
Performance Analysis and Tuning for General-Purpose
Graphics Processing Units (GPGPU)

September 20, 2012

2

Contents

1 GPU Design, Programming, and Trends 5
1.1 A Brief History of GPU . 5
1.2 A Brief Overview of a GPU System . 6

1.2.1 An Overview of GPU Architecture . 7
1.3 A GPGPU Programming Model: CUDA . 9

1.3.1 Kernels . 9
1.3.2 Thread Hierarchy in CUDA . 11
1.3.3 Memory Hierarchy . 13
1.3.4 SIMT Execution . 14
1.3.5 CUDA language extensions . 15
1.3.6 Vector Addition Example . 16
1.3.7 PTX . 18
1.3.8 Consistency Model and Special Memory Operations 18
1.3.9 IEEE floating-point support . 19
1.3.10 Execution Model of OpenCL . 19

1.4 GPU Architecture . 20
1.4.1 GPU Pipeline . 21
1.4.2 Handling Branch Instructions . 27
1.4.3 GPU Memory Systems . 30

1.5 Other GPU Architectures . 33
1.5.1 The Fermi Architecture . 33
1.5.2 The AMD Architecture . 33
1.5.3 Many Integrated Core Architecture . 34
1.5.4 Combining CPUs and GPUs on the same Die . 34

2 Performance Principles 35
2.1 Theory: Algorithm design models overview . 35
2.2 Characterizing parallelism: the Work-Depth Model . 36
2.3 Characterizing I/O behavior: the External Memory Model 41
2.4 Combined analyses of parallelism and I/O-efficiency . 46
2.5 Abstract and concrete measures . 47
2.6 Summary . 50

3 From Principles to Practice: Analysis and Tuning 53
3.1 The computational problem: Particle interactions . 53
3.2 An optimal approximation: the fast multipole method . 54

3

3.3 Designing a parallel and I/O-efficient algorithm . 57
3.4 A baseline implementation . 58
3.5 Setting an optimization goal . 59

3.5.1 Identifying candidate optimizations . 60
3.5.2 Exploring the optimization space . 62
3.5.3 Summary . 64

4 Using Detailed Performance Analysis to Guide Optimization 65
4.1 Instruction-level Analysis and Tuning . 65

4.1.1 Execution Time Modeling . 66
4.1.2 Applying the Model to FMM . 73
4.1.3 Performance Optimization Guide . 74

4.2 Other Performance Modeling Techniques and Tools . 77
4.2.1 Limited Performance Visibility . 78
4.2.2 Work Flow Graphs . 79
4.2.3 Stochastic Memory Hierarchy Model . 81
4.2.4 Roofline Model . 85
4.2.5 Profiling and Performance Analysis of CUDA Workloads Using Ocelot [33] 86
4.2.6 Other GPGPU Performance Modeling Techniques 90
4.2.7 Performance Analysis Tools for OpenCL . 91

4

Chapter 1

GPU Design, Programming, and Trends

This book aims to help readers understand the key performance issues that arise when

programming on general-purpose graphics processing unit (GPGPU) hardware. Although

there are many excellent resources available with similar aims, this book emphasizes gen-

eral principles in algorithm design and how these are translated into low-level GPGPU

architectures and programming. It includes a brief overview of GPGPU architectures and

programming (Chapter 1), high-level algorithmic design theory (Chapter 2), a case study

in translating theory into performance engineering practice on GPGPUs (Chapter 3), and a

survey of the current state-of-the-art in lower-level performance modeling and analysis for

GPGPUs (Chapter 4). Taken together, we hope this material provides a unique end-to-end

view of performance understanding for GPGPUs.

1.1 A Brief History of GPU

As their name suggests, graphics processing units (GPUs) were originally attached to video

cards designed specifically to accelerate graphics rendering and display. These early GPUs

employed fixed graphics pipelines, which then evolved into programmable cores over suc-

cessive hardware generations.

The first general-purpose GPU (GPGPU) programming interfaces were limited to shader

languages such as DirectX [80], OpenGL [74] and Cg [64]. As a result, programs could

5

only be expressed in terms of graphics pipeline operations. Later, Brook+ [3] and Sh [66]

added stream extensions to the C language to abstract away the graphics hardware details.

GPU accelerator [88] moved one step further from stream programming by providing data-

parallel arrays with aggregate element-wise operations.

While these early research efforts helped to improve general-purpose programmability of

GPUs compared to shader languages, the inflection point in GPGPU computing occurred

when NVIDIA introduced a new programmable unified graphics and compute processor,

known as the G80 family. This architecture included a new combined software and hard-

ware architecture called the Compute Unified Device Architecture (CUDA), which played

a significant role in making GPGPU computing popular. Most recently, the more general

term heterogeneous computing has subsumed GPGPU programming, particularly with the

introduction of more general programming models, such as OpenCL, OpenACC, and Mi-

crosoft C++ AMP. This book focuses on GPGPU programming rather than either the more

specialized notion of graphics programming or the more general notion of heterogeneous

computing. Additionally, we focus only on the GPGPU aspects of the GPU architecture,

rather than those specific to graphics applications.

1.2 A Brief Overview of a GPU System

In this section, we provide a brief overview of both a baseline GPU architecture, based pri-

marily on NVIDIA’s G80/Fermi architecture, and GPGPU programming using the CUDA

programming model.

Figure 1.1 shows how a GPU is typically connected with a modern processor. A GPU is

an accelerator (or a co-processor) that is connected to a host processor (typically a con-

ventional general-purpose CPU processor). The host processor and GPU communicate to

each other via PCI Express (PCIe) that provides 4 Gb/s (Gen 2) or 8 Gb/s (Gen 3) inter-

connection bandwidth. This communication bandwidth often becomes one of the biggest

bottlenecks; thus, it is critical to offload the work to GPUs only if the benefits of using

6

GPUs outweigh the offload cost. The communication bandwidth is expected to grow as the

CPU bus bandwidth of the system memory increases in the future.

CPU	

DRAM	

GPU	

GPU	 Memory	

Chipset	 North	 Bridge	
PCIe	

Figure 1.1: A system overview with CPU and a discrete GPU.

1.2.1 An Overview of GPU Architecture

Figure 1.2 illustrates the major components of a general-purpose graphics processor, based

on a simplified diagram of G80. At a high-level, the GPU architecture consists of several

streaming multiprocessors (SMs), which are connected to the GPU’s DRAM. (NVIDIA

callas an SM and AMD calls a Compute Unit (CU)) Each SM has a number of single-

instruction multiple data (SIMD) units, also called stream processors (SPs), and supports a

multithreading execution mechanism. GPU architectures employ two important execution

paradigms, which we explain below.

SIMD/SIMT GPU processors supply high floating-point (FP) execution bandwidth, which

is the driving force for designing graphics applications. To make efficient use of the high

number of FP units, GPU architectures employ a SIMD or SIMT execution paradigm (we

explain SIMT and contrast with SIMD in Chapter 1.3.4.) In SIMD, one instruction oper-

ates on multiple data (i.e., only one instruction is fetched, decoded, and scheduled but on

multiple data operands). Depending on the word width, anywhere from 32, 64, or 128 FP

operations may be performed by a single instruction on current systems. This technique

7

DRAM  DRAM  DRAM  DRAM  DRAM  DRAM  DRAM  DRAM 

Mul(processor 

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

Figure 1.2: Block diagram of NVIDIA’s G80 graphics processor (the components required for graphics processing are not shown.)

significantly increases system throughput and also improves its energy-efficiency. This

SIMD-style execution is essentially the same technique used in early vector processors. To

support SIMD/vector operations, the register file should provide high bandwidth of read

and write operations.

Multithreading The other important execution paradigm that GPU architectures employ

is hardware multithreading. As in more conventional highly multithreaded architectures,

such as HEP [86], M-Machine [35], Tera MTA [87], GPU processors use fast hardware-

based context switching to tolerate long memory and operation latencies.

The effectiveness of multithreading depends on whether an application can provide a high

number of concurrent threads, and most graphics applications have the characteristics since

they typically need to process many objects (e.g., pixels, vertices, polygons) simultane-

ously. Multithreading is the key to understanding the performance behavior of GPGPU

applications. In conventional CPU systems, thread context switching is relatively much

more expensive: all program states, such as PC (program counter), architectural registers,

and stack information, need to be stored by the operating system in memory. However, in

8

GPUs, the cost of thread switching is much lower due to native hardware support of such

process. Although modern CPUs also implement hardware multithreading (e.g., Intel’s hy-

perthreading), thus far the degree of multithreading (the number of simultaneous hardware

thread contexts) is much lower in CPUs than in GPUs (e.g., two hyperthreads vs. hundreds

of GPU threads).

To support multithreading in hardware, a processor must maintain a large number of regis-

ters, PC registers, and memory operation buffers. Having a large register file is especially

critical. For example, the G80 architecture has a 16 KB first-level software managed cache

(shared memory) while having a 32 KB register file. This large register file reduces the cost

of context switch between threads. This fact is a key distinction from conventional CPU

architectures. We discuss these and other architecture features in more detail later in this

chapter.

1.3 A GPGPU Programming Model: CUDA

This section briefly discusses the CUDA programming model. The reader should refer to

the latest official CUDA programming Guide for more details [73]. The following expla-

nation is adopted from an article by Hwu and Kirk [31].

1.3.1 Kernels

NVIDIA’s CUDA (Compute Unified Device Architecture) programming interface is a C/C++

API for GPGPU programming. CUDA programs contain code that runs on a host (typically,

the primary CPU processor) and kernels that run on devices (the GPU co-processor).

CUDA source code has a mixture of both host code that runs on the CPUs and device code

that runs on the GPUs. The device code is also typically called as a kernel function. The

host code is compiled using the standard compiler; the device code is first converted to an

intermediate device language called PTX, which enables the first round of code optimiza-

tions. Later this PTX representation is translated into a device-specific binary code, which

9

Integrated	 C	 programs	 with	 CUDA	 extensions	

NVCC	 Compiler	

Host	 C	 Preprocessor,	
Compiler/	 Linker	

Host Code! Device Code (PTX)!

Device	 Just-‐in-‐Time	
Compiler	

Heterogeneous	 CompuEng	 PlaForm	 with	
CPUs,	 GPUs	

Figure 1.3: Overview of the compilation process of a CUDA program: courtesy of Kirk&Hwu’s book [31]

encapsulates optimizations targeting a specific GPU. Figure 1.3 shows an overview of the

compilation process of a CUDA program.

CPU Serial Code

. . .

. . .

Device Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

CPU Serial Code

Device Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

Figure 1.4: Execution of a CUDA program:courtesy of [72]

Figure 1.4 illustrates the execution of a CUDA program, which typically starts with host

(CPU) execution. When a kernel function is called or launched, it is executed by a large

number of threads on a device. A kernel function is called in the host code with the extended

function call syntax. e.g. funcKernel << dimGrid, dimBlock >>(args) funcKernel

will be executed on GPUs. All the threads that are generated by a kernel launch are col-

lectively called a grid. Figure 1.4 shows the execution of two grids of threads. After all

threads in a kernel are completed, the corresponding grid terminates. The host resumes

the CPU code. When the host code encounters another kernel, it invokes the GPU com-

10

putation again. This example shows a simplified model where the CPU execution and

the GPU execution do not overlap. Many heterogeneous computer applications, including

newer CUDA programming models, can overlap computations between CPUs and GPUs

and even overlap GPU kernel executions.

1.3.2 Thread Hierarchy in CUDA

The CUDA programming model uses a three-level execution hierarchy consisting of threads,

blocks (or thread blocks), and grids. The smallest work unit is a thread. Threads may be

grouped into blocks (thread blocks). A block is also called as cooperative thread array

(CTA). When a kernel executes, it does so on a grid, which is one or more thread blocks.

This execution hierarchy is strongly coupled with (1) memory space, (2) synchronization,

and (3) dispatch and retirement granularity. In real hardware, threads are executed as a lock

step forming another execution unit, which is called warp.(Warps in NVIDIA terminology

and wavefront in AMD terminology.) The concept of warp is discussed in Chapter 1.4.1.

When the kernel, funcKernel << dimGrid, dimBlock >>(args) funcKernel

is invoked, there is a total dimGrid number of blocks and each block has a dimBlock

number of threads. Hence, in total a dimGrid × dimBlock number of threads executes

the same kernel.

Execution of threads/blocks

All threads in a block run concurrently. Here, concurrent execution does not mean all

threads are executed every single cycle. Rather, it means that all threads in a block have an

active state1 and are executed in a time-multiplexed fashion.

Hence, a thread block is the minimum dispatch and retirement unit. All threads in a block

are dispatched together and when all threads in the block are completed, the block can re-

tire. Currently, once a block is assigned a streaming multiprocessor(SM), it cannot be mi-
1There are some exceptional cases in which some threads might have terminated earlier than others. But mostly all threads are alive

during the execution time of a block.

11

Figure 1.5: CUDA: Bulk synchronization programming model:courtesy of [72].

grated to another SM. All threads in a thread block execute asynchronously until they reach

a barrier. Hence, the CUDA programming model is an instance of the bulk-synchronous

parallel programming model [33, 91]. In this model, as shown in Figure 1.5, programmers

use barriers to synchronize all the threads. However, there is no mechanism to synchronize

across all the blocks, since not all blocks are executed in the hardware at the same time.

A block can begin execution only when there are enough resources, such as registers, for

executing a block. In a given time, the number of running blocks is dependent on the re-

source requirement from a program and the available hardware resource. When all blocks

are finished, a kernel can finish. Hence, there is an implicit barrier between kernels.

