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This paper presents a many-core visual computing architecture 
code named Larrabee, a new software rendering pipeline, a many-
core programming model, and performance analysis for several 
applications. Larrabee uses multiple in-order x86 CPU cores that 
are augmented by a wide vector processor unit, as well as some 
fixed function logic blocks. This provides dramatically higher 
performance per watt and per unit of area than out-of-order CPUs 
on highly parallel workloads. It also greatly increases the 
flexibility and programmability of the architecture as compared to 
standard GPUs. A coherent on-die 2nd level cache allows efficient 
inter-processor communication and high-bandwidth local data 
access by CPU cores. Task scheduling is performed entirely with 
software in Larrabee, rather than in fixed function logic. The 
customizable software graphics rendering pipeline for this 
architecture uses binning in order to reduce required memory 
bandwidth, minimize lock contention, and increase opportunities 
for parallelism relative to standard GPUs. The Larrabee native 
programming model supports a variety of highly parallel 
applications that use irregular data structures. Performance 
analysis on those applications demonstrates Larrabee’s potential 
for a broad range of parallel computation. 

CCS: I.3.1 [Computer Graphics]: Hardware Architecture--
Graphics Processors, Parallel Processing; I.3.3 [Computer 
Graphics]: Picture/Image Generation--Display Algorithms; I.3.7 
[Computer Graphics]: Three-Dimensional Graphics and Realism--
Color, shading, shadowing, and texture 
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1. Introduction 

Modern GPUs are increasingly programmable in order to support 
advanced graphics algorithms and other parallel applications. 
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However, general purpose programmability of the graphics 
pipeline is restricted by limitations on the memory model and by 
fixed function blocks that schedule the parallel threads of 
execution. For example, pixel processing order is controlled by 
the rasterization logic and other dedicated scheduling logic. 

This paper describes a highly parallel architecture that makes the 
rendering pipeline completely programmable. The Larrabee 
architecture is based on in-order CPU cores that run an extended 
version of the x86 instruction set, including wide vector 
processing operations and some specialized scalar instructions. 
Figure 1 shows a schematic illustration of the architecture. The 
cores each access their own subset of a coherent L2 cache to 
provide high-bandwidth L2 cache access from each core and to 
simplify data sharing and synchronization. 

Larrabee is more flexible than current GPUs. Its CPU-like x86-
based architecture supports subroutines and page faulting. Some 
operations that GPUs traditionally perform with fixed function 
logic, such as rasterization and post-shader blending, are 
performed entirely in software in Larrabee. Like GPUs, Larrabee 
uses fixed function logic for texture filtering, but the cores assist 
the fixed function logic, e.g. by supporting page faults.  

 

Figure 1: Schematic of the Larrabee many-core architecture: The 
number of CPU cores and the number and type of co-processors 
and I/O blocks are implementation-dependent, as are the 
positions of the CPU and non-CPU blocks on the chip. 

This paper also describes a software rendering pipeline that runs 
efficiently on this architecture. It uses binning to increase 
parallelism and reduce memory bandwidth, while avoiding the 
problems of some previous tile-based architectures. Implementing 
the renderer in software allows existing features to be optimized 
based on workload and allows new features to be added. For 
example, programmable blending and order-independent 
transparency fit easily into the Larrabee software pipeline.  

Finally, this paper describes a programming model that supports 
more general parallel applications, such as image processing, 
physical simulation, and medical & financial analytics. Larrabee’s 
support for irregular data structures and its scatter-gather 
capability make it suitable for these throughput applications as 
demonstrated by our scalability and performance analysis. 
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2. Previous Work 

Recent years have seen the evolution of commodity graphics 
hardware from fixed function units toward an increasingly 
programmable graphics pipeline, offering greater flexibility and 
performance to graphics programmers [Blythe 2006]. Real-time 
graphics APIs evolved to expose this functionality with high level 
shading languages such as Cg [Mark et al. 2003], HLSL 
[Microsoft 2007] and GLSL [Kessenich et al. 2006]. Additionally, 
a number of arithmetically intensive workloads perform very well 
on GPU-like architectures [GPGPU 2007; Owens et al. 2007]. 

2.1 PC Graphics Processor Architectures 

Multi-processing graphics hardware has been around for decades. 
The key ideas behind these architectures are described by Fuchs et 
al. [1989], Molnar et al. [1992], Foley et al. [1996], and Stoll et al. 
[2001]. The motivation has always been to leverage the data 
parallel nature of rendering to gain maximum performance and 
visual fidelity. Early architectures were complex systems with 
multiple boards and many specialized chips. The modern graphics 
architecture is a single chip that fits into the form factor of a PC or 
other graphics platform [Kelley et al. 1992; Kelley et al. 1994; 
Torborg & Kajiya 1996]. Recent architectures implement the 
Microsoft DirectX* 10 API, including the Nvidia GeForce* 8 
[Nvidia 2008] and the ATI Radeon* HD 3800 series [AMD 2008]. 

Figure 2 shows a simplified version of the DirectX 10 pipeline 
[Blythe 2006]. The programmable OpenGL pipeline is following 
a similar architectural direction [Rost 2004]. In early 
implementations, each stage required separate programmable 
units, but the most recent architectures use a unified shader 
model. Rasterization and texture filter operations are still largely 
fixed function in modern GPUs, so changes to the supported 
features require a new chip design, as well as a new API version.  

 

Figure 2: Simplified DirectX10 Pipeline: Yellow components are 
programmable by the user, green are fixed function. Memory 
access, stream output, and texture filtering stages are omitted.  

Recent research brings the computational capabilities of 
commodity graphics hardware to bear on a variety of problems 
including collision detection, financial modeling, and signal 
processing [Owens et al. 2007]. There are several aspects of GPU 
architectures that lend themselves to these workloads. 
Performance increases are most dramatic when the compute to 
bandwidth ratio is high. That occurs when the application 
primarily uses regular data structures and requires many 
arithmetic operations for each data item being processed. 

2.2 Taxonomy of Rendering Methods 

Molnar et al. [1994] classified graphics architectures by the 
primary stage in the graphics pipeline where sorting for 
parallelism occurs. Eldridge [2001] expanded this taxonomy and 
performed a detailed comparison of parallel rendering systems. 
Both use sort-middle to refer to sorting after geometry processing 
but before rasterization. Molnar et al. use sort-last sparse and 

Eldridge uses sort-last fragment to refer to sorting before 
fragment processing, that is, before depth test and alpha blending. 
Since their work was done before the introduction of pixel 
shaders, no clear distinction is provided for sorting after 
computing coverage but before executing the pixel shader. In this 
paper we treat this alternative as a variant of sort-middle. 

Current GPUs often use Eldridge’s sort-last fragment. This allows 
pixel shader results to be sorted into a small number of screen-
aligned regions just before depth testing and blending. Often these 
screen aligned regions are associated with individual memory 
controllers, to allow more efficient memory accesses. Sort-last 
fragment allows immediate mode rendering with relatively short 
FIFO buffers for sorting the data. However, if a pixel is accessed 
multiple times at widely separated intervals, it typically must be 
read from and written to memory multiple times. 

Sort middle algorithms have been called binning, tiling, chunking, 
bucket, and zone rendering [Hsieh et al. 2001; Chen et al. 1998]. 
This method processes vertices to produce screen coordinates for 
primitives, which are sorted into bins based on their location on 
the screen. Each bin is associated with a tile region on the screen, 
which can be sized to fit into on-chip cache so that only one 
access to memory is needed per pixel regardless of the depth 
complexity. One problem is that primitives that overlap multiple 
tiles must be stored in multiple bins, which increases the memory 
bandwidth needed for them. Molnar et al. [1994], Chen et al. 
[1998], and Eldridge [2001] concluded that the impact of overlap 
is limited, especially when primitives are small compared to 
region size, which occurs as the triangle count of a scene 
increases. The PowerVR* MBX and SGX series [PowerVR 2008], 
the Intel® Graphics Media Accelerator 900 Series [Lake 2005], 
the ARM Mali* [Stevens 2006], and Talisman [Torborg & Kajiya 
1996] have been generally classified as sort middle architectures. 

