2 Render Target Dependency Analysis

A single frame consists of a sequence of rendering commands,
each sent to a set of rendering surfaces. Modern applications may
use multiple pixel targets at once, and may change targets
frequently during a single frame in order to render effects such as
reflections and shadow maps.

To handle different sets of render targets within a single frame,
Larrabee’s software renderer starts by creating a graph where each
node corresponds to an RTset, as defined in Section 4.1. Each
node is then assigned the PrimSets that modify that node’s set of
render targets. When an RTset uses a render target (e.g. a texture)
that is used by subsequent rendering operations to a different
target, a dependency is set up between the two RTsets. For
example, in shadow mapping, the main RTset for a scene (the
back buffer and depth/stencil buffer) has a dependency on the
RTset for each of the shadow maps used.

Once the dependency graph is created, the nodes can be selected
for rendering in any order that satisfies the dependencies. Figure 6
shows a dependency graph for two frames of a scene that requires
rendering two shadow maps. For simplicity, the shadow maps for
frame 1 are not shown. Frame 2 of the scene cannot be rendered
until after frame 2’s shadow maps are rendered. Since each frame
in this simple example uses the same memory for the back buffer
and depth buffer, frame 2 also cannot be rendered until frame 1’s
scene is rendered and copied to the front buffer (the dotted line
dependency). However, rendering the frame 2 shadow maps can
overlap with frame 1 rendering, since there are no dependencies.
Using a different back buffer for frame 2 would remove the dotted
line dependency. This substitution can be done automatically.

Figure 6: RTset dependency graph: PrimSets are assigned to an
RTset node based on the surfaces (render targets) that they
modify. The dependencies ensure that a surface is not used until
the PrimSets that modify it have been rendered and is not
modified until the PrimSets that use it have been rendered.

Note that the PrimSets associated with an RTset can be divided
into multiple subsets whenever required, so long as ordering is
maintained. An RTset can be split if it is too large to be efficiently
processed as one unit, e.g. to provide finer scheduling granularity.
Not all Larrabee cores need to process PrimSets from the same
RTset at the same time. This ability to arbitrarily split and
schedule RTsets avoids the limitations of some previous tiling
architectures [Lake 2005].

4.3 Front-End Vertex and Geometry Processing

Since graphics rendering commands modify state, the order of
execution matters. GPUs process these commands sequentially, so
that the commands are started in order and finished in order.
When operations within a rendering command are parallelized
over the inputs, the outputs must be put back in order. Geometry
shaders, where the number of outputs is variable, require
particularly large FIFOs to maintain order and minimize stalls.

Larrabee allows front-end processing of multiple PrimSets in
parallel. A control processor decides which PrimSets to render at
any particular time, according to the dependencies in the RTset
graph, and adds those PrimSets to an active list. The Larrabee
cores doing front-end work constantly take PrimSets from this
active list. Each core works on its own PrimSet independently.
When the core is finished, it takes the next from the active list.
Each core uses its own subset of the bin for each tile, which
eliminates lock contention with the other front-end cores. The
PrimSet’s sequence ID is written into the bins so that the back-end
can restore the original order by always reading primitives from
the sub-bin with the smallest sequence ID.

Figure 7 shows the processing stages within a single front-end
core. The first step identifies the vertices that form each primitive.
This can be complex due to index buffers that allow arbitrary
mappings of vertices in a vertex buffer to primitives, e.g. to
efficiently store meshes. Next, the required vertices are
transformed by running the vertex shader on them if they haven’t
already been transformed. Transformed vertices are streamed out

 7

to main memory. Values other than the position data are actively
evicted from the L2 cache to avoid pollution, as they are not
needed again until interpolant setup in the back end. After this, the
geometry shader is run, followed by frustum and back-face
culling, then clipping.

Figure 7: Front-End Rendering Sequence for a PrimSet: the
renderer shades vertices when required for a primitive, then puts
final primitives into the bins whose tiles the primitive intersects.

We describe a version of the algorithm that computes coverage
information in the front-end and puts it into the bins. This ensures
good load balancing, even if a small number of bins contain a
large number of triangles. Rasterization can occur in either the
front-end or the back-end, or can be split between them, since
Larrabee uses software rasterization, as described in Section 4.4.

4.4 Software Rasterization and Interpolation

Unlike modern GPUs, Larrabee does not use dedicated logic for
rasterization and parameter interpolation. In this paper,
rasterization refers to finding the coverage of a primitive and
interpolation refers to finding the values of parameters at covered
sample positions. The figures in Section 5.4 show that these
operations do not take a significant fraction of the rendering
workload, so using software is justifiable. This section describes
the algorithms that we use and why software implementations are
preferable on Larrabee.

The justification for performing interpolation in software is
relatively simple. In older graphics APIs, interpolation produced
fixed point numbers, much like the current state for the most
common texture filtering operations. In modern graphics APIs
such as DirectX 10, the required result is a 32-bit float. Therefore
it is efficient to re-use the existing VPU for interpolation.

Rasterization is unquestionably more efficient in dedicated logic
than in software when running at peak rates, but using dedicated
logic has drawbacks for Larrabee. In a modern GPU, the rasterizer
is a fine-grain serialization point: all primitives are put back in
order before rasterization. Scaling the renderer over large numbers
of cores requires eliminating all but the most coarse-grained
serialization points. The rasterizer could be designed to allow
multiple cores to send it primitives out of order, but this would
impose a significant communication expense and would require
software to manage contention for the rasterizer resource. A
software rasterizer avoids these costs. It also allows rasterization
to be parallelized over many cores or moved to multiple different
places in the rendering pipeline. We can optimize the rasterization
code for a particular workload or support alternative rasterization
equations for special purposes [Lloyd et al. 2007].

Our algorithm is a highly optimized version of the recursive
descent algorithm described by Greene [1996]. The basic idea is
to convert clipped triangles to screen space, then compute a half-
plane equation for each triangle edge [Pineda 1988]. This lets us
determine if a rectangular block is entirely inside the triangle,
entirely outside the triangle, or partially covered by the triangle.
In the latter case, the algorithm subdivides the block recursively
until it is reduced to an individual pixel or sample position.