The CUDA programming model does not specify the execution order among blocks. In

a given time, any number of blocks may be executing on the hardware. This flexibility

enables scalable implementation of the hardware as shown in Figure 1.6. Depending on

the machine’s resources, different number of blocks are executed at the same time. In a

low-cost system as in Figure 1.6 (left), only two blocks are executed together; on a current

high-end system, up to four blocks may be executing. Currently blocks are scheduled by

drivers. There is no specific mapping between blocks and cores.

12

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative
to other blocks. !

time!

Figure 1.6: CUDA Block execution patterns:courtesy of [72].

1.3.3 Memory Hierarchy

The execution hierarchy is also associated with a memory hierarchy. First, each thread has

its own private registers. For memory, a thread has its own memory space, which is called

the local memory. A block also has its own memory space, which is called the shared

memory. All threads in a block can access the same shared memory, while threads in other

blocks cannot. The entire kernel also has its own memory space, which is called the global

memory. This memory is so-named because any thread in any block may access the global

memory space. Table 1.1 summarizes the various memory spaces and their relation to the

execution hierarchy.

There are also constant memory and texture memory spaces, which are similar to global

memory in the sense that all threads and blocks may access them. However, these memories

are specialized for graphics applications. The texture memory is used to store texture data

(2D, 3D data) and the constant memory is used to store a very small number of constant

variables. Both texture memory and constant memory are read only from the device side.

Only the host processor can write data in these two memory spaces.

Table 1.4 in Section 1.4 shows typical access times to the various memory spaces in GPU

architectures.

Table 1.1 also compares traditional parallel programming paradigms. Accessing the shared

memory space is very similar to that in the distributed memory (MPI) programming model.

Between shared memory regions owned by different blocks, the CUDA program explicitly

copies data through the global memory space. However, in the global memory space, all

13

Table 1.1: Memory Space Comparisons.

space ' CPU Programming models in CPUs
Local memory within threads stack private memory space

Shared memory within blocks distributed memory space distributed memory programming
Global Memory all centralized storage OpenMP programming

Constant Memory all centralized read-only storage (very small)
Texture Memory all centralized read-only storage (medium size, 2D access)

threads can access the space so, the CUDA program is in this way similar to the OpenMP

programming model.

1.3.4 SIMT Execution

At a high level, the GPU programming model is based on the Single Program Multiple

Data (SPMD) model; a kernel function defines the program that is executed by each of the

thousands of fine-grained threads that compose a GPU application. Figure 1.11 shows that

all threads execute the same kernel but all access different memory locations.

Since the programming model is SPMD, most of the threads perform the same work.

Hence, a group of threads are executed in a lock-step fashion, executing the same instruc-

tion (on different data). This microarchitectural grouping of threads, which can affect both

control flow and memory access efficiency, introduces the concept of warp – a group of

threads that are executed together in lock step.

The execution model of G80 is called SIMT (single instruction multiple threads). SIMT is

very similar to SIMD with slight differences. When programmers write code, they can treat

each thread separately. The program model allows each individual thread to perform dif-

ferent work. In contrast, in SIMD, the vector width is determined by the ISA level and one

single instruction must perform the fixed vector width data at the same time. When within

a warp, if some threads take different paths than the rest of the threads, those branches are

called divergent branches. An example code is as follows.

14

if (threadId.x>0) {
// do work

}
(a) if statement

if (threadId.x%2) { //divergent branch
//do work 1
}

else {
// do work 2

}

(b) if-else statement

Figure 1.7: Examples of divergent branches

1.3.5 CUDA language extensions

CUDA extends the C function declaration syntax. The use of these keywords is summarized

in Table 1.2. Using one of global , device , or host , a CUDA programmer

can instruct the compiler to generate a kernel function, a device function or a host function.

A host function is simply a traditional C function that executes on host and can only be

called from another host function. By default, all functions in a CUDA program are host

functions if they do not have any of the CUDA keywords in their declaration.
Table 1.2: CUDA C keywords for function declaration.

Executed on the Only callable from the
device float DeviceFunc() device device
global void KernelFunc() device host

host float HostFunc() host host

Another important extension to C/C++ is the use of particular built-in variables for identi-

fying threads: threadIdx, blockIdx, and blockDim. These variables are associated

with pre-defined hardware registers that provide the identifying thread “coordinates.” In

particular, different threads will see different values of these variables; moreover, the val-

ues of these variables may be used to construct a globally unique integer thread ID for a

given thread. For instance, this facility lets a programmer prescribe a particular mapping

of threads to data, as we illustrate below.

15

// compute vector sum C=A+B
void vecAdd(float *A, float *B, float *C, int n)
{
for (int ii = 0; ii < n; ii++) C[ii] = A[ii] +B[ii];

}

int main()
{

// memory allocation for h_A, h_B, and h_C
// I/O to read h_A and h_B, N element each
...
vecAdd(h_A, h_B, h_C, N);

}

Figure 1.8: A simplified traditional vector addition C code example.

include <cuda.h>
...
void vecAdd(float *A, float *B, float *C, int n)
{

// memory allocation for h_A, h_B, and h_C
// I/O to read h_A and h_B, N element each

...
// 1. Allocate device memory for A, B, and C
// Copy A and B to device memory

// 2. Kernel launch code
// the device performs the actual vector addition

// 3. Copy C from the device memory
// Free device memory

}

Figure 1.9: vecAdd function on the CPU side that calls a GPU kernel.

1.3.6 Vector Addition Example

We show an example of a kernel invocation using a vector addition. First, we show a

traditional C program for a vector addition (~C = ~A + ~B) in Figure 1.8. The actual vector

addition operation is performed by a for loop. Now, the same code is changed to perform

vector addition in the device (GPU). Figure 1.9 shows only the host side of the code that

will launch the GPU code. Figure 1.10 shows the device (GPU) side of the code.

16

// Each thread performs one pair-wise addition
__global__
void vecAddKernel (float *A, float *B, float *C, int n)
{

int idx = threadIdx.x + blockDim.x*blockIdx.x;
c[idx] = A[idx] + B[idx];

}

Figure 1.10: A vector addition kernel function on the GPU side.

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

blockIdx.x	 =	 0	
blockDim.x	 =	 4	
threadIdx.x	 =	 0,1,2,3	
Idx=	 0,1,2,3	 	

blockIdx.x	 =	 1	
blockDim.x	 =	 4	
threadIdx.x	 =	 0,1,2,3	
Idx=	 4,5,6,7	 	

+	

blockIdx.x	 =	 2	
blockDim.x	 =	 4	
threadIdx.x	 =	 0,1,2,3	
Idx=	 8,9,10,11	 	

blockIdx.x	 =	 3	
blockDim.x	 =	 4	
threadIdx.x	 =	 0,1,2,3	
Idx=	 12,13,14,15	 	

+	 +	 +	 +	

idx	 =	 	 threadId.x	 +	 4*blockId.x	
C[idx]	 =	 A[idx]	 +	 B[idx]	

idx	 =	 	 threadId.x	 +	 4*blockId.x	
C[idx]	 =	 A[idx]	 +	 B[idx]	

idx	 =	 	 threadId.x	 +	 4*blockId.x	
C[idx]	 =	 A[idx]	 +	 B[idx]	

idx	 =	 	 threadId.x	 +	 4*blockId.x	
C[idx]	 =	 A[idx]	 +	 B[idx]	

Figure 1.11: All threads in a grid execute the same kernel code but access different memory locations. (Here, blockDim.x has the
value of 4.)

Device and Global Memory

In CUDA, the host and device have separate memory spaces.2 The actual hardware also

has separate physical memories as shown in Figure 1.1: CPUs have their own DRAM

and GPUs also have their own DRAM. The GPU’s DRAM memory space is called global

memory or device memory. In order to execute a kernel on a device, the programmer needs

to allocate global memory on the device and transfer pertinent data from the host memory

to the allocated device memory. This corresponds to Part 1 in Figure 1.9. Similarly, after

a kernel execution, the programmer needs to transfer result data from the device memory

back to the host memory and free up the device memory that is no longer needed (Part 3

in Figure 1.9). The CUDA runtime system provides API functions for managing data in

the device memory. For example, Part 1 and Part 3 of the vecAdd() function in Figure 1.9

need to use these API functions to allocate device memory, transfer data from device/host

2In CUDA 4.0, a unified memory space is available but the implementation of this facility is not yet complete.

17

to host/device, and free the device memory.

Memory Data Indexing

In the SPMD programming model, a single program handles multiple data (SIMD or

SIMT). Each thread operates different data. It either accesses its own register files or dif-

ferent memory locations. When accessing memory, a programmer or algorithm designer

typically expects a particular assignment of threads to data. To specify such mappings,

CUDA provides built-in variables for identifying threads, as discussed above. Figure 1.11

illustrates this concept for vector addition. Here, suppose we wish to add two vectors of

length 16, and we wish to assign 1 thread to perform each addition. Further, suppose we

create a pool of 16 threads, organized into 4 thread blocks with 4 threads each. Each thread

can discover its unique thread block ID using the built-in variable blockIdx.x, and its

unique thread ID within its block using the variable threadIdx.x, as shown in Fig-

ure 1.11. From these, we can easily translate the loop iteration variable in the sequential

code into an index for use in the threaded code. Also note the .x field notation; as it hap-

pens, there are also .y and .z fields, which may be used when the most natural way to

organize threads is two- or three-dimensional, as commonly occurs in imaging and graphics

applications.

1.3.7 PTX

PTX is the virtual ISA used by NVIDIA GPU architectures. A compiler converts PTX

code into the native ISA for a given GPU architecture. Register allocation and specific

architecture-based optimizations are performed during the code generation generation from

PTX to the native binaries.

1.3.8 Consistency Model and Special Memory Operations

The CUDA programming model does not specify a consistency model. Since the execution

model is bulk synchronous, the memory operations across threads can be reordered. One

18

may regard the CUDA memory model as being one of weak consistency. To enforce a

memory ordering, recent versions of the CUDA programming model provide built-in func-

tions for fences, e.g., threadfence() and mem fence(). These functions guarantee that all

the previous memory requests prior to these functions are visible to all threads. In other

words, threadfence() is used to halt the current thread until all previous writes to shared

and global memory are visible by other threads.3 The CUDA programming model also pro-

vides several atomic operations that are useful for implementing lock operations. Examples

of atomic functions are (atomic add/sub/exchange/inc/dec/min/max).

Often atomic operations and fence() functions are used together. For example,

1. store data

2. threadfence()

3. atomically mark a flag

These steps guarantee that if other block sees the flag, it will also see the data.4

1.3.9 IEEE floating-point support

Earlier GPU designs did not follow the IEEE floating-point standard, as these were not

deemed as being necessary for graphics applications. However, with the rise of GPGPU

programming, the floating-point implementations have increaesd in compliance with the

IEEE-754 standard, including single-precision support in G80 architectures as well as

double-precision support in the Fermi architecture.

1.3.10 Execution Model of OpenCL

Although our discussion thus far has focused on CUDA, a consortium has assembled an

alternative open-standard called OpenCL (Open Computing Language). OpenCL adopts

CUDA-like constructions but promises portability across a range of platforms, including
3(http://stackoverflow.com/questions/11570789/cuda-threadfence)
4(http://stackoverflow.com/questions/5232689/cuda-threadfence/5233737#5233737)

19

NVIDIA GPUs, AMD GPUs, and multicore CPUs from several vendors. Applications

written in OpenCL are compiled for the specific target architecture at runtime. The goal

of the OpenCL consortium is to develop an industry-wide standard parallel programming

environment and enable running a single application code on different types of devices

and/or creating kernels from a single application and dispatching them to the available

OpenCL-compatible computing devices at runtime. While CUDA is mainly built based on

a fine-grained SPMD (Single Program Multiple Data) execution model with limited inter-

thread communication OpenCL also supports the task-parallel programming model. The

OpenCL API provides data structures and routines to synchronize execution and share data

among kernels running on different devices.

As with CUDA, an application or a program partly consists of a number of functions or

kernels, which are executed on OpenCL devices. The host code assigns kernels to the

available computing devices through a command queue. To do so, the programmer needs

to set up an OpenCL context on the host side to handle memory allocation, data transfer

between memory objects and command queue creation for devices.
Table 1.3: CUDA vs. OpenCL.

OpenCL CUDA
Execution Model Work-groups/work-items Block/Thread
Memory Model Global/constant/local/private Global/constant/shared/local + Texture

Memory consistency weak consistency weak consistency
synchronization using a work-group barrier (between work-items) calling sync threads() between threads

1.4 GPU Architecture

This section sketches the design of current GPU architectures. Much of this discussion

pertains to NVIDIA’s Tesla/Fermi architectures. However, our descriptions are not intended

to correspond directly to any existing industrial product.

20

1.4.1 GPU Pipeline

Figure 1.12 shows an overview of a GPU architecture pipeline. It shows one streaming

multiprocessor, which is based on an in-order scheduler. Similar to traditional architectures,

it has fetch, decode, scheduler, register read, execution and write-back stages.

Fetch and Decode Stage

The front-end is very similar to traditional multithread architectures. Multiple PC registers

exist to support multiple warps. The scheduler selects a warp to fetch based on scheduling

algorithms, such as round-robin or greedy-fetch. The round-robin policy selects a warp

from the list of ready warps, which gives an equal priority to each warp. In the greedy-fetch

policy, the streaming multiprocessor fetches instructions from one warp until a certain event

occurs such as I-cache miss or fetching a branch instruction or an instruction buffer full.