2.3 General Purpose CPU Architectures 

In 1995, Intel introduced the Pentium® Pro processor, which used 
out-of-order 3-wide instruction execution in response to the 
demand for increasing single-stream performance [Gwennap 
1995]. Out-of-order architectures identify independent instruction 
streams that can be executed in parallel. The logic to identify 
these instructions consumes die area as well as power. Later CPU 
generations used even more elaborate techniques to increase 
single-stream performance at ever increasing penalties in area and 
power relative to performance. It has been observed that, within 
the same process technology, a new microprocessor design with 
1.5x to 1.7x the performance consumes 2x to 3x the die area 
[Pollack 1999] and 2x to 2.5x the power [Grochowski et al. 2004].  

For highly parallel algorithms, more performance can be gained 
by packing multiple cores onto the die instead of increasing single 
stream performance. The IBM Cell* was designed with these high 
throughput workloads in mind [Pham et al. 2005]. Cell includes a 
single Power* Processor core, its L2 cache, and a set of high 
throughput cores. These cores each contain a local memory store 
that is incoherent with the rest of the memory system. The local 
store has a guaranteed latency for data delivery, which allows a 
simpler execution pipeline than a system with a coherent cache 
hierarchy. It requires the user to manually manage the data 
contents through software-programmed DMA operations. 

                                                                 
Intel, Intel Core, Pentium and Xeon are trademarks of Intel 
Corporation in the U.S. and other countries. 
* Other names & brands may be claimed as the property of others. 
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CPUs can also use multi-threading to gain parallelism. Niagara is 
a multi-core general purpose microprocessor [Kongetira et al. 
2005] featuring eight in-order cores, each capable of executing 
four simultaneous threads, and a shared cache. But given its focus 
on commercial server workloads, Niagara lacks architectural 
elements critical for visual computing, such as SIMD floating-
point execution, scatter-gather, or fixed function texture support. 

3. Larrabee Hardware Architecture 

Figure 1 above shows a block diagram of the basic Larrabee 
architecture. Larrabee is designed around multiple instantiations 
of an in-order CPU core that is augmented with a wide vector 
processor (VPU). Cores communicate through a high-bandwidth 
interconnect network with some fixed function logic, memory I/O 
interfaces, and other necessary I/O logic, depending on the exact 
application. For example, an implementation of Larrabee as a 
stand-alone GPU would typically include a PCIe bus. 

The data in Table 1 motivates Larrabee’s use of in-order cores 
with wide VPUs. The middle column shows the peak performance 
of a modern out-of-order CPU, the Intel® Core™2 Duo processor. 
The right-hand column shows a test CPU design based on the 
Pentium® processor, which was introduced in 1992 and used dual-
issue in-order instruction execution [Alpert 1993]. The Pentium 
processor core was modified to support four threads and a 16-
wide VPU. The final two rows specify the number of non-vector 
instructions that can be issued per clock by one CPU and the total 
number of vector operations that can be issued per clock. The two 
configurations use roughly the same area and power.  

# CPU cores: 2 out-of-order 10 in-order 

Instruction issue: 4 per clock 2 per clock 

VPU per core: 4-wide SSE 16-wide 

L2 cache size: 4 MB 4 MB 

Single-stream: 4 per clock  2 per clock 

Vector throughput: 8 per clock 160 per clock 

Table 1: Out-of-order vs. in-order CPU comparison: designing 
the processor for increased throughput can result in ½ the peak 
single-stream performance, but 20x the peak vector throughput 
with roughly the same area and power. This difference is 40x in 
FLOPS, since the wide VPU supports fused multiply-add but SSE 
doesn’t. These in-order cores are not Larrabee, but are similar. 

The test design in Table 1 is not identical to Larrabee. To provide 
a more direct comparison, the in-order core test design uses the 
same process and clock rate as the out-of-order cores and includes 
no fixed function graphics logic. This comparison motivates 
design decisions for Larrabee since it shows that a wide VPU with 
a simple in-order core allows CPUs to reach a dramatically higher 
computational density for parallel applications. 

Sections 3.1 to 3.5 below describe the key features of the Larrabee 
architecture: the CPU core, the scalar unit and cache control 
instructions, the vector processor, the interprocessor ring network, 
and the choices for what is implemented in fixed function logic. 

3.1 Larrabee Core and Caches 

Figure 3 shows a schematic of a single Larrabee CPU core, plus 
its connection to the on-die interconnect network and the core’s 
local subset of the L2 cache. The instruction decoder supports the 
standard Pentium processor x86 instruction set, with the addition 
of new instructions that are described in Sections 3.2 and 3.3. To 

simplify the design the scalar and vector units use separate 
register sets. Data transferred between them is written to memory 
and then read back in from the L1 cache. 

Larrabee’s L1 cache allows low-latency accesses to cache 
memory into the scalar and vector units. Together with Larrabee’s 
load-op VPU instructions, this means that the L1 cache can be 
treated somewhat like an extended register file. This significantly 
improves the performance of many algorithms, especially with the 
cache control instructions described Section 3.2. The single-
threaded Pentium processor provided an 8KB Icache and 8KB 
Dcache. We specify a 32KB Icache and 32KB Dcache to support 
four execution threads per CPU core. 

 

Figure 3: Larrabee CPU core and associated system blocks: the 
CPU is derived from the Pentium processor in-order design, plus 
64-bit instructions, multi-threading and a wide VPU. Each core 
has fast access to its 256KB local subset of a coherent 2nd level 
cache. L1 cache sizes are 32KB for Icache and 32KB for Dcache. 
Ring network accesses pass through the L2 cache for coherency. 

Larrabee’s global 2nd level (L2) cache is divided into separate 
local subsets, one per CPU core. Each CPU has a fast direct 
access path to its own local subset of the L2 cache. Data read by a 
CPU core is stored in its L2 cache subset and can be accessed 
quickly, in parallel with other CPUs accessing their own local L2 
cache subsets. Data written by a CPU core is stored in its own L2 
cache subset and is flushed from other subsets, if necessary. The 
ring network ensures coherency for shared data, as described in 
Section 3.4. We specify 256KB for each L2 cache subset. This 
supports large tile sizes for software rendering, as described in 
Section 4.1. 

3.2 Scalar Unit and Cache Control Instructions 

Larrabee’s scalar pipeline is derived from the dual-issue Pentium 
processor, which uses a short, inexpensive execution pipeline. 
Larrabee provides modern additions such as multi-threading, 64-
bit extensions, and sophisticated prefetching. The cores support 
the full Pentium processor x86 instruction set so they can run 
existing code including operating system kernels and applications. 
Larrabee adds new scalar instructions such as bit count and bit 
scan, which finds the next set bit within a register.  

Larrabee also adds new instructions and instruction modes for 
explicit cache control. Examples include instructions to prefetch 
data into the L1 or L2 caches and instruction modes to reduce the 
priority of a cache line. For example, streaming data typically 
sweeps existing data out of a cache. Larrabee is able to mark each 
streaming cache line for early eviction after it is accessed. These 
cache control instructions also allow the L2 cache to be used 
similarly to a scratchpad memory, while remaining fully coherent.  

Within a single core, synchronizing access to shared memory by 
multiple threads is inexpensive. The threads on a single core share 
the same local L1 cache, so a single atomic semaphore read 
within the L1 cache is sufficient. Synchronizing access between 
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multiple cores is more expensive, since it requires inter-processor 
locks. This is a well known problem in multi-processor design.  

Multi-issue CPU cores often lose performance due to the 
difficulty of finding instructions that can execute together. 
Larrabee’s dual-issue decoder has a high multi-issue rate in code 
that we’ve tested. The pairing rules for the primary and secondary 
instruction pipes are deterministic, which allows compilers to 
perform offline analysis with a wider scope than a runtime out-of-
order instruction picker can. All instructions can issue on the 
primary pipeline, which minimizes the combinatorial problems 
for a compiler. The secondary pipeline can execute a large subset 
of the scalar x86 instruction set, including loads, stores, simple 
ALU operations, branches, cache manipulation instructions, and 
vector stores. Because the secondary pipeline is relatively small 
and cheap, the area and power wasted by failing to dual-issue on 
every cycle is small. In our analysis, it is relatively easy for 
compilers to schedule dual-issue instructions. 