On Larrabee, the first step uses the triangle’s bounding box to find
the tiles that the triangle overlaps. In the remaining steps, the VPU
computes half-plane equations for 16 blocks at a time. For
example, if the tile size is 64x64, the first stage processes 16
16x16 blocks that cover the tile. The find first bit instruction
makes it efficient to find fully and partially covered blocks.
Detecting fully covered blocks early is important for efficiency.
The second stage tests the 16 4x4 sub-blocks of each partially
covered 16x16 block. The third stage tests the 16 pixels of each
partially covered 4x4 block. This stage can be repeated for
multiple sample positions in each pixel. About 70% of the
instructions run on the VPU and take advantage of Larrabee’s
computational density. About 10% of the efficiency of the
algorithm comes from special instructions such as find first bit.

4.5 Back-End Pixel Processing

Once the front-end processing for an RTset has completed filling
the bins with triangle data, the RTset is put into an active list. The
cores doing back-end work constantly take the next available tile
from the list and render the triangles in the corresponding bin.
This software can use many optimizations that are commonly
implemented in fixed function logic in modern GPUs, such as fast
clear, hierarchical Z, and early Z tests [Morein 2000].
Hierarchical Z tests can be done in the front-end to reduce the
number of primitives placed in the bins.

The back-end code starts by prefetching the render target pixels
into the L2 cache. All rendering will then be performed to the L2
cache until there are no more primitives to render for the tile,
when it will be written back to memory. As a result, the pixels in
the RTset for this tile only need to be read and written once to
main memory, regardless of how many overlapping primitives are
in the bin. Two important optimizations can also be detected to
save substantial memory bandwidth. The read can be eliminated if
the first command clears the entire tile. The write can also be
eliminated or reduced for depth data that is not required after
rendering and for MSAA colors that can be resolved to one color
per pixel before writing to memory.

Figure 8 shows a back-end implementation that makes effective
use of multiple threads that execute on a single core. A setup
thread reads primitives for the tile. Next, the setup thread
interpolates per-vertex parameters to find their values at each
sample. Finally, the setup thread issues pixels to the work threads
in groups of 16 that we call a qquad. The setup thread uses
scoreboarding to ensure that qquads are not passed to the work
threads until any overlapping pixels have completed processing.

Figure 8: Back-End Rendering Sequence for a Tile: one setup
thread processes the primitives and assigns them to one of three
work threads that do early Z depth tests, pixel shader processing,
late Z depth tests, and alpha blending.

The three work threads perform all remaining pixel processing,
including pre-shader early Z tests, the pixel shader, regular late Z
tests, and post-shader blending. Modern GPUs use dedicated logic
for post-shader blending, but Larrabee uses the VPU. This is
particularly efficient since many shaders do not use post-shader
blending, so that dedicated blending logic can be unused for some

 8

shaders and may limit performance for other shaders. Section 5.4
provides breakdowns of the total processing time devoted to post-
shader blending and parameter interpolation.

One remaining issue is texture co-processor accesses, which can
have hundreds of clocks of latency. This is hidden by computing
multiple qquads on each hardware thread. Each qquad’s shader is
called a fiber. The different fibers on a thread co-operatively
switch between themselves without any OS intervention. A fiber
switch is performed after each texture read command, and
processing passes to the other fibers running on the thread. Fibers
execute in a circular queue. The number of fibers is chosen so that
by the time control flows back to a fiber, its texture access has had
time to execute and the results are ready for processing.

5. Renderer Performance Studies

This section describes performance and scaling studies for the
Larrabee software renderer described in Section 4. Studies include
scalability experiments for software rendering, load balancing
studies, bandwidth comparisons of binning to immediate mode
renderers, performance on several game workloads, and charts
showing the how total processing time is divided among different
parts of the software renderer.

5.1 Game Workloads and Simulation Method

Performance tests use workloads derived from three well-known
games: Gears of War*, F.E.A.R.*, and Half Life* 2 Episode 2.
Table 2 contains information about the tested frames from each
game. Since we are scaling out to large numbers of cores we use a
high-end screen size with multisampling when supported.

Half Life 2 ep. 2 F.E.A.R. Gears of War

1600x1200 4 sample 1600x1200 4 sample 1600x1200 1 sample

25 frames (1 in 30) 25 frames (1 in 100) 25 frames (1 in 250)
Valve Corp. Monolith Productions Epic Games Inc

Table 2: Workload summary for the three tested games: the
frames are widely separated to catch different scene
characteristics as the games progress.

We captured the frames by intercepting the DirectX 9 command
stream being sent to a conventional graphics card while the game
was played at a normal speed, along with the contents of textures
and surfaces at the start of the frame. We tested them through a
functional model to ensure the algorithms were correct and that
the right images were produced. Next, we estimated the cost of
each section of code in the functional model, being aggressively
pessimistic, and built a rough profile of each frame. We wrote
assembly code for the highest-cost sections, ran it through cycle-
accurate simulators, fed the clock cycle results back into the
functional model, and re-ran the traces. This iterative cycle of
refinement was repeated until 90% of the clock cycles executed
during a frame had been run through the simulators, giving the
overall profiles a high degree of confidence. Texture unit
throughput, cache performance and memory bandwidth
limitations were all included in the various simulations.

In these studies we measure workload performance in terms of
Larrabee units. A Larrabee unit is defined to be one Larrabee
core running at 1 GHz. The clock rate is chosen solely for ease of
calculation, since real devices would ship with multiple cores and

* Other names & brands may be claimed as the property of others.

a variety of clock rates. Using Larrabee units allows us to
compare performance of Larrabee implementations with different
numbers of cores running at different clock rates. A single
Larrabee unit corresponds to a theoretical peak throughput of 32
GFLOPS, counting fused multiply-add as two operations.

5.2 Scalability Studies

The Larrabee software renderer is designed to allow efficient load
balancing over a large number of cores. Figure 9 shows the results
of testing load balancing for six configurations, each of which
scales the memory bandwidth and texture filtering speed relative
to the number of cores. This test uses the simulation methodology
described in Section 5.1 in combination with a time-based
performance model that tracks dependencies and scheduling. This
tool is used for multiple graphics products within Intel.