Since the front-end has multiple warps to fetch, when it encounters such events, it simply

switches to fetch another warp. For the same reason, branch predictors play a diminished

role and are not typically implemented. Newer GPUs execute multiple warps at one cycle,

so the front-end could fetch instructions from different warps at the same cycle instead of

one warp at one cycle.

After an instruction is fetched, it is decoded in the decode stage. The streaming multipro-

cessor can have an instruction buffer for each warp or share a buffer for all warps.

Scheduler and Score Boarding

The GPU processor has an in-order scheduler. In the G80 architecture, it executes only

one warp at a time; later architectures like Fermi schedule multiple warps. The scheduler

uses a scoreboard to find a ready warp. So far, no GPU architectures have employed out-

of-order schedulers. However, the scheduler can select any warps that are ready. Hence,

from a programmer’s view point, a program might look like an out-of-order execution. For

example the scenario in Figure 1.13 is possible.

21

Scheduler	

I-‐cache	 Fetch	 unit	

Decoder	

.	

Memory	 access	 unit	

.	

Writeback	

Memory	

La
ne

	 0
	

La
ne

	 1
	

La
ne

	 N
-‐1
	

La
ne

	 0
	

La
ne

	 1
	

La
ne

	 N
-‐1
	

Ac>ve	 bit	 mask	 vectors/	
score	 boarding	 	

Register	

Scheduler	 (Score	 boarding)	

Figure 1.12: An overview of GPU streaming multiprocessor pipeline

22

Inst1	 	 //	 warp2	 	 warp	 2
Inst2	 	 //	 warp2

Inst1	 	 //	 warp3

warp	 3

Inst2	 	 //	 warp3

Inst1	 	 //	 warp4

warp	 4

Isnt2	 	 //	 warp4

warp	 1
Inst3
Inst2
Inst1

Inst1	 	 //	 warp1
Inst2	 	 //	 warp1

Inst3	 	 //	 warp2

Inst3	 	 //	 warp3
Isnt3	 	 //warp4

Inst3	 	 //	 warp1

(a)	 Sta'c	 code	 (b)	 Dynamic	 instruc'on	 trace	

Figure 1.13: An example of static and dynamic instruction traces

Scoreboarding Scoreboarding is one method to implement dynamic scheduling. It was first

introduced in CDC6600 [89]. It checks read-after-write and write-after-write data depen-

dencies. Scoreboarding does not provide the register renaming mechanism, but instructions

can execute out of order (i.e., instructions should be scheduled in-order but can be finished

(complete functional units/memory accesses) out of order) when there are no conflicts and

the hardware is available. In GPUs, scoreboarding is used to check any RAW or WAW

dependency, so instructions from the same warp can be executed even if earlier instructions

have not finished yet. This approach increases instruction/memory level parallelism.

Register read/write

To accommodate a relatively large number of active threads, the GPU processor maintains

a large number of register files. For example, if a processor supports 128 threads and each

thread uses 64 registers, in total 128×64 registers are needed. As a result, the G80 has a

64 KB register file and the Fermi supports 128 KB of register file storage per streaming

multiprocessors (in total, a 2MB register file). The register file should have a high capacity

and also high bandwidth. If a GPU has 1 Tflop/s peak performance and each FP opera-

tion needs at least two register reads and one register write, 2 T*32 B/s=64 TB/s register

23

.	 	

.	 	

.	 	
Register	 files	

.	

La
ne

	 0
	

La
ne

	 1
	

La
ne

	 N
-‐1
	

Warp	 0’s	 reg	 file

Warp	 M-‐1’s	 reg	 file

Warp	 ID.Reg	 ID .	 .	 .

Th	 0	 … Th	 N-‐1	

Register	 file	

Operand	 Buffering	

SIMD	
lanes	

Operand	 Collector	

Writeback	
.	

Figure 1.14: GPU Register File Accesses. Left: Using multiple banks (figure courtesy of [70]), Right: Using operand buffering (figure
courtesy of [41])

read bandwidth is required. Providing such high bandwidth is particularly challenging, so

several techniques have been used, including multiple banks and operand buffer/collectors.

Multiple banks The streaming multiprocessor provides high bandwidth by subdividing the

register file into multiple banks. Figure 1.14 shows the register file structure. All threads in

the warp read the register value in parallel from the register file indexed by both warp ID

and register ID [70]. Then, these register values are directly fed into the SIMD backend of

the pipeline.(Please remember that, each SIMD unit/lane is used by only one thread.)

Operand Buffer Gebhart et al. [41] show another example of the register file structure in

Figure 1.14. In that design, a buffer exists between the register file and the execution units.

Instead of reading all the necessary register values right before the values are needed, which

gives a very high pressure to the register file read/write ports, the processor can buffer the

register values.

The buffer can store register values that are read through multiple cycles, thereby reducing

the register read bandwidth requirement. In their design, four SIMT lanes form a cluster.

Each entry in the streaming multiprocessor’s main register file is 128 bits wide, with 32

24

Figure 1.15: Detailed diagram of Operand Collector [13]

bits allocated to the same-named register for threads in each of the four SIMT lanes in the

cluster. Several documents [13, 57, 63] indicate that they employ operand collector buffers.

These operand collectors are also used to aggregate result values. The operand collector

works as a result queue, which buffers the output from functional units before being written

back into the register file. Although the main benefit of the result queues is to increase the

effective write through-puts, it also provides further optimization opportunities. When the

outcomes of instructions are used only in the instructions dynamically scheduled close

enough, the output values can be forwarded to the input of the next operation. This behaves

just like a CPU’s forwarding network [57].

When an instruction requires multiple accesses to the same bank, the register values are

read over multiple cycles. Since the register addresses are determined statically, the com-

piler can in principle reduce or remove bank conflicts.

Register File Cache To reduce the pressure on the register file, Gebhart et al. propose a

register file cache [41]. Although a register file cache was originally proposed to reduce

the register file access time [29], in GPUs the register file cache is proposed to reduce reg-

ister reads and writes. Current GPU architectures do not support precise exceptions, so

register files do not have to maintain architectural states. Therefore, many write opera-

25

tions can be easily merged inside the register file cache, which may reduce register writes

significantly [70].

Execution stage

In the execution stage, an instruction accesses either the memory unit or functional units.

The memory system is discussed in Section 1.4.3.

The execution stage consists of vector processing units (AMD GPUs have a scalar unit as

well). One vector lane executes one thread, which is called a stream processor in NVIDIA’s

terminology. The simplest design would be to have the number of lanes and the warp

size be the same. However, this approach could also require a relatively large amount of

static power consumption and a large area. Instead, GPUs execute the same instruction

over multiple cycles. For example, the G80 has only eight vector lanes, and therefore the

streaming multiprocessor takes four cycles to execute 32 threads (i.e., one warp). The

computed results are temporarily stored and then written back to the register file together.

Back-to-back operation The execution width of GPU is wide (32 threads), which makes it

much harder to have a data forwarding path. For example, 32 × 32 B (total 1 KB) or 32 ×
64 B (total 2 KB) widths are quite large. Hence, the results are either written directly to the

register file or temporarily stored in a small buffer and then written back to the register file

over multiple cycles. In either case, the results are not available to dependent instructions

immediately after execution. This scenario is quite different from many modern CPUs,

where data forwarding is used widely. When there is a forwarding path, register read/write

cycles are not in the critical path and any back-to-back operations are executed immediately

following the execution latency. However, GPUs can avoid this penalty by utilizing thread-

level parallelism(TLP). The pipeline simply schedules instructions from other warps, so it

can hide the latency. When there is enough TLP, the execution and register write latency

can be hidden.

Volkov discussed this issue in his GTC’10 talk [95]. When there are four threads, the

26

streaming multiprocessor can simply switch to other threads so the execution latency can

be hidden. However, when there is only one thread, these back-to-back operations take

much longer. This performance issue is also discussed in Chapter 4.1.

Special function units To date, NVIDIA architectures have adopted SIMD execution units

and AMD architectures have used VLIW architectures. In addition, special function units

provide VLIW-like effects in NVIDIA GPU architectures. Graphics applications often

require transcendental functions for algorithms such as geometric rotations and scaling. It is

often possible to use implementations of the corresponding transcendental functions that do

not have ultra-high accuracy. Many GPU architectures therefore provide fast, approximate

implementations in hardware-based special function units (SFUs). Since many programs

do not need these SFUs all the time, the processor has only two-four SFUs in addition to

its regular FP units. The scheduler can issue SFU instructions and regular FP instructions

together if they are independent, e.g., when the instructions come from different warps. In

such cases, these SFU units provide additional execution bandwidth. Section 4.1 discusses

this benefit in a more detail in real computation.

1.4.2 Handling Branch Instructions

Branches are particularly challenging to implement well in GPUs. Recall that current GPU

hardware implementations fetch just one instruction for each warp. When this instruction

is a divergent branch, threads within a warp will need to execute different instruction paths.

This challenge is common to GPUs and earlier vector processors.

The solution in vector processors is to use vector lane masking or predication [17, 81].

However, the problem in GPUs is slightly different. Not only does part of the SIMD unit

need to be predicated, but the processor also needs to fetch instructions from different paths.

Indeed, the existence of divergent branch is the major difference between SIMD and SIMT

execution. Fung et al. first described this problem in GPGPUs [38].

Figure 1.16 illustrates the problem. Suppose that the warp size is 4 and that two threads take

27

if (thread.Idx < 2) {
// do work 1

}
else {

// do work 2
}

Figure 1.16: Divergent branch example

the taken path while the remaining two threads go to the fall-through path. The streaming

multiprocessor has to fetch both paths one by one. An active mask indicates which threads

participate in each path. The active mask bit information is also used in any register read

or write.

The most naı̈ve solution is SIMD serialization. When divergence occurs at a given PC, the

processor serializes the threads within a warp. This will cause performance degradation.

A stack-based reconvergence solution is proposed to handle divergent branches [38, 39,

62, 100]. In their scheme, divergent threads execute without lock-step until the end of the

program; the processor detects the point at which the threads can rejoin in a lock-step again,

i.e., when they may form a warp again. The control-flow reconvergence point is the point

where all threads merge. When a program diverges, the processor inserts the reconvergence

point into the stack. When threads in one path reach the reconvergence point, the processor

fetches instructions from other remaining paths. Once all the divergent paths are fetched, in

other words once all threads reach their reconvergence points, the divergent threads merge.

In the stack-based reconvergence system, the streaming multiprocessor uses a hardware

stack structure to record the join location and the next fetch address. When the streaming

multiprocessor fetches a divergent branch, it first stores the PC address of the reconvergence

point (control-flow merge point) into the stack. Then, the streaming multiprocessor fetches

one path first. Since there is only one PC for each warp, the streaming multiprocessor must

store the other path PC address in the stack as well. The compiler identifies the control-

flow merge point and includes that information. Each stack entry has three fields: the PC

address of the reconvergence point, active mask bits, and the next PC address. Figure 1.17

illustrates the process [38, 70]. Figure 1.17(a) shows a control flow graph. Figure 1.17(b)

28

Veynu’s	 MICRO11	 paper	

1111	

1111	

1011	 0100	

Divergent	
branch PC:	 A

PC:	 B PC:	 C

PC:	 D Control	 flow	
merge	 point

(a)	 Control	 flow	 graph

Current	 PC:	 A	
AcFve	 mask:	 1111	
Divergence	 stack

Reconvergence	
(Rec)	 PC

AcFve	
mask

Execute	
PC

(b)	 IniFal	 state

Current	 PC:	 B	
AcFve	 mask:	 1011	
Divergence	 stack

Rec	 PC AcFve	 mask
Execute	

PC

(c)	 AJer	 execuFng	 A

D
D

0100
1111

C
D

Divergent	
entry

Join	 entry

Current	 PC:	 C	
AcFve	 mask:	 0100	
Divergence	 stack

Rec	 PC AcFve	 mask
Execute	

PC

(d)	 AJer	 execuFng	 B

D 1111 D Join	 entry

Current	 PC:	 D	
AcFve	 mask:	 1111	
Divergence	 stack

Rec	 PC AcFve	 mask
Execute	

PC

(e)	 AJer	 execuFng	 C

Figure 1.17: A stack-based divergent branch handling mechanism (figure courtesy of [70])

shows an initial state of the stack. When a processor fetches a divergent branch, it pushes

a join entry in the stack. Then, the processor chooses one of the path and it pushes the

other path information in the stack. The active mask field is set to the current active mask.

(Figure 1.17 (c) shows the stack after executing branch A.) The top of the stack shows the

join entry and active mask of the path. When a processor fetches an instruction, it always

checks whether the next PC address matches with the reconvergence PC. After fetching

PC B, the next PC address is D, which is the same value in the top of the stack. Hence,

the processor pops the top entry from the stack and starts to fetch from PC C and uses the

active masks in the entry. (Figure 1.17 (d) shows the state of the stack after executing PC

B.) Since the next PC address is again D, the top entry in the stack is popped. The active

mask is all 1s, so now all threads are participating the path. (Figure 1.17 (e) shows the state

after executing PC C).