Finally, Larrabee supports four threads of execution, with separate 
register sets per thread. Switching threads covers cases where the 
compiler is unable to schedule code without stalls. Switching 
threads also covers part of the latency to load from the L2 cache 
to the L1 cache, for those cases when data cannot be prefetched 
into the L1 cache in advance. Cache use is more effective when 
multiple threads running on the same core use the same dataset, 
e.g. rendering triangles to the same tile.  

3.3 Vector Processing Unit 

Larrabee gains its computational density from the 16-wide vector 
processing unit (VPU), which executes integer, single-precision 
float, and double-precision float instructions. The VPU and its 
registers are approximately one third the area of the CPU core but 
provide most of the integer and floating point performance. Figure 
4 shows a block diagram of the VPU with the L1 cache.  

 

Figure 4: Vector unit block diagram: the VPU supports 3-
operand instructions. It supports swizzling the register inputs and 
numeric conversion and replication on the memory input. Mask 
registers allow predicating the resulting vector writes. 

We chose a 16-wide VPU as a tradeoff between increased 
computational density and the difficulty of obtaining high 
utilization for wider VPUs. Early analysis suggested 88% 
utilization for typical pixel shader workloads if 16 lanes process 
16 separate pixels one component at a time, that is, with separate 
instructions to process red, green, etc., for 16 pixels at a time, 
instead of processing multiple color channels at once. The Nvidia 
GeForce 8 operates in a similar fashion, organizing its scalar 
SIMD processors in groups of 32 that execute the same 
instruction [Nickolls et al. 2008]. The main difference is that in 
Larrabee the loop control, cache management, and other such 
operations are code that runs in parallel with the VPU, instead of 
being implemented as fixed function logic. 

Larrabee VPU instructions allow up to three source operands, one 
of which can come directly from the L1 cache. If the data has 

been prefetched into the cache, as described in Section 3.2, then 
the L1 cache is in effect an extended register file. 8-bit unorm, 8-
bit uint, 16-bit sint and 16-bit float data can be read from the 
cache and converted to 32-bit floats or 32-bit integers with no loss 
of performance. This significantly increases the amount of data 
that can be stored in the caches and also reduces the need for 
separate data conversion instructions. 

The next stage is to align the data from registers and memory with 
the processing lanes in the VPU. Register data can be swizzled in 
a variety of ways, e.g. to support matrix multiplication. Data from 
memory can be replicated across the VPU lanes. This is a 
common operation in both graphics and non-graphics parallel data 
processing, which significantly increases the cache efficiency. 

The VPU supports a wide variety of instructions on both integer 
and floating point data types. The instruction set provides the 
standard arithmetic operations, including fused multiply-add, and 
the standard logical operations, including instructions to extract 
non-byte-aligned fields from pixels. These are all load-op 
instructions, which read from registers or memory and write the 
result to a vector register. Additional load and store instructions 
support a wider variety of conversions between floating point 
values and the less common or more complex data formats found 
on most GPUs. Using separate instructions for these formats saves 
significant area and power at a small performance cost. 

The VPU instruction set also includes gather and scatter support, 
that is, loads and stores from non-contiguous addresses. Instead of 
loading a 16-wide vector from a single address, 16 elements are 
loaded from or stored to up to 16 different addresses that are 
specified in another vector register. This allows 16 shader 
instances to be run in parallel, each of which appears to run 
serially, even when performing array accesses with computed 
indices. The speed of gather/scatter is limited by the cache, which 
typically only accesses one cache line per cycle. However, many 
workloads have highly coherent access patterns, and therefore 
take much less than 16 cycles to execute.  

Finally, Larrabee VPU instructions can be predicated by a mask 
register, which has one bit per vector lane. The mask controls 
which parts of a vector register or memory location are written 
and which are left untouched. For example, a scalar if-then-else 
control structure can be mapped onto the VPU by using an 
instruction to set a mask register based on a comparison, and then 
executing both if and else clauses with opposite polarities of the 
mask register controlling whether to write results. Clauses can be 
skipped entirely if the mask register is all zeros or all ones. This 
reduces branch misprediction penalties for small clauses and gives 
the compiler’s instruction scheduler greater freedom.  

The VPU also uses these masks for packed load and store 
instructions, which access enabled elements from sequential 
locations in memory. This enables the programmer to bundle 
sparse strands of execution satisfying complex branch conditions 
into a format more efficient for vector computation.  

3.4 Inter-Processor Ring Network 

Larrabee uses a bi-directional ring network to allow agents such 
as CPU cores, L2 caches and other logic blocks to communicate 
with each other within the chip. When scaling to more than 16 
cores, we use multiple short linked rings.  

Each ring data-path is 512-bits wide per direction. All the routing 
decisions are made before injecting messages into the network. 
For example, each agent can accept a message from one direction 
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on even clocks and from the other direction on odd clocks. This 
simplifies the routing logic and means that no storage is required 
in the routers once the message is in the network. The result is 
high bandwidth with minimal contention at a very low cost.  

Larrabee’s L2 cache is designed to provide each core with high 
bandwidth access to memory addresses that are not written by 
other cores, and therefore are stored in the core’s local L2 subset. 
Each core can access its own subset of the L2 cache in parallel, 
without communicating with other cores. However, before 
allocating a new line in the L2 cache, the ring network is used to 
check for data sharing, in order to maintain data coherency.  

The inter-processor network also provides a path for the L2 
caches to access memory. A typical high-end implementation 
would include multiple memory interfaces of standard design, 
spread around the inter-processor network to reduce congestion. 
Latency around the on-die network increases memory access 
times, but the extra ring latency is typically very small compared 
to the latency of DRAM access.  

Finally, the on-die inter-processor network allows fixed function 
logic agents to be accessed by the CPU cores and in turn to access 
L2 caches and memory. As with memory controllers, these would 
typically be spread around the ring network to reduce congestion.  

3.5 Fixed Function Logic 

Modern GPUs contain fixed function logic for a variety of 
graphics tasks, including texture filtering, display processing, 
post-shader alpha blending, rasterization, and interpolation. In this 
paper, rasterization refers solely to finding the coverage of a 
primitive, and interpolation refers to finding the values of 
parameters at covered sample positions in the primitive. Fixed 
function logic typically requires FIFOs for load balancing. It can 
be difficult to properly size these logic blocks and their FIFOs to 
avoid both wasted area and performance bottlenecks. 

Larrabee uses software in place of fixed function logic when a 
software implementation provides sufficient performance. In 
particular, Larrabee does not include fixed function logic for 
rasterization, interpolation, or post-shader alpha blending. This 
allows Larrabee to add new features and optimizations, as well as 
allowing these tasks to be implemented in different places in the 
rendering pipeline, depending what is most efficient for a 
particular application. Implementing them in software also allows 
Larrabee to allocate to each the performance it requires, instead of 
designing hardware to meet peak performance requirements. 
Sections 4.4 and 4.5 describe the software algorithms used and 
Section 5.5 shows the percentage of processing time required by 
these operations for three game workloads.  

Larrabee includes texture filter logic because this operation 
cannot be efficiently performed in software on the cores. Our 
analysis shows that software texture filtering on our cores would 
take 12x to 40x longer than our fixed function logic, depending on 
whether decompression is required. There are four basic reasons:  
• Texture filtering still most commonly uses 8-bit color 

components, which can be filtered more efficiently in 
dedicated logic than in the 32-bit wide VPU lanes. 

• Efficiently selecting unaligned 2x2 quads to filter requires a 
specialized kind of pipelined gather logic. 

• Loading texture data into the VPU for filtering requires an 
impractical amount of register file bandwidth. 

• On-the-fly texture decompression is dramatically more 
efficient in dedicated hardware than in CPU code. 