Figure 9: Relative Scaling as a Function of Core Count: This
shows configurations with 8 to 48 cores, with each game’s results
plotted relative to the performance of an 8-core system.

The results of the load balancing simulation show a falloff of 7%
to 10% from a linear speedup at 48 cores. For these tests,
PrimSets are subdivided if they contain more than 1000
primitives, as described in Section 4.2. Additional tests show that
F.E.A.R. falls off by only 2% if PrimSets are subdivided into
groups of 200 primitives, so code tuning should improve the
linearity.

Figure 10 shows the number of Larrabee units required to render
sample frames from the three games at 60 frames/second. These
results were simulated on a single core with the assumption that
performance scales linearly. For Half Life 2 episode 2, roughly 10
Larrabee Units are sufficient to ensure that all frames run at 60 fps
or faster. For F.E.A.R. and Gears of War, roughly 25 Larrabee
Units suffice.

Figure 10: Overall performance: shows the number of Larrabee
Units (cores running at 1 GHz) needed to achieve 60fps for of the
series of sample frames in each game.

The remaining issue that can limit scalability is software locks.
Simulating multiple frames of rendering at such a fine level of
detail is extremely costly. However, this software rendering
pipeline was explicitly designed to minimize the number of locks

 9

and other synchronization events. In general, a lock is obtained
and released for each of the following events:
• Twice when a bin set is added to the list of work to do, (once

for the front-end queue and once for the back-end queue)
• When a PrimSet is processed by a front-end thread or a tile is

processed by a back-end thread
• A few low-frequency locks such as resource creation and

deletion, buffer modification by the host CPU, and frame
flips or presents.

Modern games usually have significantly less than 10,000 locks
per frame. The Larrabee ring network provides relatively good
performance for low-contention locks of around 100 clocks per
lock per core. Together, these numbers are low enough that lock
scaling should be fairly linear with the number of cores, given
sufficient memory bandwidth.

5.3 Binning and Bandwidth Studies

We adopted a binning algorithm primarily to minimize software
locks, but it also benefits load balancing and memory bandwidth.

Our algorithm assigns back-end tiles to any core that is ready to
process one, without attempting to load balance. In theory this
could result in significant load imbalance, though cores are free to
start processing the next RTset or switch to front-end processing.
Bin imbalance is not a problem in the game workloads we have
studied. Figure 11 shows a trace of the back-end bin processing
time for 16 frames of Gears of War. Each trace records the
processing time for each bin on the screen for a frame, sorted
from the fastest to slowest bin, and normalized to 1.0 as the mean
bin processing time for that frame. Most bins fall in the range ½x
to 2x the mean processing time. Few exceed 3x the mean. The
other two games produce similar results.

Figure 11: Bin Balance for Gears of War: each curve shows the
time required to process one frame’s bins, in sorted order from
fastest to slowest, normalized by the mean bin processing time.

Memory bandwidth is important because the memory subsystem
can be one of the more costly and power hungry parts of a GPU,
from high end down to low cost designs. It is often a limited
resource that can cause bottlenecks if not carefully managed, in
part because computational speed scales faster. Our performance
studies measure computational speed, unrestricted by memory
bandwidth, but it is important to consider how our binning method
compares with standard immediate mode rendering algorithms.

Figure 12 compares the total memory bandwidth per frame that
we calculated for immediate mode and binned rendering for the
three games. The graph presents per-frame data in sorted order
from least to most bandwidth for the immediate mode frames. For
immediate mode we assume perfect hierarchical depth culling, a
128KB texture cache, and 1MB depth and color caches to
represent an ideal implementation. We further assume 2x color
and 4x depth compression for single-sampling and 4x color and
8x depth compression for 4-samples per pixel.

Figure 12: Bandwidth comparison of binning vs. immediate mode
per frame: binning requires bin reads & writes, but eliminates
many depth/color accesses that are not detected by hierarchical
depth tests. This results in less total bandwidth for binning.

Immediate mode uses more bandwidth for every tested frame:
2.4x to 7x more for F.E.A.R, , 1.5x to 2.6x more for Gears of
War, and 1.6x to 1.8x more for Half Life 2 episode 2. Notably,
binning achieves its greatest improvement when the immediate
mode bandwidth is highest, most likely because overdraw forces
multiple memory accesses in immediate mode. Even with depth
culling and frame buffer compression, the 1MB caches are not
large enough to catch most pixel overdraw. High resolutions tend
to increase the advantage of binning since they increase the
impact of pixel access bandwidth on performance.

5.4 Performance Breakdowns

Figure 13 shows the average time spent in each rendering stage
for the three games. Pixel shading and interpolant setup is always
a major portion of the rendering time, but the balance between
different stages can vary markedly in different games. This is
illustrated by F.E.A.R, which makes extensive use of stencil-
volume shadows. This results in a reduced pixel shading load, but
heavy rasterization and depth test loads. This shows the
importance of being able to reconfigure the computing resource
allocation among different stages, including rasterization, which is
3.2% in two of the games but 20.1% in F.E.A.R.

Figure 13: End-to-End Average Time Breakdowns: shows the
average time spent in each rendering stage for the three games

Figure 14 shows the time spent in each rendering stage for
F.E.A.R. For the other two games, the ratios stay very similar
across the tested frames, but F.E.A.R. shows significant variation.
In addition, considerable variation is observed over the course of a
single frame of rendering. Larrabee’s cores each process an entire
tile at once, then process the next and so on, leading to a
reasonably uniform load over the course of the entire frame. By
contrast, an immediate-mode renderer doesn’t have as many ways
to process pixels and primitives out of order. Further, the widely
varying loads can cause different units to bottleneck at different
times, unless they are over designed for the worst case.

 10

Figure 14: F.E.A.R. per-frame time breakdowns: this chart shows
the time spent in each rendering stage for 25 widely spaced
frames of F.E.A.R., which show considerable load variation.