Solutions to reduce the impact of divergent branches in hardware Several solutions are proposed

to handle the divergent branch problem. To utilize idle threads in warps, Fung et al. pro-

29

posed a dynamic warp formation [38, 39]. At run-time, the hardware forms a new warp

by combining threads from the same path. Meng et al. proposed dynamic warp subdivi-

sion [69]. Dynamic warp subdivision handles not only divergent branches,but it also at-

tacks divergent memory operations. In divergent memory operations, some threads hit the

cache but some do not so threads generate different memory latencies within a warp. Sev-

eral other solutions such as dynamically changing the execution units such as thread com-

paction [40], large warp formation [70], compaction based on the benefit prediction [79]

[79], interweaving threads [20, 32] at dynamic time are also proposed.

Solutions to reduce the impact of divergent branches in software Several compiler-based solu-

tions also exist. Zhang et al. reduce divergent branches by remapping data locations[105]

Han and Adelrahman proposed compiler solutions [46]. Diamos et al. rearrange threads

based on the frequency at static time [32]. Their solutions can also reduce the divergent

branches.

1.4.3 GPU Memory Systems

The GPU memory system has several levels of hierarchy. Because there can be a large

number of memory requests on-the-fly, the system requires several large buffers and/or

queues.

A streaming multiprocessor has a cache to supply fast data accesses. In earlier GPGPU ar-

chitecture like the G80, there were only software-managed first-level caches. More recent

GPGPU architectures adopt a more aggressive cache hierarchy. In Fermi, the first-level

cache can be controlled only by software (program) or in a hybrid software-hardware man-

aged fashion. If a program controls a software managed cache, the instruction explicitly

brings data to the cache and evicts it. The shared memory space in CUDA is explicitly con-

trolled by software. Since memory addresses are determined at run-time, unlike register

files, there could be bank conflicts in the cache.

Table 1.4 shows different memory spaces and typical memory latencies. So far, computer

30

Memory Space Tesla Fermi access latency
Local memory DRAM DRAM and hardware cache 100s cycles

Shared memory software cache software cache 4 32 cycles
Global memory DRAM DRAM and hardware cache 100s cycles

Constant memory DRAM and constant cache DRAM and constant cache 100s cycles or 4 cycles (cache hit)
Texture memory DRAM and texture cache DRAM and texture cache 100s cycles or 4 cycles (cache hit)

Table 1.4: Memory space and hardware access time [82, 98]

Figure 1.18: Coalesced Uncoalesced memory requests. Left: All threads are accessing sequential memory addresses (coalesced), Right:
threads are accessing non-sequential memory addresses (uncoalesced): courtesy of [72]

architects have presented two major problems in the memory system. One is managing the

large size of buffers, and the other is dealing with long memory latency.

DRAM system GPU uses GDDR which is specialized for high-bandwidth DRAMs. It

increases the bandwidth of the memory system but dram latency is a bit slow. GDDR

has a high number of DRAM banks to increase the bandwidth even further. Typically

GDDRs provide higher DRAM bandwidth than DDR, because of the wider burst length

and DRAMs are directly connected to processors. In CPUs, DRAMs are connected through

DIMMS which slows down the communication bandwidth

DRAM scheduling algorithms are tuned to provide high bandwidth. FRFCFS is the best

way to increase through-put oriented computing. Since GPGPU applications have high

spatial locality, FRFCFS shows much higher performance than FCFS [103].

Multiple memory transactions The basis of SIMD execution unit is executing multiple data

at once. If the data is in the register, all the register files can be accessed together. The

challenges result when a warp executes memory operations. The memory addresses can

be anywhere. In earlier GPUs, this was one of the most important performance optimiza-

tions [82, 83, 96]. When all threads within a warp accesses sequential memory addresses,

31

C C D M M C

C C D M M C
Context Switch W0

W1

Memory Request
Memory Request

Memory Request

Memory Request

Can	 you	 draw	 them	 with	 the	 previous	 color	 boxes?	 	
You	 can	 introduce	 “D”	 with	 a	 different	 color.	 C	 is	 comp	 and	 M	 is	 memory	 	

C M C C M DW0

C M C C M DW1

Context Switch

Memory Request
Memory Request

Memory Request

Memory Request

Figure 1.19: Multiple in-flight memory requests (Even though 2 warps are running, 4 memory requests are concurrently serviced)

these memory addresses can be easily represented by a few transactions. However, if mem-

ory addresses are all scattered, these memory operations will generate multiple transac-

tions. In earlier GPUs, especially earlier than CUDA computing version 1.2, these were

called coalesced and uncoalesced memory addresses as shown in Figure 1.18. Coalesced

memory addresses generate one to four memory transactions depending on the transaction

sizes and uncoalesced memory addresses generates up to 32 transactions. After some hard-

ware optimizations, the hardware combines as many memory addresses as possible and

generate fewer transactions. Coalescing is used to combine as many requests as possible.

Still reducing the number of memory transactions is one of the essential performance opti-

mizations. The hardware typically has a special hardware unit to handle this scatter/gather

operation.

Multiple in-flight memory requests Naturally, GPU processors can have high MLP which is

the same as TLP. To increase the MLP even more, the GPU processors employ stall at

dependent instructions. Even though GPUs have an in-order processor, cache misses do

not prevent from execution of an instruction from the same thread. The processor can still

execute instructions from the same warp until instructions that are dependent on the cache

misses stall the warp. Figure 1.19 illustrates this behavior. This gives a small window of

exploiting MLP within a warp. In this way, this can increase the number of in-flight mem-

ory requests. When a program has high TLP, it does not affect too much. However, when

there are fewer threads, exploiting MLP effects can increase the total MLP significantly.

32

1.5 Other GPU Architectures

1.5.1 The Fermi Architecture

Major successors to the G80 design are based on the Fermi architecture, which was first

released in 2010. The Fermi architecture has taken a significant leap forward in GPU archi-

tecture design by providing a two-level cache hierarchy to better support the applications

that are not able to use the GPU’s shared memory efficiently. Among other major improve-

ments are the improved double precision performance, faster atomic operations to reduce

the cost of inter-thread-block communication, and the error correction code (ECC) support.

A more detailed description of the hardware and software features of the Fermi architecture

can be found in [51].

1.5.2 The AMD Architecture

ATI stream technology which is supported by all modern AMD GPUs such as ATI Radeon

and FireStream has also provided massively parallel computation. ATI originally had sup-

ported Brook+[3] to provide GPGPU features, but instead ATI now supports OpenCL. So

far the major difference between NVIDIA’s GPU architectures and AMD’s GPU architec-

tures is that AMD has a SIMD-VLIW architecture. Four ALUs and one branch or five

ALUs and one branch unit are packed together, all of which execute the same instruction.

AMD can easily support scalar instructions as one of the VLIW units but NVIDIA so far

only has vector units.

Lately, the greatest advantage of AMD architectures has been the fusion [6] architecture,

which combines both CPUs and GPUs in the same die. Both CPUs and GPUs are inte-

grated and share the same memory system. AMD’s fusion architecture is the first OpenCL

computing platform that actually supports a heterogeneous computing system. Sharing the

same memory system dramatically reduces the communication cost between CPUs and

GPUs. However, so far, only low-end GPUs are integrated in the fusion architecture so the

AMD fusion architecture has not yet been widely used for GPGPU computing. Nonethe-

33

less, we predict that soon AMD’s architecture will be widely used as GPGPU computing

platforms.

1.5.3 Many Integrated Core Architecture

Intel’s Many Integrated Core (MIC) architecture also targets high-throughput computing

processors [26]. Unlike AMD and NVIDIA, Intel’s MIC architecture executes native x86

ISAs, which is the greatest strength of Intel’s platforms. MIC also has a wide SIMD unit

(512bits wide) to produce high-throughput computing, but it also has most of the features

that are traditionally available in CPU architectures, such as virtual memory, fully coherent

cache, and a branch predictor. However, the number of concurrently running threads is

much smaller (4) than that of NVIDIA or AMD. Hence, MIC is not only specialized for

through-put oriented computing, but also targets latency-limited applications.

1.5.4 Combining CPUs and GPUs on the same Die

Intel’s Sandybridge and AMD’s Llano put both CPUs and GPUs on the same die. So far,

the GPU performance is much lower than discrete GPUs. Power consumption and memory

bandwidth could be the main reason to combine powerful GPUs and CPUs on the same

die. Combining CPUs and GPUs introduce several resource management problems. The

research on resource management such as cache partitioning [61], and DRAM scheduling

policy [10, 55]

34

Chapter 2

Performance Principles

Developing algorithms for GPGPUs is fundamentally about applying the same long-studied

principles of parallelization and I/O-efficient design relevant to other shared memory par-

allel platforms. This chapter reviews these principles, focusing on recent results in both the

theory and practice of parallel algorithms, and suggests a connection to GPGPU platforms.

Ideally, applying these principles with the right cost models leads not only to provably ef-

ficient algorithms, but also offers hints to architects about the features and configurations

likely to have the most impact on the performance of a given computation. Thus, we be-

lieve this discussion will be useful to practitioners in various aspects of parallel computing,

not just those interested specifically in GPGPUs.

2.1 Theory: Algorithm design models overview

To first order, the two characteristics of any algorithm likely to determine its performance

are (a) how much parallelism is available, and (b) how much data must move through the

memory hierarchy. Thus, when designing an algorithm, we would like an abstract machine

model that allows us to assess our algorithm along these dimensions. In such a model,

we might want to do the same kind of “big-O” analysis to which we are accustomed in

the sequential case. Doing so would allow us to get the high-level algorithm design right

before moving on to lower-level performance optimization and tuning. Importantly, the

35

abstractions should not be so cumbersome that we cannot in a reasonable amount of time

design and analyze candidate algorithms.

Although the state of algorithm design models is in flux, we have reasonable options. For

GPGPUs and other manycore-style processors, two suitable models are the so-called work-

depth (or work-span) model for analyzing parallelism [15, 28, 54], and the external mem-

ory model for analyzing I/O behavior in the presence of a memory hierarchy [4, 93, 94].

These two models evolved separately, but recent work has shown ways in which to connect

them [16, 30]. The remainder of this chapter reviews aspects of this work.

2.2 Characterizing parallelism: the Work-Depth Model

In the work-depth model, we represent a computation by a directed acyclic graph (DAG) of

operations, where edges indicate dependencies, as illustrated in Figure 2.1. Given the DAG,

we measure its work,W (n), which is the total number of unit-cost operations for an input of

size n; and its depth or span, D(n), which is its critical path length measured again in unit-

cost operations. Note thatD(n) ought to be a lower bound on the minimum execution time;

and the ratio W (n)/D(n) effectively measures the average amount of available parallelism

as each critical path node executes. In fact, the ratio D(n)/W (n) is similar to the concept

of a sequential fraction, as one might use in evaluating Amdahl’s Law [7, 47, 99]. Thus,

our implicit goal is to maximize W (n)/D(n), or, alternatively, minimize D(n)/W (n).

Importantly, this model makes no explicit reference to the number of processors. In this

sense, we may regard the model as being machine-independent. Nevertheless, if we want

to know how many processors to throw at an algorithm, W (n)/D(n) is a suitable guide.

However, it is easy to maximize W (n)/D(n) and still get a bad algorithm. For instance,

we can artificially inflate the total operations W (n). Thus, we should also try to ensure our

algorithm is work-optimal, a property which says that W (n) is not asymptotically worse

than the best sequential algorithm. Indeed, work-optimality is a critical requirement.

Let’s see why work-optimality matters. First, note that it is possible to estimate (crudely)

36

1

2

3

D(n)

…

D(n)
W(n) = total nodes

= critical path

Figure 2.1: A parallel computation in the work-depth (or work-span) model. The computation for an input of size n is a directed acyclic
graph with W (n) nodes, each representing a unit-cost operation; edges representing strict dependencies among these operations; and a
critical path of lengthD(n) nodes. Our goal is to design algorithms that achieve work-optimality while maximizing the average available
parallelism, W (n)/D(n).

37

2 3 4 n

…

1

+ + + +

W (n) = ⇥ (n)

D(n) = ⇥ (n)

Figure 2.2: Work-depth example: Summing a list of n elements with a sequential algorithm. Both the work and the depth are Θ (n),
meaning the available parallelism W (n)/D(n) is a constant.

the algorithm’s running time given p identical processors, using a theorem by Brent [19].

This theorem says that if the nodes of the DAG have unit cost and the machine has p

processors, then it is possible to schedule the DAG so that the time to execute (compute)

the DAG, Tcomp(n; p), is

Tcomp(n; p) = D(n) +
W (n)−D(n)

p
. (2.1)

Suppose we have designed a highly parallel algorithm, with W (n) � p · D(n), and fur-

thermore that our algorithm only exceeds the work W0(n) of the best sequential algorithm

by a factor of ε(n), i.e., W (n) = W0(n) · ε(n). Then, the speedup of our algorithm on

p processors is roughly W0(n)/(W (n)/p) = p/ε(n). That is, the best possible speedup of

p will be reduced by ε(n). Consider the relatively small factor of ε(n) = log n. Even for

n = 1024, log n = 10, meaning the best possible speedup is an order of magnitude less

than we might hope for. Put another way, to even match the sequential algorithm, we need

p > ε(n). Thus, if we are deciding between an O(n) sequential algorithm and an O(n2/p)

parallel algorithm, we will need p = n just to match the sequential case. These examples

underscore the importance of work-optimal algorithms.