The Larrabee texture filter logic is internally quite similar to 
typical GPU texture logic. It provides 32KB of texture cache per 
core and supports all the usual operations, such as DirectX 10 
compressed texture formats, mipmapping, anisotropic filtering, 
etc. Cores pass commands to the texture units through the L2 
cache and receive results the same way. The texture units perform 
virtual to physical page translation and report any page misses to 
the core, which retries the texture filter command after the page is 
in memory. Larrabee can also perform texture operations directly 
on the cores when the performance is fast enough in software. 

4. Larrabee Software Renderer 

The key issue for achieving high performance for any parallel 
rendering algorithm is to divide the rendering task into many 
subtasks that can be load balanced and executed in parallel with 
very few synchronization points. Larrabee allows more options 
for parallelism than typical GPUs due to its flexible memory 
model and software-controlled scheduling.  

This section describes a sort-middle software renderer designed 
for the Larrabee architecture that uses binning for load balancing. 
Section 5 provides performance studies for this software renderer.  

4.1 Stages of Software Rendering 

For simplicity, first we will consider rendering to a single set of 
render targets, such as a pixel buffer and a depth/stencil buffer. 
These render targets and the rendering commands that modify 
them are together called an RTset. Section 4.2 discusses more 
complex cases involving multiple RTsets.  

The rendering commands for an RTset are typically specified by 
graphics APIs as a series of rendering state changes, followed by 
a batch of triangles rendered using that current device state. 
Rather than use the concept of a current state internally, the 
Larrabee renderer captures the rendering state in a single fully-
specified structure. It then groups the batches of triangles and tags 
each batch with the state it uses. This batch of triangles and the 
state it uses is called a primitive set or PrimSet. This is roughly 
equivalent to the DirectX DrawPrimitive call, although there is 
not an exact 1:1 correspondence between the two. 

Figure 5 shows the broad structure for rendering the PrimSets of a 
single RTset. The surface being rendered is split into tiles of 
pixels. Each tile has a bin that will be filled with the triangles 
from a PrimSet that intersect that tile. The set of bins for the 
whole RTset is called a bin set. The terms tile and bin are 
sometimes used interchangeably. The distinction in this paper is 
that a tile is the actual pixel data, while the bin is the set of 
primitives that affect that tile. In the same way that each tile has a 
bin, each RTset (set of render target tiles and associated PrimSets) 
has a single bin set (set of bins that contain the primitives).  

 

Figure 5: Larrabee Software Renderer Structure: Multiple sets of 
primitives (PrimSets) can be processed in parallel to fill per-tile 
bins, which are later processed in parallel to render screen tiles. 
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Tile size is chosen so that the target surfaces in the RTset for that 
tile will all fit in a core’s L2 cache. Thus an RTset with many 
color channels, or with large high-precision data formats, will use 
a smaller tile size than one with fewer or low-precision channels. 
To simplify the code, tiles are usually square and a power-of-two 
in size, typically ranging in size from 32x32 to 128x128. An 
application with 32-bit depth and 32-bit color can use a 128x128 
tile and fill only half of the core’s 256KB L2 cache subset.  

As long as a tile fits within the L2 cache, rendering speed does not 
change substantially for different tile sizes. The main impact of 
using smaller tiles is that some triangles in the scene will hit more 
than one tile and require processing in each of those tiles – this is 
termed bin spread. Smaller tiles increase bin spread, but it is not a 
large increase. Typically we see bin spread of less than 5% in 
modern workloads. That is, the number of triangles processed 
across the system is less than 5% higher than the number for a 
single large bin covering the entire render target. 

There are two phases to the processing. In the front-end, each 
PrimSet is given a sequence ID to identify where in the rendering 
stream it was submitted. This is used by the back-end to ensure 
correct ordering, as discussed below. The PrimSet is then assigned 
to a single core, which performs vertex shading, tessellation, 
geometry shading, culling and clipping to produce triangles (or 
other primitives). The core then rasterizes each triangle to 
determine which tiles it touches and which samples it covers 
within each of those tiles. The result is a series of X,Y coordinates 
and sample coverage masks for each triangle. This data is stored 
in the bins along with indices that reference the vertex data. 

Once all front-end processing for the RTset has finished and every 
triangle has been added to the bin for each tile that it touched, 
back-end processing is performed. Here, each tile is assigned to a 
single core, which shades each triangle from the associated bin, 
including requesting texture sampling from the co-processors. The 
back-end also performs depth, stencil and blending operations. 

Unlike some other tile-based rendering methods, there is no 
attempt at perfect occlusion culling before shading, reordering of 
shading, or any other non-standard rendering methods. When 
taking commands from a DirectX or OpenGL command stream, 
rendering for a single tile is performed in the order in which the 
commands are submitted. Using a conventional rendering pipeline 
within each tile avoids surprises in either functionality or 
performance and works consistently well across a broad spectrum 
of existing applications. 

4.2 Render Target Dependency Analysis 

A single frame consists of a sequence of rendering commands, 
each sent to a set of rendering surfaces. Modern applications may 
use multiple pixel targets at once, and may change targets 
frequently during a single frame in order to render effects such as 
reflections and shadow maps.  

To handle different sets of render targets within a single frame, 
Larrabee’s software renderer starts by creating a graph where each 
node corresponds to an RTset, as defined in Section 4.1. Each 
node is then assigned the PrimSets that modify that node’s set of 
render targets. When an RTset uses a render target (e.g. a texture) 
that is used by subsequent rendering operations to a different 
target, a dependency is set up between the two RTsets. For 
example, in shadow mapping, the main RTset for a scene (the 
back buffer and depth/stencil buffer) has a dependency on the 
RTset for each of the shadow maps used.  

Once the dependency graph is created, the nodes can be selected 
for rendering in any order that satisfies the dependencies. Figure 6 
shows a dependency graph for two frames of a scene that requires 
rendering two shadow maps. For simplicity, the shadow maps for 
frame 1 are not shown. Frame 2 of the scene cannot be rendered 
until after frame 2’s shadow maps are rendered. Since each frame 
in this simple example uses the same memory for the back buffer 
and depth buffer, frame 2 also cannot be rendered until frame 1’s 
scene is rendered and copied to the front buffer (the dotted line 
dependency). However, rendering the frame 2 shadow maps can 
overlap with frame 1 rendering, since there are no dependencies. 
Using a different back buffer for frame 2 would remove the dotted 
line dependency. This substitution can be done automatically. 

 

Figure 6: RTset dependency graph: PrimSets are assigned to an 
RTset node based on the surfaces (render targets) that they 
modify. The dependencies ensure that a surface is not used until 
the PrimSets that modify it have been rendered and is not 
modified until the PrimSets that use it have been rendered. 

Note that the PrimSets associated with an RTset can be divided 
into multiple subsets whenever required, so long as ordering is 
maintained. An RTset can be split if it is too large to be efficiently 
processed as one unit, e.g. to provide finer scheduling granularity. 
Not all Larrabee cores need to process PrimSets from the same 
RTset at the same time. This ability to arbitrarily split and 
schedule RTsets avoids the limitations of some previous tiling 
architectures [Lake 2005]. 

4.3 Front-End Vertex and Geometry Processing 

Since graphics rendering commands modify state, the order of 
execution matters. GPUs process these commands sequentially, so 
that the commands are started in order and finished in order. 
When operations within a rendering command are parallelized 
over the inputs, the outputs must be put back in order. Geometry 
shaders, where the number of outputs is variable, require 
particularly large FIFOs to maintain order and minimize stalls.  

Larrabee allows front-end processing of multiple PrimSets in 
parallel. A control processor decides which PrimSets to render at 
any particular time, according to the dependencies in the RTset 
graph, and adds those PrimSets to an active list. The Larrabee 
cores doing front-end work constantly take PrimSets from this 
active list. Each core works on its own PrimSet independently. 
When the core is finished, it takes the next from the active list. 
Each core uses its own subset of the bin for each tile, which 
eliminates lock contention with the other front-end cores. The 
PrimSet’s sequence ID is written into the bins so that the back-end 
can restore the original order by always reading primitives from 
the sub-bin with the smallest sequence ID. 