Our conclusion is that application dependent resource balancing is
not sufficient. Instead, dynamic load balancing is likely to be very
important to achieving high average performance. Larrabee’s
entirely software scheduling algorithms provide a great deal of
flexibility for adjusting load balancing algorithms.

6. Advanced Applications

Larrabee supports performance implementations of many other
parallel applications. Section 6.1 describes how applications can
be developed using traditional multi-core high level languages
and tools that have been targeted to Larrabee’s many-core
architecture. Section 6.2 discusses Larrabee support for irregular
data structures, which are common in these applications [Pharr
2006]. Sections 6.3 and 6.4 describe results of simulating
rendering and other throughput applications on Larrabee.

Scalability and performance analysis in this section uses an in-
house simulator that models variable configurations of Larrabee
cores, threads, and memory hierarchy. This simulator is derived
from proven cycle accurate simulator technology used in the
design of CPU cores. Reported data is from hand coded and
software threaded kernels running on this simulator.

6.1 Larrabee Many-Core Programming Model

The Larrabee Native programming model resembles the well
known programming model for x86 multi-core architectures.
Central to Larrabee Native programming is a complete C/C++
compiler that statically compiles programs to the Larrabee x86
instruction set. Many C/C++ applications can be recompiled for
Larrabee and will execute correctly with no modification. Such
application portability alone can be an enormous productivity gain
for developers, especially for large legacy x86 code bases like
those found in high-performance computing and numeric-
intensive computing environments. Two current limitations are
that application system call porting is not supported and the
current driver architecture requires application recompilation.

We now discuss three important aspects of application
programming for Larrabee Native: software threading, SIMD
vectorization, and communication between the host and Larrabee.

Larrabee Native presents a flexible software threading capability.
The architecture level threading capability is exposed as the well
known POSIX Threads API (P-threads) [IEEE 2004]. We have
extended the API to also allow developers to specify thread
affinity with a particular HW thread or core.

Although P-threads is a powerful thread programming API, its
thread creation and thread switching costs may be too high for
some application threading. To amortize such costs, Larrabee
Native provides a task scheduling API based on a light weight
distributed task stealing scheduler [Blumofe et al. 1996]. A
production implementation of such a task programming API can
be found in Intel Thread Building Blocks [Reinders 2007].
Finally, Larrabee Native provides additional thread programming
support via OpenMP [Chandra et al. 2000] pragmas in Larrabee
Native’s C/C++ compiler.

All Larrabee SIMD vector units are fully programmable by
Larrabee Native application programmers. Larrabee Native’s
C/C++ compiler includes a Larrabee version of Intel’s auto-
vectorization compiler technology. Developers who need to
program Larrabee vector units directly may do so with C++ vector
intrinsics or inline Larrabee assembly code.

In a CPU based platform that includes a Larrabee based add-in
card, Larrabee will managed by an OS driver for that platform. In
such a platform, Larrabee Native binaries are tightly paired with a
host binary. Larrabee libraries provide fast message/data passing
protocol to manage all memory transfers and communications
between the binaries. The API supports both synchronous and
asynchronous data transfers. Additionally, execution of some
C/C++ standard library functions called from Larrabee application
binaries must be shared with the host operating system.
Specifically file I/O functions such as read/write/open/close, etc.,
are proxied from the Larrabee application binary back to a service
that executes such functions remotely on the host OS.

Besides high throughput application programming, we anticipate
that developers will also use Larrabee Native to implement higher
level programming models that may automate some aspects of
parallel programming or provide domain focus. Examples include
Ct style programming models [Ghuloum et al. 2007], high level
library APIs such as Intel® Math Kernel Library (Intel® MKL)
[Chuvelev et al. 2007], and physics APIs. Existing GPGPU
programming models can also be re-implemented via Larrabee
Native if so desired [Buck et al. 2004; Nickolls et al. 2008].

6.2 Irregular Data Structure Support

Larrabee provides excellent support for high throughput
applications that use irregular data structures such as complex
pointer trees, spatial data structures, or large sparse n-dimensional
matrices. They are supported by Larrabee’s programming model,
memory hierarchy, and VPU instructions.

For Larrabee applications, the multithreaded C++ code to
populate, transform, or traverse these data structures follows the
familiar programming methodology used on multi-core CPUs.
C++ pointers, inheritance, and classes may be used to implement
graph nodes. The individual nodes may have significantly
different operation execution costs or code branch behavior.
Because thread or task scheduling is under programmer control,
tasks that operate on these data structures can be dynamically re-
bundled to maintain SIMD efficiency. For example, a ray tracer’s
secondary reflection rays may be re-bundled differently than the
primary camera rays that generated them. Finally, data structure
techniques such as pre-allocated memory pools can be used to
asymmetrically provide only the memory required for a given data
structure node. For example, an order-independent transparency
implementation may dynamically associate memory based on the
number of layers per pixel, rather than pre-allocating a wasteful
overestimation of the number of layers per pixel as K-buffer
techniques often do [Callahan et al. 2005; Bavoil et al. 2007].

 11

Unlike stream based architectures [Pham et al. 2005; Khailany et
al. 2002], Larrabee allows but does not require direct software
management to load data into different levels of the memory
hierarchy. Software simply reads or writes data addresses, and
hardware transparently loads data across the hierarchy. Software
complexity is significantly reduced and data structures can
employ hard to predict unstructured memory accesses.

In recent Nvidia GPUs, local shared memory support is provided
through small (16KB on Nvidia GeForce 8) Per-Block Shared
Memories (PBSMs). Each PBSM is shared by 8 scalar processors
running up to 768 program instances (which Nvidia calls threads)
within a SIMD multi-processor [Nickolls et al. 2008]. For high
speed local sharing, programmers must explicitly load shared data
structures into a PBSM. These are not directly shareable by
instances in a different SIMD group. Similarly, order and
consistency protection requires software to issue a barrier sync
that is visible only within a SIMD group. To facilitate broader
sharing across SIMD groups, data must be explicitly written out to
higher latency GDDR memory. In contrast, all memory on
Larrabee is shared by all processor cores. For Larrabee
programmers, local data structure sharing is transparently
supported by the coherent cached memory hierarchy regardless of
the thread’s processor. Protection can be provided by
conventional software locks, semaphores, or critical sections.