Example: Reduction. Suppose we wish to compute the sum of n values. A sequential algo-

rithm would lead to a DAG like the one shown in Figure 2.2. In this case, we perform Θ (n)

38

+

+ +

+ +

+

1 2 3 4

+ +

+

5 6 7 8

+ +

+

9 10 11 12

+ +

+

13 14 15 16

W (n) = O (n)

D(n) = O (log n)
Figure 2.3: Work-depth example: Summing a list of n = 16 elements with a tree algorithm.

operations but the critical path is also of length Θ (n). Thus, the available parallelism—or

ratio ofW (n)/D(n)—is a constant: no matter how large the input, there is never more than

a fixed amount of concurrency.

An algorithm with more parallelism might instead have the DAG shown in Figure 2.3.

This algorithm organizes the additions into a tree, where independent subtrees can be per-

formed in parallel. This tree still performs W (n) = Θ (n) total operations, and is thus

work-optimal. However, the depth of this DAG is just D(n) = Θ (log n), the height of

the tree. Thus, as n grows, so does the average available parallelism, in the amount of

W (n)/D(n) = Θ (n/ log n). By this measure, this algorithm is a better one than the se-

quential algorithm, just as we would expect.

In the specific case of Figure 2.3, where n = 16, the work W (16) = 31 nodes and the

depth D(16) = 5. (Imagine that the “input” nodes at the top of Figure 2.3 represent load

operations to retrieve the values.) Then, W (16)/D(16) = 31/5 = 6.2. Thus, there are

an average of ≈ 6 nodes available to be executed in parallel during the computation. This

implies that we could not gainfully use more than about six “processors.”1

1In this case, we really mean six adders.

39

C(i,j)

B(:,j)

A(i,:)

C A⇥B

cij
nX

k=1

aik · bkj

W (n)

D(n)
= O

✓
n3

log n

◆

Figure 2.4: Work-depth example: Multiplying two n× n matrices.

40

Example: Matrix multiply. Consider the multiplication of two n×n matrices, C ← A×B,

as illustrated in Figure 2.4. Each output element cij is the dot product between Ai,:, which

is row i of A, and B:,j , which is column j of B. A dot product involves an elementwise

multiplication of the vectors, followed by a sum-reduction of those results. This dot product

requires Θ (n) operations. Since there are n2 elements of C, the work W (n) = Θ (n3).2

To compute D(n), observe that the n2 output elements have no dependencies among them;

the only dependencies occur during the reduction to compute each output element. Thus,

D(n) = Θ (log n). The ratio of W (n)/D(n) = Θ (n3/ log n) is asymptotically very high,

and so our analysis confirms what we would expect, namely, that a matrix multiply has

plenty of parallelism for even modestly sized values of n.

2.3 Characterizing I/O behavior: the External Memory Model

Besides parallelism, data movement is the other critical characteristic of an algorithm. To

analyze data movement, we consider the classical external memory model [4].

Consider first a sequential processor with a two-level memory hierarchy consisting of a

large but slow memory and a small fast memory of size Z words; work operations may

only be performed on data that lives in fast memory. This fast memory may be an automatic

cache or a software-controlled scratchpad; our analysis here is agnostic to this choice. We

may further consider that transfers between slow and fast memory must occur in discrete

transactions (blocks) of size L words. When we design an algorithm in this model, we

again measure the work, W (n); however, we also measure Q(n;Z,L), the number of L-

sized transfers between slow and fast memory for an input of size n. There are several ways

to design either cache-aware or cache-oblivious algorithms and then analyzeQ(n;Z,L) [4,

36, 56, 102]. In either case, when we design an algorithm in this model, we again aim

for work-optimality while also trying to maximize the algorithm’s computational intensity,

which isW (n)/ (Q(n;Z,L) · L). Intensity is the algorithmic ratio of operations performed

2We assume a conventional matrix multiply, rather than an asymptotically faster algorithm, such as Strassen’s [28].

41

Slow memory

Core

L words per
transaction

Fast memory
(total size = Z)

Q(n; Z, L) =
words transferred

Figure 2.5: An abstract machine with a two-level memory hierarchy. The fast memory (e.g., cache or local-store) can hold Z words. Our
goal is to design algorithms that, given an input of size n, are work-optimal but also minimize the number of transfersQ(n;Z) between
the slow and fast memories (alternatively, that are work-optimal and maximize the computational intensity, W (n)/Q(n;Z).

42

to words transferred and, in practice, is often converted and cited as the algorithm’s “flop-

to-byte” ratio [97].

Example: Reduction. Let us again consider the sum-reduction problem (Figure 2.3), but

this time analyze its I/O behavior. For simplicity, assume n, Z, and L are all powers of

2 with n > Z > L. A reduction tree with Z input nodes, where the input nodes are

stored contiguously in slow memory, requires exactly Z/L transfers and Z − 1 operations

(additions) to evaluate. These are just the transfers to load the input nodes, after which no

further I/Os are necessary to sum the elements. Any n-element list can be broken up into

n/Z partial reduction trees, thereby incurring Q(n;Z,L) = n/L transfers and W (n) =

n − Z additions. That is, we need only perform the compulsory loads and the intensity is

1− Z/n = Θ (1).

In terms of the architecture, this intensity is independent of Z and L. Therefore, provided

the architecture can deliver at least the required number of flops per byte, adding more

cache or increasing the line size cannot fundamentally improve performance or scaling.

Example: Matrix multiply. Algorithms for conventional matrix multiply perform W (n) =

Θ (n3) operations on Θ (n2) words of data; thus, a naı̈ve lower bound on Q(n;Z,L) would

be Ω (n2/L) transfers. The intensity could therefore be as high as O (n).

Consider two candidate algorithms for matrix multiply. The first is the one shown in Fig-

ure 2.4, which is based on performing n2 reductions of length n each. This algorithm results

in Q(n;Z,L) = O (n3/L) transfers, assuming the preceding analysis for reductions. The

intensity is therefore just O (1). Compared to our naı̈ve estimate of O (n), it is likely there

is a better algorithm.

The well-known alternative appears in Figure 2.6. This algorithm updates blocks of C at a

time, rather than a single element of C, and streams through blocks of A and B as shown.

That is, the algorithm performs block updates instead of row/column dot products. In this

case, if

43

C(I,J)

B(K,J)

A(I,K)

Q(n; Z, L) = O
✓

n3

L
p

Z

◆

Figure 2.6: A blocked matrix multiply performs O
(
n3/(L

√
Z)

)
I/Os in the external memory model, assuming that (i) each of the

three blocks ofA, B, and C needed to compute an output block of C are stored contiguously; and (ii) that these three blocks just fit into
the fast memory.

44

• the block size is b× b;

• three blocks can be fit in fast memory at once, i.e., 3b2 ≤ Z; and

• blocks are stored contiguously, so that just b2/L transfers are required to load a block;

then it can be shown thatQ(n;Z,L) = O
(
n3/(L

√
Z)
)

; therefore, the intensity isO
(√

Z
)

.

If Z = Ω (L2), the intensity of this algorithm is much higher than that of the naı̈ve algo-

rithm. In practice, a local-store or cache size Z is typically much larger than the corre-

sponding minimum transfer or line size L, so this assumption is likely to hold.3

One might reasonably ask whether this value of Q(n;Z,L) can be improved upon further,

given our naı̈ve lower-bound estimate ofO (n2). For general matrices and the conventional

matrix multiply algorithm, the answer is that no algorithm can move fewer words than the

blocked algorithm—the blocked algorithm is asymptotically optimal. For a highly readable

analysis of this case, see Irony et al. [53]. So-called cache-oblivious approaches also only

match this bound [37].

A few summary observations about I/O. The case of I/O analysis is evidently more complex

than the analysis of parallelism in the following ways:

• The I/O analysis is not independent of the machine parameters, the way the work-

depth analysis was independent of the number of processors, p.

• The two example I/O analyses both included assumptions of contiguous layouts. That

is, inclusion of the parameter, L, forces the algorithm designer to take data layout into

account.

• Recall that for matrix multiply, we were able to state a lower bound on the number of

I/O transfers for any algorithm. This is one area in which theoretical analysis, when

further refined to account for additional architectural details, can provide insights into

performance that are difficult to extract from code or benchmarks.

3An exception to this rule is a TLB, which for typical configurations is like a cache with very large lines and having a capacity of a
small number of lines.

45

In addition, we might ask what the relative asymptotic pay-off from increasing hardware

memory resources (e.g., Z and L) is relative to increasing hardware parallelism (e.g., p).

For example, for compute-rich matrix multiply, we see that doubling Z yields a
√

2 re-

duction in I/Os, whereas doubling L cuts I/Os in half. Then, if the cost of doubling Z and

doubling L are equal, it would be more cost effective to double L. This analysis confirms an

intuition behind GPU design of favoring significant increases in memory level parallelism

(larger L) over bigger caches (larger Z).

2.4 Combined analyses of parallelism and I/O-efficiency

The preceding discussion treats parallelism and locality (I/O-efficiency) separately. How-

ever, for a GPGPU platform, we might prefer an analysis that considers these two algorith-

mic attributes simultaneously.

There are several models that combine parallel and I/O analysis within a single frame-

work [8, 14, 16, 25, 92]. These differ primarily in whether

• they consider private [8] or shared caches, or both [14, 16, 25];

• they model only I/O transactions [8, 14, 16, 25] or include other costs, such as latency

and bandwidth [92];

• the resulting algorithms are resource-aware (e.g., cache-aware) [8, 14, 92] or resource-

oblivious [16, 25];

• and whether scheduling strategies or hints are assumed as part of the execution model [8,

14, 16, 25, 92] or not [92].

From this work, important design principles are emerging that should be directly relevant

to current and future GPGPU platforms. Here is one example. Blelloch, Gibbons, and

Simhadri suggest that nested-parallel algorithms with low depth and low sequential cache

complexity4 are likely to have good cache-efficient parallel behavior as well [16]. By se-
4. . . in the cache-oblivious model [36].

46

quential cache complexity we mean a “natural” sequential ordering of the nested-parallel

execution, such as depth-first execution of threads. More precisely, suppose we design

a nested-parallel algorithm with work W (n), depth D(n), and sequential cache misses

Q1(n;Z,L) on a one-level memory hierarchy with private caches of size Z each and line-

size L, and use work-stealing scheduling. Then, Blelloch et al. show that the total number

of cache misses Qp(n;Z,L) in a parallel execution is bounded as follows:

Qp(n;Z,L) < Q1(n;Z,L) +O
(
p · Z ·D(n)

L

)
(2.2)

with high probability [2]. One might have reasonably guessed an upper-bound of p ·
Q1(n;Z,L), i.e., that the algorithm could incur as many as p times more misses in the

multithreaded case, but Equation (2.2) shows otherwise. Note also that the algorithmic

depth shows up in the bound; the principle, then, is that low depth is good not just for

parallelism, but also for locality.

Though this kind of result is interesting, there is not yet a clear consensus on which of

the various analysis models is “best,” either in terms of the ease in which one can design

algorithms in the model (compared to, say, designing sequential RAM or parallel PRAM

algorithms) or the quality of the resulting algorithms when implemented for a real machine.

This lack of consensus likely stems in part from the current instability in the architectural

design space. Nevertheless, we feel it is useful and important to track the theoretical devel-

opments, as they could inform future hardware design as well, as the next section suggests.

2.5 Abstract and concrete measures

Work, depth, and the number of I/Os or cache misses are all abstract quantities, whereas

the ultimate goal—if it is possible—would be to make stronger statements about execution

time and time-scalability. Such a time-based analysis minimally requires an architectural

cost model. If we are able to do so, what would the theory tell us?

Consider an example of the generic manycore processor system shown in Figure 2.7. This

system has p cores, each of which can deliver a maximum of C0 operations per unit time;

47

Slow memory

1

L words per
transaction

! latency
" bandwidth

2 3 p

C0 op/s per core

Fast memory
(total size = Z)

…

Figure 2.7: An abstract manycore processor with p cores, each with a peak execution rate of C0 operations per unit time; an aggregate
fast memory capacity of Z words partitioned among the cores; and a channel between slow and fast memory such with latency α time
units, bandwidth β words per unit time, and minimum transaction size L words.

48

a fast memory of total size Z words, partitioned among the cores; and a memory system

whose cost to transfer m · L words is α + m · L/β, where α is the latency and β is the

bandwidth in units of words per unit time.5

Equation (2.1) gives us a way to estimate the time, Tcomp(n; p), just to complete the com-

putational work for this system. To estimate the I/O time, Tmem(n), suppose we know

Qp(n;Z,L) and charge the full latency α for each node on the critical path. Let us fur-

ther assume that all Qp(n;Z,L) memory transfers will in the best case be aggregated and

pipelined by the memory system and thereby be delivered at the peak bandwidth, β. Then,

Tmem(n; p, Z, L, α, β) = α ·D(n) +
Qp(n;Z,L)(n) · L

β
. (2.3)

(This cost model is not definitive, but sufficient to illustrate a few points.)

A necessary condition for this computation to run at peak speed (i.e., to be compute-

limited) is that the compute time exceed the memory time, i.e., Tcomp ≥ Tmem. If this

condition holds, then we can in principle hide the cost of data movement. We refer to this

constraint as a balance constraint, which is similar to the classical definition of system bal-

ance proposed by Kung, among others, and as used in queuing theory [21, 48, 59, 65]. After

imposing this balance constraint and applying a little algebra, we arrive at Equation (2.4):

p · C0

β︸ ︷︷ ︸
balance

1 +

α · β/L
Qp(n;Z,L)/D(n)︸ ︷︷ ︸

Little’s Law

 ≤

W (n)

Qp(n;Z,L) · L︸ ︷︷ ︸
intensity

1 +

p

W (n)/D(n)︸ ︷︷ ︸
Amdahl’s Law

 . (2.4)

Compare Equation (2.4) to Kung’s classical balance principle [59], which in our notation

would have been:

p · C0

β
≤ W (n)

Qp(n;Z,L) · L. (2.5)

Equation (2.5) says that the machine’s inherent balance point (left-hand side) should be

no greater than the algorithm’s inherent computational intensity (right-hand side). Indeed,

5This abstract machine is intended to very coarsely approximate an NVIDIA Fermi-class architecture, where Z might represent the
aggregate register and multiprocessor-private first-level local-store and cache capacity.