Figure 7 shows the processing stages within a single front-end 
core. The first step identifies the vertices that form each primitive. 
This can be complex due to index buffers that allow arbitrary 
mappings of vertices in a vertex buffer to primitives, e.g. to 
efficiently store meshes. Next, the required vertices are 
transformed by running the vertex shader on them if they haven’t 
already been transformed. Transformed vertices are streamed out 
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to main memory. Values other than the position data are actively 
evicted from the L2 cache to avoid pollution, as they are not 
needed again until interpolant setup in the back end. After this, the 
geometry shader is run, followed by frustum and back-face 
culling, then clipping. 

 

Figure 7: Front-End Rendering Sequence for a PrimSet: the 
renderer shades vertices when required for a primitive, then puts 
final primitives into the bins whose tiles the primitive intersects.  

We describe a version of the algorithm that computes coverage 
information in the front-end and puts it into the bins. This ensures 
good load balancing, even if a small number of bins contain a 
large number of triangles. Rasterization can occur in either the 
front-end or the back-end, or can be split between them, since 
Larrabee uses software rasterization, as described in Section 4.4.  

4.4 Software Rasterization and Interpolation 

Unlike modern GPUs, Larrabee does not use dedicated logic for 
rasterization and parameter interpolation. In this paper, 
rasterization refers to finding the coverage of a primitive and 
interpolation refers to finding the values of parameters at covered 
sample positions. The figures in Section 5.4 show that these 
operations do not take a significant fraction of the rendering 
workload, so using software is justifiable. This section describes 
the algorithms that we use and why software implementations are 
preferable on Larrabee.  

The justification for performing interpolation in software is 
relatively simple. In older graphics APIs, interpolation produced 
fixed point numbers, much like the current state for the most 
common texture filtering operations. In modern graphics APIs 
such as DirectX 10,  the required result is a 32-bit float. Therefore 
it is efficient to re-use the existing VPU for interpolation.  

Rasterization is unquestionably more efficient in dedicated logic 
than in software when running at peak rates, but using dedicated 
logic has drawbacks for Larrabee. In a modern GPU, the rasterizer 
is a fine-grain serialization point: all primitives are put back in 
order before rasterization. Scaling the renderer over large numbers 
of cores requires eliminating all but the most coarse-grained 
serialization points. The rasterizer could be designed to allow 
multiple cores to send it primitives out of order, but this would 
impose a significant communication expense and would require 
software to manage contention for the rasterizer resource. A 
software rasterizer avoids these costs. It also allows rasterization 
to be parallelized over many cores or moved to multiple different 
places in the rendering pipeline. We can optimize the rasterization 
code for a particular workload or support alternative rasterization 
equations for special purposes [Lloyd et al. 2007].  

Our algorithm is a highly optimized version of the recursive 
descent algorithm described by Greene [1996]. The basic idea is 
to convert clipped triangles to screen space, then compute a half-
plane equation for each triangle edge [Pineda 1988]. This lets us 
determine if a rectangular block is entirely inside the triangle, 
entirely outside the triangle, or partially covered by the triangle. 
In the latter case, the algorithm subdivides the block recursively 
until it is reduced to an individual pixel or sample position. 

On Larrabee, the first step uses the triangle’s bounding box to find 
the tiles that the triangle overlaps. In the remaining steps, the VPU 
computes half-plane equations for 16 blocks at a time. For 
example, if the tile size is 64x64, the first stage processes 16 
16x16 blocks that cover the tile. The find first bit instruction 
makes it efficient to find fully and partially covered blocks. 
Detecting fully covered blocks early is important for efficiency. 
The second stage tests the 16 4x4 sub-blocks of each partially 
covered 16x16 block. The third stage tests the 16 pixels of each 
partially covered 4x4 block. This stage can be repeated for 
multiple sample positions in each pixel. About 70% of the 
instructions run on the VPU and take advantage of Larrabee’s 
computational density. About 10% of the efficiency of the 
algorithm comes from special instructions such as find first bit.  

4.5 Back-End Pixel Processing 

Once the front-end processing for an RTset has completed filling 
the bins with triangle data, the RTset is put into an active list. The 
cores doing back-end work constantly take the next available tile 
from the list and render the triangles in the corresponding bin. 
This software can use many optimizations that are commonly 
implemented in fixed function logic in modern GPUs, such as fast 
clear, hierarchical Z, and early Z tests [Morein 2000]. 
Hierarchical Z tests can be done in the front-end to reduce the 
number of primitives placed in the bins.  

The back-end code starts by prefetching the render target pixels 
into the L2 cache. All rendering will then be performed to the L2 
cache until there are no more primitives to render for the tile, 
when it will be written back to memory. As a result, the pixels in 
the RTset for this tile only need to be read and written once to 
main memory, regardless of how many overlapping primitives are 
in the bin. Two important optimizations can also be detected to 
save substantial memory bandwidth. The read can be eliminated if 
the first command clears the entire tile. The write can also be 
eliminated or reduced for depth data that is not required after 
rendering and for MSAA colors that can be resolved to one color 
per pixel before writing to memory.  

Figure 8 shows a back-end implementation that makes effective 
use of multiple threads that execute on a single core. A setup 
thread reads primitives for the tile. Next, the setup thread 
interpolates per-vertex parameters to find their values at each 
sample. Finally, the setup thread issues pixels to the work threads 
in groups of 16 that we call a qquad. The setup thread uses 
scoreboarding to ensure that qquads are not passed to the work 
threads until any overlapping pixels have completed processing.  

 

Figure 8: Back-End Rendering Sequence for a Tile: one setup 
thread processes the primitives and assigns them to one of three 
work threads that do early Z depth tests, pixel shader processing, 
late Z depth tests, and alpha blending. 

The three work threads perform all remaining pixel processing, 
including pre-shader early Z tests, the pixel shader, regular late Z 
tests, and post-shader blending. Modern GPUs use dedicated logic 
for post-shader blending, but Larrabee uses the VPU. This is 
particularly efficient since many shaders do not use post-shader 
blending, so that dedicated blending logic can be unused for some 
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shaders and may limit performance for other shaders. Section 5.4 
provides breakdowns of the total processing time devoted to post-
shader blending and parameter interpolation. 

One remaining issue is texture co-processor accesses, which can 
have hundreds of clocks of latency. This is hidden by computing 
multiple qquads on each hardware thread. Each qquad’s shader is 
called a fiber. The different fibers on a thread co-operatively 
switch between themselves without any OS intervention. A fiber 
switch is performed after each texture read command, and 
processing passes to the other fibers running on the thread. Fibers 
execute in a circular queue. The number of fibers is chosen so that 
by the time control flows back to a fiber, its texture access has had 
time to execute and the results are ready for processing. 

5. Renderer Performance Studies 

This section describes performance and scaling studies for the 
Larrabee software renderer described in Section 4. Studies include 
scalability experiments for software rendering, load balancing 
studies, bandwidth comparisons of binning to immediate mode 
renderers, performance on several game workloads, and charts 
showing the how total processing time is divided among different 
parts of the software renderer. 

5.1 Game Workloads and Simulation Method 

Performance tests use workloads derived from three well-known 
games: Gears of War*, F.E.A.R.*, and Half Life* 2 Episode 2. 
Table 2 contains information about the tested frames from each 
game. Since we are scaling out to large numbers of cores we use a 
high-end screen size with multisampling when supported. 

Half Life 2 ep. 2 F.E.A.R. Gears of War 

1600x1200 4 sample 1600x1200 4 sample 1600x1200 1 sample 

25 frames (1 in 30) 25 frames (1 in 100) 25 frames (1 in 250) 
Valve Corp. Monolith Productions Epic Games Inc 

Table 2: Workload summary for the three tested games: the 
frames are widely separated to catch different scene 
characteristics as the games progress. 

We captured the frames by intercepting the DirectX 9 command 
stream being sent to a conventional graphics card while the game 
was played at a normal speed, along with the contents of textures 
and surfaces at the start of the frame. We tested them through a 
functional model to ensure the algorithms were correct and that 
the right images were produced. Next, we estimated the cost of 
each section of code in the functional model, being aggressively 
pessimistic, and built a rough profile of each frame. We wrote 
assembly code for the highest-cost sections, ran it through cycle-
accurate simulators, fed the clock cycle results back into the 
functional model, and re-ran the traces. This iterative cycle of 
refinement was repeated until 90% of the clock cycles executed 
during a frame had been run through the simulators, giving the 
overall profiles a high degree of confidence. Texture unit 
throughput, cache performance and memory bandwidth 
limitations were all included in the various simulations. 