An important aspect of handling irregular data structures is
efficient scatter-gather support, so that the SIMD VPU can work
on non-contiguous data. As described in Section 3, Larrabee
implements VPU scatter-gather instructions which load a VPU
vector register from sixteen non-contiguous memory locations.
The non-contiguous data elements can reside anywhere in the
large on-die cache, without suffering memory access penalty. This
significantly reduces programmer data management overhead. We
have observed an average of almost 3x performance gain in
Larrabee from hardware support of scatter-gather, compared to
software scatter-gather, for basic sparse matrix compute kernels,
such as sparse matrix-vector multiply. Algorithms requiring
irregular data structures also benefit from Larrabee instructions
such as count bits, bit scan, and packed loads and stores.

6.3 Extended Rendering Applications

The Larrabee graphics rendering pipeline is itself a Larrabee
Native application. Because it is software written with high level
languages and tools, it can easily be extended to add innovative
rendering capabilities. Here we briefly discuss three example
extensions of the graphics pipeline that we are studying. Future
implementations could evolve towards a fully programmable
graphics pipeline as outlined by Pharr [2006].

Render Target Read: Because Larrabee’s graphics rendering
pipeline employs a software frame buffer, we can enable
additional programmer access to those data structures. More
specifically, a trivial extension to the Larrabee rendering pipeline
would be to allow pixel shaders to directly read previously stored
values in render targets. Such a capability could serve a variety of
rendering applications, including programmer defined blending
operations, single-pass tone mapping, and related functions.

Order Independent Transparency: Presently 3D application
developers must either depth sort translucent models in their
application every frame prior to rendering or else implement
multi-pass algorithms such as depth peeling [Wexler et al. 2005]
to achieve correct inter-model transparency. Neither method
allows the kinds of post-rendering area effects that are possible

with opaque models. Figure 15 illustrates artifacts that occur if
such effects are applied after merging the translucent surfaces.

Figure 15: Transparency without and with pre-resolve effects: the
left image sorts the geometry and resolves before applying a fog
patch. The right image applies the fog patch to the translucent
surfaces and then resolves. The fog is visible through the wing in
the right image, but not in the left image. (Dragon models
designed and created by Jeffery A. Williams and Glen Lewis.)

Larrabee can support order independent transparency (OIT) with
no additional dedicated logic by storing multiple translucent
surfaces in a per-pixel spatial data structure. After rendering the
geometry, we can perform effects on the translucent surfaces,
since each surface retains its own depth and color, before sorting
and resolving the fragment samples stored per pixel.

Figure 16: Irregular Z-Buffer sample frame: this method uses an
irregular spatial data structure to produce alias-free shadowing.
Like the transparency example in figure 15, the data structure is
tightly integrated with the rendering pipeline. The renderer
constructs the shadowmap and then treats it as a special class of
frame buffer. (Skeleton model by TurboSquid.)

Irregular Shadow Mapping: Shadow mapping is a popular real-
time shadow approximation technique, but most implementations
are plagued by visually displeasing aliasing artifacts. A variety of
heuristics have been proposed in an attempt to reduce artifacts
[Akenine-Möller & Haines 2002; Bookout 2007]. Irregular
shadow mapping (ISM) offers an exact solution to this problem
and places no additional burden on the application programmer
[Aila & Laine 2004; Johnson et al. 2005].

To implement ISM, we dynamically construct a spatial data
structure in the light view using depth samples captured in the
camera view. We again customize Larrabee’s all software
graphics pipeline by adding a stage that performs light view ISM
rasterization against ISM’s spatial data structure. Because the
shadow map is computed at exact positions, the resulting shadow
map is alias free. This technique can be used to achieve real-time
hard shadowing effects, as shown in Figure 16, or as the
foundation for real-time soft shadowing effects.

 12

6.4 Other Throughput Computing Applications

Larrabee is also suitable for a wide variety of non-rasterization
based throughput applications. The following is a brief discussion
of the observed scalability and characteristics of several examples.

Figure 17: Game Physics Scalability Performance: this shows
that the Larrabee architecture is scalable to meet the growing
performance needs of interactive rigid body, fluid, and cloth
simulation algorithms and some commonly used collision kernels.

Game Physics: We have performed detailed scalability
simulation analysis of several game physics workloads on various
configurations of Larrabee cores. Figure 17 shows scalability of
some widely used game physics benchmarks and algorithms for
rigid body, fluid, and cloth. We achieve better than 50% resource
utilization using up to 64 Larrabee cores, and achieve near-linear
parallel speedup is some cases. The game rigid body simulation is
based on the popular “castle” destruction scene with 10K objects.
Scalability plots for Sweep-and-Prune [Cohen et al. 1995] and
GJK [Gilbert et al. 1988] distance algorithms are included since
they are some of the most commonly used collision detection
routines. Game fluid simulation is based on the smoothed particle
hydrodynamics (SPH) algorithm. We used a mass spring model
and Verlet integration for our game cloth simulation [Jacobsen
2001]. Bader et al. [2008] provide details on the implementation
and scalability analysis for these game physics workloads

Figure 18: Real time ray tracing on Larrabee: cropped from a
1Kx1K sample image that requires ~4M rays. The ray tracer was
implemented in C++ with some hand-coded assembly code for
key routines like ray intersection. Kd-trees are typically 25MB
and are built dynamically per frame. Primary and reflection rays
are tested in 16 ray bundles. Nearly all 234K triangles are visible
to primary or reflection rays. (Bar Carta Blanca model by
Guillermo M Leal Llaguno, courtesy of Cornell University.)