49

Equation (2.5) also appears within Equation (2.4), but with two additional correction terms

that, as it happens, embody familiar and intuitive performance engineering principles.

For example, the α · β/L factor in Equation (2.4) is latency times bandwidth; if this factor

is large, an algorithm designer can compensate by finding an algorithm with a high value

of Qp(n;Z,L)/D(n), which we can interpret as the average degree of available memory-

level parallelism. Indeed, this term is just a restatement of Little’s Law. Similarly, we can as

noted previously interpret the factor of W (n)/D(n) as the inverse of the Amdahl fraction,

making the term in which it appears an incorporation of Amdahl’s Law. Interestingly, Equa-

tion (2.4) unifies and relates these classical principles [30]. Of course, Equation (2.4) is still

somewhat notional, as the algorithm characteristics—W (n), D(n), and Qp(n;Z,L)—are

typically computed in a big-O sense with undetermined constants. However, one could

imagine estimating these characteristics empirically. In any case, it is reassuring that the

theoretical models, when applied to a GPGPU-like system, yield familiar classical princi-

ples.

2.6 Summary

In summary, the theory of cache-efficient parallel algorithm design, though somewhat in

flux, suggests the following best-practices, all of which are relevant to GPGPU platforms.

• In terms of parallelism, design algorithms that are work-optimal and have low depth,

i.e., having a W (n) that asymptotically matches the work of the best sequential algo-

rithm, and with W (n)� D(n).

• In terms of memory locality, design high intensity algorithms, i.e., having W (n) �
Qp(n;Z,L), paying attention to both limited memory capacity (Z) and block transfers

(L).

• Seek algorithms with abundant memory-level parallelism, i.e., Qp(n;Z,L)� D(n).

50

We have purposefully omitted a discussion of how one might model the impact of the

limited-bandwidth I/O channel to the GPGPU co-processor, which today is implemented

by PCI Express (PCIe). In a sense, this cost is straightforward to model if one assumes

computational schemes in which one transfers all inputs to the GPGPU, runs the GPGPU

code, and then copies the results back. However, we fully expect that in the long run, the

PCIe interface to the GPGPU co-processor will disappear as GPGPU units move on-die

with what are now the host processors.

51

52

Chapter 3

From Principles to Practice: Analysis
and Tuning

Having designed a high-level algorithm according to the principles of Section 2, the next

step is implementation and performance engineering for scalability. Though there are no

hard-and-fast rules, there are many broadly applicable heuristics. In this section, we use the

theory of the preceding section and ask how it guides and informs practical performance

engineering onto GPGPU platforms. For concreteness, we will use a case study based on

an algorithm used in n-body particle simulations known as the fast multipole method, or

FMM [44].1 Our specific example describes the implementation for GPGPUs developed as

part of a blood flow simulation project [22, 23, 60, 78], though n-body problems in general

appear in diverse applications in graphics, computational physics, gaming, and statistical

machine learning, among numerous others [42].

3.1 The computational problem: Particle interactions

In an n-body problem, we wish to compute the effect that a set of source particles has on a

set of target particles. For instance, the particles may be stars whose trajectories we wish

to predict given that every star experiences a gravitational force from all other stars. More
1 We consider a specific variant of the FMM referred to as a “kernel-independent” method. The algorithm is complex and its details

beyond the scope of this Synthesis Lecture; we instead refer the interested reader elsewhere for details [43, 101].

53

formally, suppose we are given a system of n sources, with positions given by {s1, . . . , sn},
and n targets, with positions {t1, . . . , tn}.2 Then, our goal in solving an n-body problem is

to compute the n sums,

φ(ti) =
n∑

j=1

K(sj, ti) · δ(sj), i = 1, . . . , n , (3.1)

where φ(t) is called the potential at target point t; δ(s) is the density at source point s; and

K(s, t) is an interaction kernel that specifies the effect we are modeling. For instance, the

so-called single-layer Laplace kernel that models particle interactions due to electrostatic

or gravitational forces has K(x, y) ∝ 1
||x−y|| , which expresses an interaction strength that

is inversely proportional to the distance between x and y. Since each sum requires O (n)

operations and there are n such sums, calculating the sums in the straightforward way

requires O (n2) operations.

3.2 An optimal approximation: the fast multipole method

The fast multipole method (FMM) approximately computes the sums of Equation (3.1),

reducing the total number of operations from O (n2) to O (n). The algorithm also ac-

cepts as input a desired level of accuracy, which affects the complexity constant [43]. This

significant asymptotic improvement comes from two key ideas: (i) using a tree to orga-

nize the points spatially; and (ii) using fast approximate evaluation, in which we perform

“summary computations” at each node of the tree, using a constant number of overall tree

traversals with constant work per tree node. This section provides the background on the

FMM needed to understand the GPU tuning case study.

To build the tree, the usual method is as follows, as Figure 3.1 depicts for a two-dimensional

example. Begin by creating a root node corresponding to the entire spatial region. Next,

subdivide this root node into a fixed number of child nodes corresponding to disjoint spatial

subregions of equal size. Lastly, repeat this subdivision process recursively until all leaf
2For simplicity, we assume the number of source and target points is the same, though in general they may differ. Moreover, the sets

of points may in fact be exactly the same, with the sum excluding the computed target.

54

B
X

X

V

V

V V V V

V V

V V

V V

V V

V V

W W W W
W

U
U

U U

U

U U

Figure 3.1: (Left) Leaves of an adaptive quad-tree for a spatial domain of points, where each leaf contains no more than q = 3 points.
(Right) How leaves are distributed among the U , V , W , and X lists, for a given tree node B.

nodes contain at most q points, where q is a tunable parameter that controls the overall cost

of the algorithm.3

Given the tree, the fast approximate evaluation consists of several phases. Each phase

iterates over the tree nodes and performs a calculation involving the tree node and a subset

of the other tree nodes. These phases differ in their computational intensity as well as their

type and degree of parallelism. For concreteness, we consider two of the most expensive

of these phases next.

In the so-called direct evaluation or U-list phase of the FMM, each leaf node B has an

associated U-list, denoted U(B), which contains B itself and all leaf nodes adjacent to B.

(See Figure 3.1.) The U-list computation iterates over all B′ ∈ U(B), performing the exact

summation in Equation (3.1) where the target points in B serve as the targets while the

source points in B′ serve as the sources. Figure 3.2 shows hypothetical sets of target nodes

and source nodes, and illustrates the sparse dependencies between a target node B and its

U(B). The sequential pseudocode for the U-list phase appears in Algorithm 1.

Since we’ve constructed the tree so that each node contains at most q points, then the cost

3Note that accuracy is controlled by a separate parameter that is independent of q [43, 101]. However, the setting of q that minimizes
execution time does depend on the desired accuracy, among other factors.

55

Target
nodes

Source
nodes

* * * * *

0
1
2

… B …

10
11

NT -1=12

0 1 2 … 15=NS -1

U(B) = {2, 4, 8, 14, 15}

2 4 8 14 15

Figure 3.2: Each target node, B, will interact with a subset of the source nodes given by U(B).

Algorithm 1 FMMU (target points T , potentials Φ, source points S, densities ∆, tree T , U-list U)

1: for each target leaf node, B ∈ T do
2: for each target point t ∈ B do
3: for each neighboring source node, S ∈ U(B) do
4: for each source point s ∈ S do
5: Φt += K(Ss, Tt) ·∆s /* Kernel evaluation */

of evaluating Equation (3.1) for each (B,B′) pair isO (q2). When the points are uniformly

distributed in d-dimensional space, then |U(B)| = 3d, which we may regard as a constant

if d is constant. Moreover, the number of leaf nodes will be O (n/q), leading to an overall

complexity of O (nq) for the U-list phase.

Another important phase is the so-called V-list phase. Again, for each leaf B we associate

a bounded list of other leaves, V (B).4 (See Figure 3.1.) The overall cost of the V-list phase

is, as it happens, O (n/q). Comparing to the cost of the U-list, we see that there is a trade-

off between the costs of the U-list and V-list, controlled by the algorithmic tuning knob, q.

Figure 3.3 illustrates this trade-off as measured in an actual experiment [23].

4The V-list, V (B), for each leaf B is the set difference between all of the children of the neighbors of the parents of B and U(B).

56

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

50 100 250 500 750 1000

S
e
co

n
d

s

Maximum Particles per Box

Breakdown by List

U list

V list

Figure 3.3: The measured trade-off between the costs of the U-list and V-list phases of the FMM, as a function of the algorithmic tuning
parameter, q (maximum number of points per leaf node). This figure appeared in Chandramowlishwaran et al. (2010) [23].

3.3 Designing a parallel and I/O-efficient algorithm

The parallelism of the U-list phase (Algorithm 1) is easy to see. First, all target points are

independent, so the iterations of the two outermost loops (Algorithm 1, lines 1–2) may be

executed in parallel. Secondly, the innermost loops constitute a reduction, given the target

point t. This loop nest performs no additional work, so the overall parallel work W (n) =

O (nq) is the same as the sequential algorithm. Regarding the depth, the outermost loops

have unit depth while the innermost loops have log n depth, owing to the reduction. Thus,

the overall depth is D(n) = O (log n). The available parallelism is then O (nq/ log n),

which grows as n increases. Thus, for a sufficiently large n, there should be plenty of

parallelism.

What about I/O complexity? We begin with the sequential case, and furthermore assume

a 3-D problem with a uniform point distribution. In that case, each point is 4 words—3

coordinates plus either a potential for a target point or a density for a source point—and

each target node B will have |U(B)| = 27, since there will be a source node at the same

location and 26 neighbors a distance of 1 node away.

57

Suppose there is just enough cache or local storage, Z, to store all of the points for both one

target node and one source node. That is, Z = q × (4 words/point)× 2 = 8q. In practice,

a cache or local store is often at least this large, or q can be chosen so that this equality is

true. Then, for each target node B, we will load q target points, 27q source points, perform

27q2 interactions, and lastly store q target densities. Thus, the entire U-list computation,

over all n qmax target nodes, will transfer Q(n;Z = 8q) = 116n words of data. If each

node-to-node interaction requires κq2 flops, then the overall intensity of κq/116 flops per

word.

3.4 A baseline implementation

Given the algorithm sketched above, we can now translate Algorithm 1 into a concrete

baseline code implementation, such as the CUDA implementation of Listing 3.1. This is

single program multiple data (SPMD) style code that every GPU thread executes.

Listing 3.1: An initial CUDA kernel implementation of Algorithm 1. Color-ize, map data structures to algorithm.

1 int di = threadIdx.x; // Local thread ID
2 int tid min = Tptr[tnodeid]; // First point in this box
3 int tid max = Tptr[tnodeid+1]; // First point in the next box
4 for (int tid = tid min + di; tid < tid max; tid += q) {
5 float4 tgt = T[tid]; // Load point (x, y, z, potential)
6 for (int snode = snode min; snode < snode max; ++snode) {
7 int snodeid = Ulist[snode];
8 int sid min = Sptr[snodeid];
9 int sid max = Sptr[snodeid+1];

10 for (int sid = sid min; sid < sid max; ++sid) {
11 float4 src = S[sid]; // Load source (x, y, z, density)
12 float3 dr = make float3 (tgt.x − src.x, tgt.y − src.y, tgt.z − src.z);
13 float rsq = (dr.x∗dr.x) + (dr.y∗dr.y) + (dr.z∗dr.z);
14 float r = sqrtf (rsq);
15 tgt.w += src.w / r;
16 } // sid
17 } // snode
18 T[tid].w = tgt.w; // Store potential
19 } // tid

58

Intensity (flop:byte)

G
flo

p/
s

16

32

64

128

256

512

●

● ●

1 2 4 8 16 32 64 128 256 512

Platform

● Fermi

C1060

Nehalem x 2

Nehalem

(a) Roofline analysis helps to bound performance, and
distinguish between memory bandwidth- vs. compute-
boundedness.

Threads per multiprocessor

G
flo

p/
s

25

50

75

100

125

150

175

200

225

250

275

300

325

350

●

●

●

●

●

●

●

●
● ● ●

32 64 128 256 512

Code

● Baseline

Rsqrtf

(b) An empirical test on an NVIDIA C1060 to estimate
compute-bound performance for the specific instruction
mix of interest.

Figure 3.4: Setting an optimization goal. As discussed in Section 3.5, we expect that by tuning q, we can make Algorithm 1 compute-
bound with a flop:byte ratio of at least 10.

3.5 Setting an optimization goal

Our first-order task is to use our concurrency and I/O analysis to set an optimization goal.

For instance, consider that a typical GPU today is capable of about 1 Tflop/s with a band-

width of about 100 GB/s, or an “ideal” flop-to-byte balance ratio of about 10 flops per byte.