In these studies we measure workload performance in terms of 
Larrabee units. A Larrabee unit is defined to be one Larrabee 
core running at 1 GHz. The clock rate is chosen solely for ease of 
calculation, since real devices would ship with multiple cores and 

                                                                 
* Other names & brands may be claimed as the property of others. 

a variety of clock rates. Using Larrabee units allows us to 
compare performance of Larrabee implementations with different 
numbers of cores running at different clock rates. A single 
Larrabee unit corresponds to a theoretical peak throughput of 32 
GFLOPS, counting fused multiply-add as two operations.  

5.2 Scalability Studies 

The Larrabee software renderer is designed to allow efficient load 
balancing over a large number of cores. Figure 9 shows the results 
of testing load balancing for six configurations, each of which 
scales the memory bandwidth and texture filtering speed relative 
to the number of cores. This test uses the simulation methodology 
described in Section 5.1 in combination with a time-based 
performance model that tracks dependencies and scheduling. This 
tool is used for multiple graphics products within Intel.  

 

Figure 9: Relative Scaling as a Function of Core Count: This 
shows configurations with 8 to 48 cores, with each game’s results 
plotted relative to the performance of an 8-core system.  

The results of the load balancing simulation show a falloff of 7% 
to 10% from a linear speedup at 48 cores. For these tests, 
PrimSets are subdivided if they contain more than 1000 
primitives, as described in Section 4.2. Additional tests show that 
F.E.A.R. falls off by only 2% if PrimSets are subdivided into 
groups of 200 primitives, so code tuning should improve the 
linearity.  

Figure 10 shows the number of Larrabee units required to render 
sample frames from the three games at 60 frames/second. These 
results were simulated on a single core with the assumption that 
performance scales linearly. For Half Life 2 episode 2, roughly 10 
Larrabee Units are sufficient to ensure that all frames run at 60 fps 
or faster. For F.E.A.R. and Gears of War, roughly 25 Larrabee 
Units suffice.  

 

Figure 10: Overall performance: shows the number of Larrabee 
Units (cores running at 1 GHz) needed to achieve 60fps for of the 
series of sample frames in each game. 

The remaining issue that can limit scalability is software locks. 
Simulating multiple frames of rendering at such a fine level of 
detail is extremely costly. However, this software rendering 
pipeline was explicitly designed to minimize the number of locks 
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and other synchronization events. In general, a lock is obtained 
and released for each of the following events: 
• Twice when a bin set is added to the list of work to do, (once 

for the front-end queue and once for the back-end queue) 
• When a PrimSet is processed by a front-end thread or a tile is 

processed by a back-end thread 
• A few low-frequency locks such as resource creation and 

deletion, buffer modification by the host CPU, and frame 
flips or presents. 

Modern games usually have significantly less than 10,000 locks 
per frame. The Larrabee ring network provides relatively good 
performance for low-contention locks of around 100 clocks per 
lock per core. Together, these numbers are low enough that lock 
scaling should be fairly linear with the number of cores, given 
sufficient memory bandwidth. 

5.3 Binning and Bandwidth Studies 

We adopted a binning algorithm primarily to minimize software 
locks, but it also benefits load balancing and memory bandwidth.  

Our algorithm assigns back-end tiles to any core that is ready to 
process one, without attempting to load balance. In theory this 
could result in significant load imbalance, though cores are free to 
start processing the next RTset or switch to front-end processing. 
Bin imbalance is not a problem in the game workloads we have 
studied. Figure 11 shows a trace of the back-end bin processing 
time for 16 frames of Gears of War. Each trace records the 
processing time for each bin on the screen for a frame, sorted 
from the fastest to slowest bin, and normalized to 1.0 as the mean 
bin processing time for that frame. Most bins fall in the range ½x 
to 2x the mean processing time. Few exceed 3x the mean. The 
other two games produce similar results.  

 

Figure 11: Bin Balance for Gears of War: each curve shows the 
time required to process one frame’s bins, in sorted order from 
fastest to slowest, normalized by the mean bin processing time. 

Memory bandwidth is important because the memory subsystem 
can be one of the more costly and power hungry parts of a GPU, 
from high end down to low cost designs. It is often a limited 
resource that can cause bottlenecks if not carefully managed, in 
part because computational speed scales faster. Our performance 
studies measure computational speed, unrestricted by memory 
bandwidth, but it is important to consider how our binning method 
compares with standard immediate mode rendering algorithms. 

Figure 12 compares the total memory bandwidth per frame that 
we calculated for immediate mode and binned rendering for the 
three games. The graph presents per-frame data in sorted order 
from least to most bandwidth for the immediate mode frames. For 
immediate mode we assume perfect hierarchical depth culling, a 
128KB texture cache, and 1MB depth and color caches to 
represent an ideal implementation. We further assume 2x color 
and 4x depth compression for single-sampling and 4x color and 
8x depth compression for 4-samples per pixel. 

 

Figure 12: Bandwidth comparison of binning vs. immediate mode 
per frame: binning requires bin reads & writes, but eliminates 
many depth/color accesses that are not detected by hierarchical 
depth tests. This results in less total bandwidth for binning. 

Immediate mode uses more bandwidth for every tested frame: 
2.4x to 7x more for F.E.A.R, , 1.5x to 2.6x more for Gears of 
War, and 1.6x to 1.8x more for Half Life 2 episode 2. Notably, 
binning achieves its greatest improvement when the immediate 
mode bandwidth is highest, most likely because overdraw forces 
multiple memory accesses in immediate mode. Even with depth 
culling and frame buffer compression, the 1MB caches are not 
large enough to catch most pixel overdraw. High resolutions tend 
to increase the advantage of binning since they increase the 
impact of pixel access bandwidth on performance. 

5.4 Performance Breakdowns 

Figure 13 shows the average time spent in each rendering stage 
for the three games. Pixel shading and interpolant setup is always 
a major portion of the rendering time, but the balance between 
different stages can vary markedly in different games. This is 
illustrated by F.E.A.R, which makes extensive use of stencil-
volume shadows. This results in a reduced pixel shading load, but 
heavy rasterization and depth test loads. This shows the 
importance of being able to reconfigure the computing resource 
allocation among different stages, including rasterization, which is 
3.2% in two of the games but 20.1% in F.E.A.R. 

 

Figure 13: End-to-End Average Time Breakdowns: shows the 
average time spent in each rendering stage for the three games 

Figure 14 shows the time spent in each rendering stage for 
F.E.A.R. For the other two games, the ratios stay very similar 
across the tested frames, but F.E.A.R. shows significant variation. 
In addition, considerable variation is observed over the course of a 
single frame of rendering. Larrabee’s cores each process an entire 
tile at once, then process the next and so on, leading to a 
reasonably uniform load over the course of the entire frame. By 
contrast, an immediate-mode renderer doesn’t have as many ways 
to process pixels and primitives out of order. Further, the widely 
varying loads can cause different units to bottleneck at different 
times, unless they are over designed for the worst case. 
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Figure 14: F.E.A.R. per-frame time breakdowns: this chart shows 
the time spent in each rendering stage for 25 widely spaced 
frames of F.E.A.R., which show considerable load variation. 

Our conclusion is that application dependent resource balancing is 
not sufficient. Instead, dynamic load balancing is likely to be very 
important to achieving high average performance. Larrabee’s 
entirely software scheduling algorithms provide a great deal of 
flexibility for adjusting load balancing algorithms. 

6. Advanced Applications 

Larrabee supports performance implementations of many other 
parallel applications. Section 6.1 describes how applications can 
be developed using traditional multi-core high level languages 
and tools that have been targeted to Larrabee’s many-core 
architecture. Section 6.2 discusses Larrabee support for irregular 
data structures, which are common in these applications [Pharr 
2006]. Sections 6.3 and 6.4 describe results of simulating 
rendering and other throughput applications on Larrabee.  