Real Time Ray Tracing: The highly irregular nature of spatial
data structures used in Whitted style real-time ray tracers benefit
from Larrabee’s general purpose memory hierarchy, relatively
short pipeline, and VPU instruction set. Here we used SIMD 16
packet ray tracing traversing through a kd-tree. For the complete
workload, we observe that a single Intel Core 2 Duo processor
requires 4.67x more clock cycles than a single Larrabee core,
which shows the effectiveness of the Larrabee instruction set and
wide SIMD. Results are even better for small kernels. For
example, the intersection test of 16 rays to 1 triangle takes 47
cycles on a single Larrabee core. The same test takes 257 Core 2
Duo processor cycles. Figure 18 shows a 1024x1024 frame of the
bar scene with 234K triangles, 1 light source, 1 reflection level,
and typically 4M rays per frame. Figure 19 compares performance
for Larrabee with an instance of the ray tracer running on an Intel
Xeon® processor 2.6GHz with 8 cores total. Shevtsov et al. [2007]
and Reshetov et al. [2005] describe details of this implementation.

Figure 19: Real time ray tracing scalability: this graph compares
different numbers of Larrabee cores with a nominal 1GHz clock
speed to an Intel Xeon processor 2.6GHz with 8 cores total. The
latter uses 4.6x more clock cycles than are required by 8
Larrabee cores due to Larrabee’s wide VPU and vector
instruction set. Figure 18 describes the workload for these tests.

Image and Video Processing: The Larrabee architecture is
suitable for many traditional 2D image and video analysis
applications. Native implementations of traditional 2D filtering
functions (both linear and non-linear) as well as more advanced
functions, like video cast indexing, sports video analysis, human
body tracking, and foreground estimation offer significant
scalability as shown in Figure 20. Biomedical imaging represents
an important subset of this processing type. Medical imaging
needs such as back-projection, volume rendering, automated
segmentation, and robust deformable registration, are related yet
different from those of consumer imaging and graphics. Figure 20
also includes scalability analysis of iso-surface extraction on a 3D
volume dataset using the marching cubes algorithm.

Physical Simulation: Physical simulation applications use
numerical simulation to model complex natural phenomena in
movies and games, such as fire effects, waterfalls in virtual
worlds, and collisions between rigid or deformable objects. Large
data-sets, unstructured control-flow and data accesses often make
these applications more challenging to scale than traditional
streaming applications. Looking beyond interactive game physics,
we also analyzed applicability of Larrabee architecture for the
broader class of entertainment physics including offline movie-
industry effects and distributed real-time virtual-world simulation.
Specific simulation results based on Stanford’s PhysBAM are
shown in Figure 20 and illustrate very good scalability for
production fluid, production cloth, and production face.
Implementation and scalability analysis details are described by
Hughes et al. [2007].

 13

Figure 20: Scalability of select non-graphics applications and
kernels: Larrabee’s general-purpose many-core architecture
delivers performance scalability for various non-graphics visual
and throughput computing workloads and common HPC kernels.

Larrabee is also highly scalable for non-visual throughput
applications, as shown in Figure 20. Larrabee’s highly-threaded
x86 architecture benefits traditional enterprise throughput
computing applications, such as text indexing. Its threading,
together with its wide-SIMD IEEE-compliant double-precision
support, makes it well positioned for financial analytics, such as
portfolio management. Internal research projects have proven
Larrabee architecture scalability for many traditional high
performance computing (HPC) workloads and well-known HPC
kernels such as 3D-FFT and BLAS3 (with dataset larger than on-
die cache). More details are described by Chen et al. [2008].

7. Conclusions

We have described the Larrabee architecture, which uses multiple
x86-based CPU cores, together with wide vector processor units
and some fixed function logic, to achieve high performance and
flexibility for interactive graphics and other applications. We have
also described a software renderer for the Larrabee architecture
and a variety of other throughput applications, with performance
and scalability analysis for each. Larrabee is more programmable
than current GPUs, with fewer fixed function units, so we believe
that Larrabee is an appropriate platform for the convergence of
GPU and CPU applications.

We believe that this architecture opens a rich set of opportunities
for both graphics rendering and throughput computing. We have
observed a great deal of convergence towards a common core of
computing primitives across the workloads that we analyzed on
Larrabee. This underlying workload convergence [Chen et al.
2008] implies potential for a common programming model, a
common run-time, and a native Larrabee implementation of
common compute kernels, functions, and data structures.

Acknowledgements: The Larrabee project was started by Doug
Carmean and Eric Sprangle, with assistance from many others,
both inside and outside Intel. The authors wish to thank many
people whose hard work made this project possible, as well as
many who helped with this paper. Workload implementation and
data analysis were provided by Jeff Boody, Dave Bookout, Jatin
Chhugani, Chris Gorman, Greg Johnson, Danny Lynch, Oliver
Macquelin, Teresa Morrison, Misha Smelyanskiy, Alexei
Soupikov, and others from Intel’s Application Research Lab,
Software Systems Group, and Visual Computing Group.

References

AKENINE-MÖLLER, T., HAINES, E. 2002. Real-Time Rendering.
2nd Edition. A. K. Peters.

AILA, T., LAINE, S. 2004. Alias-Free Shadow Maps. In
Proceedings of Eurographics Symposium on Rendering 2004,
Eurographics Association. 161-166.

ALPERT, D., AVNON, D. 1993. Architecture of the Pentium
Microprocessor. IEEE Micro, v.13, n.3, 11-21. May 1993.

AMD. 2007. Product description web site:
ati.amd.com/products/Radeonhd3800/specs.html.

BADER, A., CHHUGANI, J., DUBEY, P., JUNKINS, S., MORRISON T.,
RAGOZIN, D., SMELYANSKIY. 2008. Game Physics Performance
On Larrabee Architecture. Intel whitepaper, available in
August, 2008. Web site: techresearch.intel.com.

BAVOIL, L., CALLAHAN, S., LEFOHN, A., COMBA, J. SILVA, C. 2007.
Multi-fragment effects on the GPU using the k-buffer. In
Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games (Seattle, Washington, April 30 - May 02,
2007). I3D 2007. ACM, New York, NY, 97-104.

BLUMOFE, R., JOERG, C., KUSZMAUL, B., LEISERSON, C., RANDALL,
K., ZHOU, Y. Aug. 25, 1996. Cilk: An Efficient Multithreaded
Runtime System. Journal of Parallel and Distributed
Computing, v. 37, i. 1, 55–69.