For something like a gravitational or electrostatic potential, κ ≈ 11 flops as shown in List-

ing 3.1. Thus, if the data is single-precision (4 bytes per word), then to match 10 flops per

byte we need q ≥ (10 flops / byte)×(464 bytes)%(11 flops) ≈ 422 points, or about 1.6 KB

in order to be compute-limited rather than bandwidth limited. This capacity is well within

the typical local store size on a GPU multiprocessor, we should expect it may be possible

to be compute-limited, though we will need to tune q empirically to ensure such a large

value does not put us too far away from the true overall time minimizer (recall Figure 3.3).

We begin by considering a pure CPU baseline implementation, running on a dual-socket

Intel x86 platform based on Nehalem processors, parallelized using OpenMP and explicit

SIMD (SSE) vectorization. For this code, we observe performance between 60-90 billion

floating-point operations per second (Gflop/s) in single-precision. As it happens, this is

very close to single-precision peak for our platform, as Figure 4.8 confirms.

59

For our GPU implementation, which we said previously should be compute-limited, we

can construct a microbenchmark that contains only the compute operations of lines 12–

15 of Listing 3.1. That is, this microbenchmark omits any memory references, in order

to estimate the maximum throughput we might expect for a truly compute-limited kernel.

The results of such an experiment appear in Figure 3.4b, for two cases. In the first case, we

test the instruction mix as shown in Listing 3.1. In the second case, we replace the separate

sqrtf and division operations with a single call to the combined reciprocal square root

function, rsqrtf. This replacement boosts performance by nearly an additional 50%, and

our absolute performance target is 340 Gflop/s.

By contrast, the baseline GPU implementation of Listing 3.1 achieves roughly 70 Gflop/s

on an NVIDIA C1060, which is on-par with the tuned CPU baseline as noted above. The

innermost loop loads 16 bytes of data (line 11) for every 11 flops, giving a flop:byte ratio

of 11/16 ≈ 0.7 flops per byte. Comparing against the roofline of Figure 4.8, we see that

value is indeed roughly what we should expect.

3.5.1 Identifying candidate optimizations

Given that we expect compute-bound performance, we focus initially on memory hierarchy

optimizations. Well-known techniques include local-store blocking (tiling), prefetching,

and unroll-and-jam techniques, all of which bring data closer to the processor to improve

reuse [5]. Each of these is, additionally, parametrized by a tuning parameter, e.g., block

or tile size, prefetch distance, and unrolling depth. Additionally, for GPUs there is some

folk-evidence that one might wish to consider whether to use an array-of-structures (AOS)

or structure-of-arrays layout (SOA). (The reference code of Listing 3.1 packs coordinates

into arrays of float4 data, and so is an example of an AOS layout.) Once we have

applied these memory hierarchy optimizations to put us in the compute-bound regime, we

can then consider lower-level techniques, such as the use of a combined reciprocal square

root operation. We briefly summarize how we might apply these optimizations next, in the

context of the U-list kernel; similar transformations for other kernels of the FMM may be

60

applied similarly.

Blocking (tiling) for shared memory. As noted in Figure 3.2, there is a natural blocking bound-

ary at the level of target node-to-source node interactions. Thus, a natural idea is to load as

many source and target points as possible into the GPU multiprocessor local store (“shared

memory” in NVIDIA CUDA parlance). For Listing 3.1, it would be natural to have ev-

ery thread within a thread block load one or more source points into shared memory, with

an appropriate synchronization call (syncthreads()) to ensure the data is available.

This transformation is very similar to what is performed for the direct n-body problem, a

well-known example in the GPU literature [9, 75].5

Prefetching. As an alternative to blocking, which is a form of prefetching, one might also

consider the following simpler style of prefetching. In particular, imagine that we simply

modify Listing 3.1 to prefetch the next source point into a local register variable. This

method might be expected to work well if the latency of the innermost loop is large enough

to hide the source point load.

Unroll-and-jam. The baseline code uses an owner-computes strategy, assigning just one

output (target) point per thread and relies on many threads to hide latency. We could instead

assign multiple outputs per thread, in order to increase instruction-level parallelism (ILP)

and register-level locality. Doing so requires unrolling the target point loop at line 4 of

Listing 3.1, and then fusing the innermost loops. The cost is an increased instruction count

and increased register pressure. However, by increasing ILP, we can also decrease the

number of threads needed, and thereby actually increase the number of available registers

per thread.

AOS vs. SOA. The main potential benefit of considering an SOA layout over an AOS layout

is to increase the degree of aggregation of memory transactions. Recall our theoretical
5See also http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html.

61

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html

discussion of memory hierarchy traffic in Section 2.3, where we noted that it can be more

cost-effective per word to increase memory transaction width over local store capacity;

thus, the choice of SOA over AOS may be measurable.

3.5.2 Exploring the optimization space

The optimizations of Section 3.5.1 define a space of candidate optimizations, but do not tell

us which ones will improve performance and by how much. In this section, we consider

an ad hoc (heuristic) method for exploring that space. This particular method happens to

find the optimal implementation one a particular platform, but by no means guarantees it.

More refined models of the interaction among the algorithm, code, and architecture are an

active area of research; we review some of this work as it applies to GPGPU platforms in

Section 4.2.

The ad hoc method is simple, and is based loosely on the design of experiments techniques

from statistics [18]. Let C0 denote the baseline code, and let S = {s1, s2, . . . , sl} be the

set of all optimizations we are considering. Suppose for simplicity that these optimizations

may be combined in all l! combinations, assuming ordering is unimportant. To choose a

subset of these optimizations, we begin by trying each of the l optimizations individually.

Suppose sa is the best one. Then, we create a new code C1 that includes the optimization

sa. Using C1, we repeat the same experiment, using only the optimizations that remain

when we remove sa from S, i.e., from S −{sa}. If the best of these is sb, we then generate

a new code C2 from C1, so that it includes both optimizations sa ∈ S and sb ∈ S − {sa}.
We repeat this process until no optimizations remain to consider.

Applying this method to Listing 3.1 using the optimizations of Section 3.5.1 yields the se-

quence of experiments shown in Figure 3.5. Each plot represents a stage in which we have

a set of candidate optimizations, which we apply separately to an initial code; the initial

code is the leftmost bar in each subplot. Observe that in the first stage, Figure 3.5a, the

local store-based optimization has the biggest pay-off and brings the code implementation

the closest to being compute bound; by contrast, reciprocal square root has no pay-off, but

62

Code

G
flo

p/
s

0

25

50

75

100

125

150

175

200

225

250

275

300

325

Baseline +Fast 1/sqrt(x) +Prefetch +Textures +Vector pack+Unroll−and−jam +Shmem

Target ~ 340 Gflop/s

Compute optimization,
but still memory-bound

~ 3x from memory
optimizations

(a) Just one optimization applied.

Code

G
flo

p/
s

0

25

50

75

100

125

150

175

200

225

250

275

300

325

Shmem +Unroll−and−jam +Vector pack +Trans +Fast 1/sqrt(x)

Target ~ 340 Gflop/s

“Less” memory bound,
so compute optimization

says off

(b) Two optimizations applied: the best from Figure 3.5a
and paired with all remaining optimizations.

Code

G
flo

p/
s

0

25

50

75

100

125

150

175

200

225

250

275

300

325

Shmem+Fast 1/sqrt(x) +Unroll−and−jam +Prefetch +Trans +Vecpack

Target ~ 340 Gflop/s ~ 300 Gflop/s

(c) Three optimizations applied: the best pair from Fig-
ure 3.5b combined with each of the remaining.

Figure 3.5: Applying the ad hoc optimization search method of Section 3.5.2, to a baseline code with a performance of 75 Gflop/s.

63

mostly because the code is not yet in the compute-bound regime, not because it cannot help.

The final implementation achieves around 300 Gflop/s through a combination of blocking

for shared memory, reciprocal square root, and use of SOA, the last of which is labeled

“vecpack” in the figure. Interestingly, SOA was never optimal until combined with the

other two optimizations. Overall, we achieve a level of performance that seems reasonably

close to our microbenchmark-based estimate of a 340 Gflop/s upper-bound.

3.5.3 Summary

The case study in this section sketches how one might begin with an algorithm analysis and

use that to drive a subsequent code implementation and tuning process. The key ingredients

are:

• beginning with a principled analysis of concurrency and locality;

• using microbenchmarks to help establish bounds on performance;

• enumerating a “space” of candidate optimizations;

• and lastly, systematically exploring that space.

Still, the space of potential optimizations may in general be very large. The open question,

which we take up in the next section, is to what extent we can use modeling or other

quantitative analysis to help define and explore this space.

64

Chapter 4

Using Detailed Performance Analysis to
Guide Optimization

In previous sections, we explained how to identify performance optimization candidates

in a high-level algorithm and performance analysis. The work-depth model considers pri-

marily the actual computation work and memory operations, which are represented at a

high-level. In this chapter, we look at the performance behavior which exploits low-level

information, such as instructions and memory transactions, instead of or in addition to

high-level information, and then discuss how such information can guide optimization.

4.1 Instruction-level Analysis and Tuning

In this section, we describe an instruction-level analysis that also includes details of the

microarchitecture aspects of processors. Much performance modeling has been done for

both CPUs and GPUs. A summary of other work is discussed in Section 4.2. Here, we ex-

plain a model based on the approach of Sim et al. [85]. First, we describe how to model the

performance behavior of GPGPUs and then show how to identify performance bottlenecks

that could be optimized. The performance model is based on NVIDIA’s Fermi architecture.

65

4.1.1 Execution Time Modeling

First, we define Texec as the overall execution time, which is a function of Tcomp, Tmem, and

Toverlap, as shown in Equation (4.1).

Texec = Tcomp + Tmem − Toverlap (4.1)

The execution time is calculated by adding computation and memory costs while subtract-

ing the overlapped cost due to the multi-threading feature in GPGPUs. Figure 4.1 illustrates

the equation when four warps are running. Each of the three inputs of Equation (4.1) is de-

scribed in the following.

Comp Mem

Comp Mem

Comp Mem

Comp Mem

Mem

Mem

Mem

Mem

Tcomp	 Tmem	

Comp Comp Comp Comp Toverlap

warp	 1	

MWP=2	

Time	

warp	 2	

warp	 3	

warp	 4	

Comp :	 compu6ng	 period	

:	 memory	 period	 Mem

Figure 4.1: Visualization of Execution Time (There are four memory requests but because of memory-warp level parallelism, only two
memory requests contribute to the total execution time.

Calculating the Computation Cost, Tcomp

Tcomp is the amount of time to execute compute instructions (excluding memory operation

waiting time, but including the cost of executing memory instructions) and is evaluated

using Equations (4.2) through (4.10).

We consider the computation cost as two components, a parallelizable base execution time

plus overhead costs due to serialization effects:

Tcomp = Wparallel︸ ︷︷ ︸
Base

+ Wserial︸ ︷︷ ︸
Overhead

. (4.2)

66

The base time, Wparallel, accounts for the number of operations and degree of parallelism,

and is computed from basic instruction and hardware values as shown in Equation (4.3):

Wparallel =
#insts× #total warps

#active SMs︸ ︷︷ ︸
Total instructions per SM

× avg inst lat
ITILP︸ ︷︷ ︸

Effective throughput

. (4.3)

The first factor in Equation (4.3) is the total number of dynamic instruction for one thread,

and the second factor indicates the effective instruction throughput. Regarding the latter,

the average instruction latency, avg inst lat, can be approximated by the latency of FP op-

erations in GPGPUs. When necessary, it can also be precisely calculated by taking into

account the instruction mix and the latency of individual instructions on the underlying

hardware. The value, ITILP, models the possibility of inter-thread instruction-level paral-

lelism in GPGPUs. The concept of ITILP was introduced in Baghsorkhi [11]. In particular,

instructions may issue from multiple warps on a GPGPU; thus, we consider global ILP (i.e.,

ILP among warps) rather than warp-local ILP (i.e., the ILP of one warp). That is, ITILP

represents how much ILP is available among all executing threads to hide the pipeline

latency.

ITILP can be obtained as follows:

ITILP = min (ILP×N, ITILPmax) (4.4)

ITILPmax =
avg inst lat

warp size/SIMD width
, (4.5)

where N is the number of active warps on one SM, and SIMD width and warp size rep-

resent the number of vector units and the number of threads per warp, respectively. On

the Fermi architecture, SIMD width = warp size = 32. ITILP cannot be greater than

ITILPmax, which is the ITILP required to fully hide pipeline latency.

We model serialization overheads, Wserial from Equation (4.2) as

Wserial = Osync +OSFU +OCFdiv +Obank, (4.6)

where each of the four terms represents a source of overhead—synchronization, SFU re-

source contention, control-flow divergence, and shared memory bank conflicts. We de-

scribe each overhead below.

67

Synchronization Overhead, Osync: When there is a synchronization point, the instructions

after the synchronization point cannot be executed until all the threads reach that point. If

all threads progress at the same rate, there would be little overhead for the waiting time.

Unfortunately, each thread (warp) progresses on its own progress based on the availability

of source operands. Consequently a range of progress exists, which can sometimes vary

widely. The causes of this range are mainly different DRAM access latencies (delay in

queues, DRAM row buffer hit/misses, etc.) and control-flow divergences. As a result,

when a high number of memory instructions and synchronization instructions exist, the

overhead increases as shown in Equations (4.7) and (4.8):

Osync =
#sync insts× #total warps

#active SMs
× Fsync (4.7)

Fsync = Γ× avg DRAM lat× #mem insts
#insts︸ ︷︷ ︸

Mem. ratio

, (4.8)

where Γ is a machine-dependent parameter. Sixty-four is assumed for the modeled archi-

tecture.