Scalability and performance analysis in this section uses an in-
house simulator that models variable configurations of Larrabee 
cores, threads, and memory hierarchy. This simulator is derived 
from proven cycle accurate simulator technology used in the 
design of CPU cores. Reported data is from hand coded and 
software threaded kernels running on this simulator. 

6.1 Larrabee Many-Core Programming Model 

The Larrabee Native programming model resembles the well 
known programming model for x86 multi-core architectures. 
Central to Larrabee Native programming is a complete C/C++ 
compiler that statically compiles programs to the Larrabee x86 
instruction set. Many C/C++ applications can be recompiled for 
Larrabee and will execute correctly with no modification. Such 
application portability alone can be an enormous productivity gain 
for developers, especially for large legacy x86 code bases like 
those found in high-performance computing and numeric-
intensive computing environments. Two current limitations are 
that application system call porting is not supported and the 
current driver architecture requires application recompilation.  

We now discuss three important aspects of application 
programming for Larrabee Native:  software threading, SIMD 
vectorization, and communication between the host and Larrabee.  

Larrabee Native presents a flexible software threading capability. 
The architecture level threading capability is exposed as the well 
known POSIX Threads API (P-threads) [IEEE 2004]. We have 
extended the API to also allow developers to specify thread 
affinity with a particular HW thread or core.  

Although P-threads is a powerful thread programming API, its 
thread creation and thread switching costs may be too high for 
some application threading. To amortize such costs, Larrabee 
Native provides a task scheduling API based on a light weight 
distributed task stealing scheduler [Blumofe et al. 1996]. A 
production implementation of such a task programming API can 
be found in Intel Thread Building Blocks [Reinders 2007]. 
Finally, Larrabee Native provides additional thread programming 
support via OpenMP [Chandra et al. 2000] pragmas in Larrabee 
Native’s C/C++ compiler. 

All Larrabee SIMD vector units are fully programmable by 
Larrabee Native application programmers. Larrabee Native’s 
C/C++ compiler includes a Larrabee version of Intel’s auto-
vectorization compiler technology. Developers who need to 
program Larrabee vector units directly may do so with C++ vector 
intrinsics or inline Larrabee assembly code. 

In a CPU based platform that includes a Larrabee based add-in 
card, Larrabee will managed by an OS driver for that platform. In 
such a platform, Larrabee Native binaries are tightly paired with a 
host binary. Larrabee libraries provide fast message/data passing 
protocol to manage all memory transfers and communications 
between the binaries. The API supports both synchronous and 
asynchronous data transfers. Additionally, execution of some 
C/C++ standard library functions called from Larrabee application 
binaries must be shared with the host operating system. 
Specifically file I/O functions such as read/write/open/close, etc., 
are proxied from the Larrabee application binary back to a service 
that executes such functions remotely on the host OS. 

Besides high throughput application programming, we anticipate 
that developers will also use Larrabee Native to implement higher 
level programming models that may automate some aspects of 
parallel programming or provide domain focus. Examples include 
Ct style programming models [Ghuloum et al. 2007], high level 
library APIs such as Intel® Math Kernel Library (Intel® MKL) 
[Chuvelev et al. 2007], and physics APIs. Existing GPGPU 
programming models can also be re-implemented via Larrabee 
Native if so desired [Buck et al. 2004; Nickolls et al. 2008]. 

6.2 Irregular Data Structure Support 

Larrabee provides excellent support for high throughput 
applications that use irregular data structures such as complex 
pointer trees, spatial data structures, or large sparse n-dimensional 
matrices. They are supported by Larrabee’s programming model, 
memory hierarchy, and VPU instructions.  

For Larrabee applications, the multithreaded C++ code to 
populate, transform, or traverse these data structures follows the 
familiar programming methodology used on multi-core CPUs. 
C++ pointers, inheritance, and classes may be used to implement 
graph nodes. The individual nodes may have significantly 
different operation execution costs or code branch behavior. 
Because thread or task scheduling is under programmer control, 
tasks that operate on these data structures can be dynamically re-
bundled to maintain SIMD efficiency. For example, a ray tracer’s 
secondary reflection rays may be re-bundled differently than the 
primary camera rays that generated them. Finally, data structure 
techniques such as pre-allocated memory pools can be used to 
asymmetrically provide only the memory required for a given data 
structure node. For example, an order-independent transparency 
implementation may dynamically associate memory based on the 
number of layers per pixel, rather than pre-allocating a wasteful 
overestimation of the number of layers per pixel as K-buffer 
techniques often do [Callahan et al. 2005; Bavoil et al. 2007]. 
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Unlike stream based architectures [Pham et al. 2005; Khailany et 
al. 2002], Larrabee allows but does not require direct software 
management to load data into different levels of the memory 
hierarchy. Software simply reads or writes data addresses, and 
hardware transparently loads data across the hierarchy. Software 
complexity is significantly reduced and data structures can 
employ hard to predict unstructured memory accesses. 

In recent Nvidia GPUs, local shared memory support is provided 
through small (16KB on Nvidia GeForce 8) Per-Block Shared 
Memories (PBSMs). Each PBSM is shared by 8 scalar processors 
running up to 768 program instances (which Nvidia calls threads) 
within a SIMD multi-processor [Nickolls et al. 2008].  For high 
speed local sharing, programmers must explicitly load shared data 
structures into a PBSM.  These are not directly shareable by 
instances in a different SIMD group. Similarly, order and 
consistency protection requires software to issue a barrier sync 
that is visible only within a SIMD group.  To facilitate broader 
sharing across SIMD groups, data must be explicitly written out to 
higher latency GDDR memory. In contrast, all memory on 
Larrabee is shared by all processor cores. For Larrabee 
programmers, local data structure sharing is transparently 
supported by the coherent cached memory hierarchy regardless of 
the thread’s processor. Protection can be provided by 
conventional software locks, semaphores, or critical sections. 

An important aspect of handling irregular data structures is 
efficient scatter-gather support, so that the SIMD VPU can work 
on non-contiguous data. As described in Section 3, Larrabee 
implements VPU scatter-gather instructions which load a VPU 
vector register from sixteen non-contiguous memory locations. 
The non-contiguous data elements can reside anywhere in the 
large on-die cache, without suffering memory access penalty. This 
significantly reduces programmer data management overhead. We 
have observed an average of almost 3x performance gain in 
Larrabee from hardware support of scatter-gather, compared to 
software scatter-gather, for basic sparse matrix compute kernels, 
such as sparse matrix-vector multiply. Algorithms requiring 
irregular data structures also benefit from Larrabee instructions 
such as count bits, bit scan, and packed loads and stores. 

6.3 Extended Rendering Applications 

The Larrabee graphics rendering pipeline is itself a Larrabee 
Native application. Because it is software written with high level 
languages and tools, it can easily be extended to add innovative 
rendering capabilities.  Here we briefly discuss three example 
extensions of the graphics pipeline that we are studying.  Future 
implementations could evolve towards a fully programmable 
graphics pipeline as outlined by Pharr [2006]. 

Render Target Read: Because Larrabee’s graphics rendering 
pipeline employs a software frame buffer, we can enable 
additional programmer access to those data structures. More 
specifically, a trivial extension to the Larrabee rendering pipeline 
would be to allow pixel shaders to directly read previously stored 
values in render targets. Such a capability could serve a variety of 
rendering applications, including programmer defined blending 
operations, single-pass tone mapping, and related functions. 

Order Independent Transparency: Presently 3D application 
developers must either depth sort translucent models in their 
application every frame prior to rendering or else implement 
multi-pass algorithms such as depth peeling [Wexler et al. 2005] 
to achieve correct inter-model transparency. Neither method 
allows the kinds of post-rendering area effects that are possible 

with opaque models. Figure 15 illustrates artifacts that occur if 
such effects are applied after merging the translucent surfaces. 

 

Figure 15: Transparency without and with pre-resolve effects: the 
left image sorts the geometry and resolves before applying a fog 
patch. The right image applies the fog patch to the translucent 
surfaces and then resolves. The fog is visible through the wing in 
the right image, but not in the left image. (Dragon models 
designed and created by Jeffery A. Williams and Glen Lewis.) 