BLYTHE, D. 2006. The Direct3D 10 System. ACM Transactions
on Graphics, 25, 3, 724-734.

BOOKOUT, D. July, 2007. Shadow Map Aliasing. Web site:
www.gamedev.net/reference/articles/article2376.asp.

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K.,
HOUSTON, M., AND HANRAHAN, P. 2004. Brook for GPUs:
stream computing on graphics hardware. ACM Transactions on
Graphics, v. 23, n. 3, 777-786.

CALLAHAN, S., IKITS, M., COMBA, J., SILVA, C. 2005. Hardware-
assisted visibility sorting for unstructured volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
11, 3, 285–295

CHANDRA, R., MENON, R., DAGUM, L., KOHR, D, MAYDAN, D.,
MCDONALD, J. 2000. Parallel Programming in OpenMP.
Morgan Kaufman.

CHEN, M., STOLL, G., IGEHY, H., PROUDFOOT, K., HANRAHAN P.
1998. Simple models of the impact of overlap in bucket
rendering. In Proceedings of the ACM SIGGRAPH /
EUROGRAPHICS Workshop on Graphics Hardware (Lisbon,
Portugal, August 31 - September 01, 1998). S. N. Spencer, Ed.
HWWS '98. ACM, New York, NY, 105-112.

CHEN, Y., CHHUGANI, J., DUBEY, P., HUGHES, C., KIM, D., KUMAR,
S., LEE, V., NGUYEN A., SMELYANSKIY, M. 2008. Convergence
of Recognition, Mining, and Synthesis Workloads and its
Implications. In Procedings of IEEE, v. 96, n. 5, 790-807.

CHUVELEV, M., GREER, B., HENRY, G., KUZNETSOV, S., BURYLOV,
I., SABANIN, B. Nov. 2007. Intel Performance Libraries: Multi-
core ready Software for Numeric Intensive Computation. Intel
Technology Journal, v. 11, i. 4, 1-10.

COHEN, J., LIN., M., MANOCHA, D., PONAMGI., D. 1995.
I-COLLIDE: An Interactive and Exact Collision Detection
System for Large-Scale Environments. In Proceedings of 1995
Symposium on Interactive 3D Graphics. SI3D '95. ACM, New
York, NY, 189-196.

 14

ELDRIDGE, M. 2001. Designing Graphics Architectures Around
Scalability and Communication. PhD thesis, Stanford.

FOLEY, J., VAN DAM, A., FEINER, S., HUGHES, J. 1996. Computer
Graphics: Principles and Practice. Addison Wesley.

FUCHS, H., POULTON, J., EYLES, J., GREER, T., GOLDFEATHER, J.,
ELLSWORTH, D., MOLNAR, S., TURK, G., TEBBS, B., ISRAEL, L.
1989. Pixel-planes 5: a heterogeneous multiprocessor graphics
system using processor-enhanced memories. In Computer
Graphics (Proceedings of ACM SIGGRAPH 89), ACM, 79-88.

GHULOUM, A., SMITH, T., WU, G., ZHOU, X., FANG, J., GUO, P., SO,
B., RAJAGOPALAN, M., CHEN, Y., CHEN, B. November 2007.
Future-Proof Data Parallel Algorithms and Software on Intel
Multi-Core Architectures. Intel Technology Journal, v. 11, i.
04, 333-348.

GILBERT, E., JOHNSON, D., KEERTHI, S. 1988. A fast procedure for
computing the distance between complex objects in three-
dimensional space. IEEE Journal of Robotics and Automation,
4, 2, 193–203.

GPGPU. 2007. GPGPU web site: www.gpgpu.org.

GREENE, N. 1996. Hierarchical polygon tiling with coverage
masks, In Proceedings of ACM SIGGRAPH 93, ACM
Press/ACM SIGGRAPH, New York, NY, Computer Graphics
Proceedings, Annual Conference Series, ACM, 65-64.

GROCHOWSKI, E., RONEN, R., SHEN, J., WANG, H. 2004. Best of
Both Latency and Throughput. 2004 IEEE International
Conference on Computer Design (ICCD ‘04), 236-243.

GWENNAP, L. 1995. Intel’s P6 Uses Decoupled Superscalar
Design. Microprocessor Report. v. 9, n. 2, Feb. 16, 1995.

 HSIEH, E., PENTKOVSKI, V., PIAZZA, T. 2001. ZR: A 3D API
Transparent Technology For Chunk Rendering. In Proceedings
of the 34th Annual ACM/IEEE International Symposium on
Microarchitecture (Austin, Texas, December 01 - 05, 2001).
International Symposium on Microarchitecture. IEEE
Computer Society, Washington, DC, 284-291.

HUGHES, C. J., GRZESZCZUK, R., SIFAKIS, E., KIM, D., KUMAR, S.,
SELLE, A. P., CHHUGANI, J., HOLLIMAN, M., AND CHEN, Y. 2007.
Physical simulation for animation and visual effects:
parallelization and characterization for chip multiprocessors. In
Proceedings of the 34th Annual international Symposium on
Computer Architecture (San Diego, California, USA, June 09 -
13, 2007). ISCA '07. ACM, New York, NY, 220-231.

IEEE Std. 1003.1, 2004 Edition. Standard for Information
Technology – Portable Operating System Interface (POSIX)
System Interfaces. The Open Group Technical Standard Base
Specifications. Issue 6.

JACOBSEN, T. 2001. Advanced Character Physics. Proc. Game
Developers Conference 2001, 1-10.

JOHNSON, G.S., LEE, J., BURNS, C.A., MARK, W.R. 2005. The
irregular Z-buffer: Hardware acceleration for irregular data
structures. ACM Transactions on Graphics. 24, 4, 1462-1482.

KELLEY, M., GOULD, K., PEASE, B., WINNER, S., YEN, A. 1994.
Hardware accelerated rendering of CSG and transparency. In
Proceedings of SIGGRAPH 1994, ACM Press/ACM
SIGGRAPH, New York, NY, Computer Graphics Proceedings,
Annual Conference Series, ACM, 177-184.