Larrabee can support order independent transparency (OIT) with 
no additional dedicated logic by storing multiple translucent 
surfaces in a per-pixel spatial data structure. After rendering the 
geometry, we can perform effects on the translucent surfaces, 
since each surface retains its own depth and color, before sorting 
and resolving the fragment samples stored per pixel.  

 

Figure 16: Irregular Z-Buffer sample frame: this method uses an 
irregular spatial data structure to produce alias-free shadowing. 
Like the transparency example in figure 15, the data structure is 
tightly integrated with the rendering pipeline. The renderer 
constructs the shadowmap and then treats it as a special class of 
frame buffer. (Skeleton model by TurboSquid.) 

Irregular Shadow Mapping: Shadow mapping is a popular real-
time shadow approximation technique, but most implementations 
are plagued by visually displeasing aliasing artifacts. A variety of 
heuristics have been proposed in an attempt to reduce artifacts 
[Akenine-Möller & Haines 2002; Bookout 2007]. Irregular 
shadow mapping (ISM) offers an exact solution to this problem 
and places no additional burden on the application programmer 
[Aila & Laine 2004; Johnson et al. 2005]. 

To implement ISM, we dynamically construct a spatial data 
structure in the light view using depth samples captured in the 
camera view. We again customize Larrabee’s all software 
graphics pipeline by adding a stage that performs light view ISM 
rasterization against ISM’s spatial data structure. Because the 
shadow map is computed at exact positions, the resulting shadow 
map is alias free. This technique can be used to achieve real-time 
hard shadowing effects, as shown in Figure 16, or as the 
foundation for real-time soft shadowing effects.  
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6.4 Other Throughput Computing Applications 

Larrabee is also suitable for a wide variety of non-rasterization 
based throughput applications. The following is a brief discussion 
of the observed scalability and characteristics of several examples. 

 

Figure 17: Game Physics Scalability Performance: this shows 
that the Larrabee architecture is scalable to meet the growing 
performance needs of interactive rigid body, fluid, and cloth 
simulation algorithms and some commonly used collision kernels. 

Game Physics: We have performed detailed scalability 
simulation analysis of several game physics workloads on various 
configurations of Larrabee cores. Figure 17 shows scalability of 
some widely used game physics benchmarks and algorithms for 
rigid body, fluid, and cloth. We achieve better than 50% resource 
utilization using up to 64 Larrabee cores, and achieve near-linear 
parallel speedup is some cases. The game rigid body simulation is 
based on the popular “castle” destruction scene with 10K objects. 
Scalability plots for Sweep-and-Prune [Cohen et al. 1995] and 
GJK [Gilbert et al. 1988] distance algorithms are included since 
they are some of the most commonly used collision detection 
routines. Game fluid simulation is based on the smoothed particle 
hydrodynamics (SPH) algorithm. We used a mass spring model 
and Verlet integration for our game cloth simulation [Jacobsen 
2001]. Bader et al. [2008] provide details on the implementation 
and scalability analysis for these game physics workloads  

 

Figure 18: Real time ray tracing on Larrabee: cropped from a 
1Kx1K sample image that requires ~4M rays. The ray tracer was 
implemented in C++ with some hand-coded assembly code for 
key routines like ray intersection. Kd-trees are typically 25MB 
and are built dynamically per frame. Primary and reflection rays 
are tested in 16 ray bundles. Nearly all 234K triangles are visible 
to primary or reflection rays. (Bar Carta Blanca model by 
Guillermo M Leal Llaguno, courtesy of Cornell University.) 

Real Time Ray Tracing: The highly irregular nature of spatial 
data structures used in  Whitted style real-time ray tracers benefit 
from Larrabee’s general purpose memory hierarchy, relatively 
short pipeline, and VPU instruction set. Here we used SIMD 16 
packet ray tracing traversing through a kd-tree. For the complete 
workload, we observe that a single Intel Core 2 Duo processor 
requires 4.67x more clock cycles than a single Larrabee core, 
which shows the effectiveness of the Larrabee instruction set and 
wide SIMD. Results are even better for small kernels. For 
example, the intersection test of 16 rays to 1 triangle takes 47 
cycles on a single Larrabee core. The same test takes 257 Core 2 
Duo processor cycles. Figure 18 shows a 1024x1024 frame of the 
bar scene with 234K triangles, 1 light source, 1 reflection level, 
and typically 4M rays per frame. Figure 19 compares performance 
for Larrabee with an instance of the ray tracer running on an Intel 
Xeon® processor 2.6GHz with 8 cores total. Shevtsov et al. [2007] 
and Reshetov et al. [2005] describe details of this implementation.  

 

Figure 19: Real time ray tracing scalability: this graph compares 
different numbers of Larrabee cores with a nominal 1GHz clock 
speed to an Intel Xeon processor 2.6GHz with 8 cores total. The 
latter uses 4.6x more clock cycles than are required by 8 
Larrabee cores due to Larrabee’s wide VPU and vector 
instruction set. Figure 18 describes the workload for these tests. 

Image and Video Processing: The Larrabee architecture is 
suitable for many traditional 2D image and video analysis 
applications. Native implementations of traditional 2D filtering 
functions (both linear and non-linear) as well as more advanced 
functions, like video cast indexing, sports video analysis, human 
body tracking, and foreground estimation offer significant 
scalability as shown in Figure 20. Biomedical imaging represents 
an important subset of this processing type. Medical imaging 
needs such as back-projection, volume rendering, automated 
segmentation, and robust deformable registration, are related yet 
different from those of consumer imaging and graphics. Figure 20 
also includes scalability analysis of iso-surface extraction on a 3D 
volume dataset using the marching cubes algorithm. 

Physical Simulation: Physical simulation applications use 
numerical simulation to model complex natural phenomena in 
movies and games, such as fire effects, waterfalls in virtual 
worlds, and collisions between rigid or deformable objects. Large 
data-sets, unstructured control-flow and data accesses often make 
these applications more challenging to scale than traditional 
streaming applications. Looking beyond interactive game physics, 
we also analyzed applicability of Larrabee architecture for the 
broader class of entertainment physics including offline movie-
industry effects and distributed real-time virtual-world simulation. 
Specific simulation results based on Stanford’s PhysBAM are 
shown in Figure 20 and illustrate very good scalability for 
production fluid, production cloth, and production face. 
Implementation and scalability analysis details are described by 
Hughes et al. [2007]. 
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Figure 20: Scalability of select non-graphics applications and 
kernels: Larrabee’s general-purpose many-core architecture 
delivers performance scalability for various non-graphics visual 
and throughput computing workloads and common HPC kernels. 

Larrabee is also highly scalable for non-visual throughput 
applications, as shown in Figure 20. Larrabee’s highly-threaded 
x86 architecture benefits traditional enterprise throughput 
computing applications, such as text indexing. Its threading, 
together with its wide-SIMD IEEE-compliant double-precision 
support, makes it well positioned for financial analytics, such as 
portfolio management. Internal research projects have proven 
Larrabee architecture scalability for many traditional high 
performance computing (HPC) workloads and well-known HPC 
kernels such as 3D-FFT and BLAS3 (with dataset larger than on-
die cache). More details are described by Chen et al. [2008]. 

7. Conclusions 

We have described the Larrabee architecture, which uses multiple 
x86-based CPU cores, together with wide vector processor units 
and some fixed function logic, to achieve high performance and 
flexibility for interactive graphics and other applications. We have 
also described a software renderer for the Larrabee architecture 
and a variety of other throughput applications, with performance 
and scalability analysis for each. Larrabee is more programmable 
than current GPUs, with fewer fixed function units, so we believe 
that Larrabee is an appropriate platform for the convergence of 
GPU and CPU applications.  

We believe that this architecture opens a rich set of opportunities 
for both graphics rendering and throughput computing. We have 
observed a great deal of convergence towards a common core of 
computing primitives across the workloads that we analyzed on 
Larrabee. This underlying workload convergence [Chen et al. 
2008] implies potential for a common programming model, a 
common run-time, and a native Larrabee implementation of 
common compute kernels, functions, and data structures.  
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