KELLEY, M., WINNER, S., GOULD, K. 1992. A Scalable Hardware
Render Accelerator using a Modified Scanline Algorithm. In
Computer Graphics (Proceedings of ACM SIGGRAPH 1992),
SIGGRAPH '92. ACM, New York, NY, 241-248.

KESSENICH, J., BALDWIN, D., ROST, R. The OpenGL Shading
Language. Version 1.1. Sept. 7, 2006. Web site:
www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf

KHAILANY, B., DALLY, W., RIXNER, S., KAPASI, U., MATTSON, P.,
NAMKOONG, J., OWENS, J., TOWLES, B., CHANG, A. 2001.
Imagine: Media Processing with Streams. IEEE Micro, 21, 2,
35-46.

KONGETIRA, P., AINGARAN, K., OLUKOTUN, K. Mar/Apr 2005.
Niagara: A 32-way multithreaded SPARC Processor. IEEE
Micro. v. 25, i. 2. 21-29.

LAKE, A. 2005. Intel Graphics Media Accelerator Series 900
Developer’s Guide. Version 2.0. Web site:
download.intel.com/ids/gma/Intel_915G_SDG_Feb05.pdf.

LLOYD, B., GOVINDARAJU, N., MOLNAR, S., MANOCHA, D. 2007.
Practical logarithmic rasterization for low-error shadow maps.
In Proceedings of the 22nd ACM SIGGRAPH/
EUROGRAPHICS Symposium on Graphics Hardware, 17-24.

MARK, W., GLANVILLE, S., AKELEY, K., KILGARD, M. 2003. Cg: A
System for Programming Graphics Hardware in a C-like
Language, ACM Transactions on Graphics, v. 22, n. 3, 896-
907.

MICROSOFT. 2007. Microsoft Reference for HLSL. Web site:
msdn2.microsoft.com/en-us/library/bb509638.aspx.

MOLNAR, S., COX, M., ELLSWORTH, D., AND FUCHS, H. 1994. A
Sorting Classification of Parallel Rendering. IEEE Computer
Graphics and Applications, v.14, n. 4, July 1994, 23-32.

MOLNAR, S., EYLES, J., POULTON, J. 1992. Pixelflow: High Speed
Rendering Using Image Composition. Computer Graphics
(Proceedings of SIGGRAPH 92), v. 26, n. 2, 231-240.

MOREIN, S. 2000. ATI Radeon HyperZ Technology. Presented at
Graphics Hardware 2000. Web site:
www.graphicshardware.org/previous/www_2000/presentations/
ATIHot3D.pdf.

NICKOLLS, J., BUCK, I., GARLAND, M. 2008. Scalable Parallel
Programming with CUDA. ACM Queue, 6, 2, 40-53.

NVIDIA . 2008. Product description web site:
www.nvidia.com/object/geforce_family.html.

OWENS, J., LUEBKE, D., GOVINDARAJU, N., HARRIS, M., KRUGER,
J., LEFOHN, A., PURCELL, T. 2007. A Survey of General Purpose
Computation on Graphics Hardware. Computer Graphics
Forum. v.26, n. 1, 80-113.

PHAM D., ASANO, S., BOLLIGER,M., DAY, M., HOFSTEE, H.,
JOHNS.,C., KAHLE, J., KAMEYAMA, A., KEATY, J., MASUBUCHI,
Y., RILEY, M., SHIPPY, D., STASIASK, D., SUZUODI, M., WANG,
M., WARNOCK, J., WEITZEL, S., WENDEL, D., YAMAZAKI, T.,
YAZAWA, K. 2005. The Design and Implementation of a First
Generation CELL Processor. IEEE International Solid-State
Circuits Conference. 184-186.

PHARR, M. 2006. Interactive Rendering in the Post-GPU Era.
Presented at Graphics Hardware 2006. Web site:
www.pharr.org/matt/.

PINEDA, J. 1988. A Parallel Algorithm for Polygon Rasterization.
In Computer Graphics (Proceedings of ACM SIGGRAPH 88),
22, 4, 17-20.

POWERVR. 2008. Web site:
www.imgtec.com/powervr/products/Graphics/index.asp.

POLLACK, F. 1999. New Microarchitecture Challenges for the
Coming Generations of CMOS Process Technologies. Micro32.

 15

REINDERS, J., 2007. Intel Threading Building Blocks: Outfitting
C++ for Multi-core Processor Parallelism. O’Reily Media,
Inc.

RESHETOV A., SOUPIKOV, A., HURLEY, J. 2005. Multi-level Ray
Tracing Algorithm. ACM Transactions on Graphics, 24, 3,
1176-1185.

ROST, R. 2004. The OpenGL Shading Language. Addison Wesley.

SHEVTSOV, M., SOUPIKOV, A., KAPUSTIN, A. 2007. Ray-Triangle
Intersection Algorithm for Modern CPU Architectures. In
Proceedings of GraphiCon 2007, 33-39.

STEVENS, A. 2006. ARM Mali 3D Graphics System Solution. Web
site: www.arm.com/miscPDFs/16514.pdf.

STOLL, G., ELDRIDGE, M., PATTERSON, D., WEBB, A., BERMAN, S.,
LEVY, R., CAYWOOD, C., TAVEIRA, M., HUNT, S., HANRAHAN, P.
2001. Lightning 2: A High Performance Display Subsystem for
PC Clusters. In Computer Graphics (Proceedings of ACM
SIGGRAPH 2001), ACM, 141-148.

TORBORG, J., KAJIYA, J. 1996. Talisman Commodity Realtime 3D
Graphics for the PC. In Proceedings of ACM SIGGRAPH 1996,
ACM Press/ACM SIGGRAPH, New York. Computer Graphics
Proceedings, Annual Conference Series, ACM, 353-363.

WEXLER, D., GRITZ, L., ENDERTON, E., RICE, J. 2005. GPU-
accelerated high-quality hidden surface removal. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware (Los Angeles, California,
July 30 - 31, 2005). HWWS '05, ACM, New York, NY, 7-14.