SFU Resource Contention Overhead, OSFU: This cost is primarily caused by the charac-

teristics of special function units (SFUs) and is computed using Equations (4.9) and (4.10)

below.

For most GPGPUs, expensive math operations such as transcendentals and square roots can

be handled with dedicated execution units called special function units (SFUs). Since the

execution of SFU instructions can be overlapped with other floating point (FP) instructions,

with a good ratio between SFU and FP instructions, the cost of SFU instructions can almost

be hidden. Otherwise, SFU contention can degrade performance. So, the visible execution

cost of SFU instructions depends on the ratio of SFU instructions to others and the number

of execution units for each instruction type. In Equation (4.9), the visibility is modeled by

FSFU, which is in [0, 1]. A value of FSFU = 0 means none of the SFU execution costs is

added to the total execution time. This occurs when the SFU instruction ratio is less than

the ratio of special function to SIMD units, as shown in Equation (4.10).

68

OSFU =
#SFU insts× #total warps

#active SMs
× warp size

SFU width︸ ︷︷ ︸
SFU throughput

×FSFU

(4.9)

FSFU = min

max

#SFU insts
#insts︸ ︷︷ ︸

SFU inst. ratio

− SFU width
SIMD width︸ ︷︷ ︸
SFU exec. unit ratio

, 0

, 1

.

(4.10)

Control-Flow Divergence and Bank Conflict Overheads,OCFdiv andObank: The overhead

of control-flow divergence (OCFdiv) is the cost of executing additional instructions due, for

instance, to divergent branches [50]. This cost is modeled by counting all the instructions

in both paths. The cost of bank conflicts (Obank) can be calculated by measuring the number

of shared memory bank conflicts. Both OCFdiv and Obank can be measured using hardware

counters.

Calculating the Memory Access Cost, Tmem

Tmem represents the amount of time spent on memory requests and transfers. This cost is

a function of the number of memory requests, memory latency per each request, and the

degree of memory-level parallelism. We model Tmem using Equation (4.11),

Tmem =
#mem insts× #total warps

#active SMs× ITMLP︸ ︷︷ ︸
Effective memory requests per SM

×AMAT, (4.11)

where AMAT (average memory access time) models the average memory access time,

accounting for cache effects. We compute AMAT using Equations (4.12) and (4.13):

AMAT = avg DRAM lat×miss ratio + hit lat (4.12)

avg DRAM lat = DRAM lat + (avg trans warp− 1)×∆.

(4.13)

69

avg DRAM lat represents the average DRAM access latency and is a function of the base-

line DRAM access latency, DRAM lat, and transaction departure delay, ∆. In GPGPUs,

memory requests can split into multiple transactions. In the described model, avg trans warp

represents the average number of transactions per memory request in a warp. Note that it is

possible to expand Equation (4.12) for multiple levels of cache, which we omit for brevity.

We model the degree of memory-level parallelism through the notion of inter-thread MLP,

denoted as ITMLP, which we define as the number of memory requests per SM that are

concurrently serviced. Similar to ITILP, memory requests from different warps can be

overlapped. Since MLP is an indicator of intra-warp memory-level parallelism, we need

to consider the overlap factor of multiple warps. ITMLP can be calculated using Equa-

tions (4.14) and (4.15).

ITMLP = min (MLP×MWPcp,MWPpeak bw) (4.14)

MWPcp = min (max (1,CWP− 1) ,MWP) (4.15)

In Equation (4.14), MWPcp represents the number of warps whose memory requests are

overlapped during one computation period. MWP represents the maximum number of

warps that can simultaneously access memory. However, depending on CWP, the num-

ber of warps that can concurrently issue memory requests is limited.

MWPpeak bw represents the number of memory warps per SM under peak memory band-

width. Since the value is equivalent to the maximum number of memory requests attainable

per SM, ITMLP cannot be greater than MWPpeak bw.

Calculating the Overlapped Cost, Toverlap

Toverlap represents how much memory access cost can be hidden by multithreading. In the

GPGPU execution, when a warp issues a memory request and waits for the requested data,

the execution is switched to another warp. Hence, Tcomp and Tmem can be overlapped to

some extent. For instance, if multithreading hides all memory access costs, Toverlap will

equal Tmem. That is, in this case, the overall execution time, Texec, is solely determined by

70

the computation cost, Tcomp. In contrast, if none of the memory accesses can be hidden in

the worst case, then Toverlap is 0.

We compute Toverlap using Equations (4.16) and (4.17). In these equations, Foverlap approxi-

mates how much Tcomp and Tmem overlap and N represents the number of active warps per

SM as in Equation (4.4).

Note that Foverlap varies with both MWP and CWP. When CWP is greater than MWP (e.g.,

an application limited by memory operations), then Foverlap becomes 1, which means all of

Tcomp can be overlapped with Tmem. On the other hand, when MWP is greater than CWP

(e.g., an application limited by computation), only part of the computation costs can be

overlapped.

Toverlap = min(Tcomp × Foverlap, Tmem) (4.16)

Foverlap =
N − ζ
N

, ζ =

{
1 (CWP ≤ MWP)

0 (CWP > MWP)
(4.17)

Calculating CWP and MWP

CWP = min (CWP full, N) (4.18)

CWP full =
mem cycles + comp cycles

comp cycles
(4.19)

comp cycles =
#insts× avg inst lat

ITILP
(4.20)

mem cycles =
#mem insts× AMAT

MLP
(4.21)

mem cycles: memory waiting cycles per warp

comp cycles: computation cycles per warp

#insts: number of instructions per warp (excluding SFU insts)

#mem insts: number of memory instructions per warp

71

MWP = min

(
avg DRAM lat

∆
,MWPpeak bw, N

)
(4.22)

MWPpeak bw =
mem peak bandwidth

BW per warp× #active SMs
(4.23)

BW per warp =
freq× transaction size

avg DRAM lat
(4.24)

mem peak bandwidth: bandwidth between the DRAM and GPU cores (e.g., 144.0 GB/s in

Tesla C2050)

freq: clock frequency of the SM processor

(e.g., 1.15 GHZ in Tesla C2050)

transaction size: transaction size for a DRAM request

(e.g., 128B in Tesla C2050)

BW per warp: bandwidth requirement per warp

Potential Benefit Prediction

The potential benefit metrics indicate performance improvements when it is possible to

eliminate the delta between the ideal performance and the current performance. Equa-

tions (4.25) and (4.26) are used to estimate the ideal compute and memory performance

(time). Alternatively, an algorithm developer might provide these estimates.

Tfp =
#FP insts× #total warps× FP lat

#active SMs× ITILP
(4.25)

Tmem min =
size of data× avg DRAM lat

MWPpeak bw
(4.26)

Then, the benefit metrics are obtained using Equations (4.27)-(4.30), where ITILPmax is

defined in Equation (4.5):

72

Bitilp = Wparallel −
#insts× #total warps× avg inst lat

#active SMs× ITILPmax

(4.27)

Bserial = Wserial (4.28)

Bfp = Tcomp − Tfp −Bitilp −Bserial (4.29)

Bmemlp = max (T ′mem − Tmem min, 0) . (4.30)

Model Parameter Definition Source
#insts # of total insts. per warp (excluding SFU insts.) Hardware performance counters
#mem insts # of memory insts. per warp Hardware performance counters
#sync insts # of synchronization insts. per warp Instruction analyzer
#SFU insts # of SFU insts. per warp Instruction analyzer
#FP insts # of floating point insts. per warp Instruction analyzer
#total warps Total number warps in a kernel program’s input
#active SMs # of active SMs hardware specification
N # of concurrently running warps on one SM hardware performance counters
AMAT Average memory access latency hardware performance counters
avg trans warp Average memory transactions per memory request hardware performance counters
avg inst lat Average instruction latency hardware specification
miss ratio Cache miss ratio hardware performance counters
size of data The size of input data source code
ILP Inst.-level parallelism in one warp Instruction analyzer
MLP Memory-level parallelism in one warp Instruction analyzer
MWP (Per SM) Max #warps that can concurrently access memory outcome of equations
CWP (Per SM) # of warps executed during one mem. period plus one outcome of equations
MWPpeak bw (Per SM) MWP under peak memory BW equations
warp size # of threads per warp 32
Γ Machine parameter for sync cost 64
∆ Transaction departure delay Measured machine parameter
DRAM lat Baseline DRAM access latency Measured machine parameter
FP lat FP instruction latency Hardware specification
hit lat Cache hit latency Hardware specification
SIMD width # of scalar processors (SPs) per SM Hardware specification
SFU width # of special function units (SFUs) per SM Hardware specification

Table 4.1: Summary of input parameters used in equations.

4.1.2 Applying the Model to FMM

0.5

1

1.5

2

2.5

3

3.5

S
p

e
e
d

u
p

 o
v
e
r
 n

o
 o

p
ti

m
iz

a
ti

o
n

Actual Prediction

Figure 4.2: Speedup over the baseline of actual execution and model prediction on 44 different optimizations.

73

We apply this model to an implementation of the fast multipole method (FMM), which

was described in Chapter 3. We apply the same set of optimizations that are described

in Chapter 3.5.1. Figure 4.2 shows the speedup over the baseline kernel of actual execu-

tion and its prediction using the proposed model. The x-axis shows the code optimization

space, where 44 optimization combinations are presented. The results show that, overall,

the model closely estimates the speedup of different optimizations. It also shows that the

analytical model successfully identifies the best performing optimization combination.

4.1.3 Performance Optimization Guide

Based on the presented performance model, we could identify performance bottleneck in-

formation and estimate the potential gains from reducing or eliminating these bottlenecks.

It does so through four potential benefit metrics, whose impact can be visualized using a

chart as illustrated by Figure 4.3. The x-axis shows the cost of memory operations and the

y-axis shows the cost of computation. An application code is a point on this chart (here,

point A). The sum of the x-axis and y-axis values is the execution cost, but because compu-

tation and memory costs can be overlapped, the final execution cost of Texec (e.g., wallclock

time) is a different point, A’, shifted relative to A. The shift amount is denoted as Toverlap.

A diagonal line through y = x divides the chart into compute bound and memory bound

zones, indicating whether an application is limited by computation or memory operations,

respectively. From point A’, the benefit chart shows how each of the four different potential

benefit metrics moves the application execution time in this space.

A given algorithm may be further characterized by two additional values. The first is the

ideal computation cost, which is generally the minimum time to execute all of the essen-

tial computational work (e.g., floating point operations), denoted Tfp in Figure 4.3. The

second is the minimum time to move all data from the DRAM to the cores, denoted by

Tmem min. When memory requests are prefetched or all memory service is hidden by other

computation, we might hope to hide or perhaps eliminate all of the memory operation costs.

Ideally, an algorithm designer or programmer could provide estimates or bounds on Tfp and

74

Tmem	
Mem	 Cost	

Comp	 Cost	

Tcomp	

Tmem’	

Toverlap	

Tmem_min	

Tfp	

Bmemlp	

Bserial	

Bi3lp	

Bfp	

Single	 Thread	
A	 A’	

Figure 4.3: Potential performance benefits, illustrated.

Tmem min. However, when the information is not available, we could try to estimate Tfp from,

say, the number of executed FP instructions in the kernel.1

Suppose that we have a kernel at point A’ having different kinds of inefficiencies. Our

computed benefit factors aim to quantify the degree of improvement possible through the

elimination of these inefficiencies. We use four potential benefit metrics, summarized as

follows.

• Bitilp indicates the potential benefit by increasing inter-thread instruction-level paral-

lelism.

• Bmemlp indicates the potential benefit by increasing memory-level parallelism.

• Bfp represents the potential benefit when we ideally remove the cost of inefficient

computation. Unlike other benefits, we cannot achieve 100% of Bfp because a kernel

must have some operations such as data movements.

• Bserial shows the amount of savings when we get rid of the overhead due to serializa-

tion effects such as synchronization and resource contention.

Bitilp, Bfp, and Bserial are related to the computation cost, while Bmemlp is associated with

the memory cost. These metrics are summarized in Table 4.2.

1In our evaluation we also use the number of FP operations to calculate Tfp.

75

Name Description Unit

Texec Final predicted execution time cost
Tcomp Computation cost cost
Tmem Memory cost cost
Toverlap Overlapped cost due to multi-

threading
cost

T ′
mem Tmem − Toverlap cost
Tfp Ideal Tcomp ideal cost
Tmem min Ideal Tmem ideal cost

Bserial Benefits of removing serialization
effects

benefit

Bitilp Benefits of increasing inter-thread
ILP

benefit

Bmemlp Benefits of increasing MLP benefit
Bfp Benefits of improving computing ef-

ficiency
benefit

Table 4.2: Summary of performance guidance metrics.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

b
as
el
in
e

ti
g
h
t

rs
q
rt

rs
q
rt
_
ti
g
h
t

v
ec
p
ac
k
_
p
re
f_
rs
q

rt

v
ec
p
ac
k
_
rs
q
rt

v
ec
p
ac
k

u
ja
m
_
rs
q
rt
_
ti
g
h
t

u
ja
m

u
ja
m
_
ti
g
h
t

v
ec
p
ac
k
_
p
re
f_
u
ja

m
_
rs
q
rt

u
ja
m
_
rs
q
rt

N
o

r
m

a
li

z
e
d

 B
e
n

e
fi

t

Actual B_itilp

Figure 4.4: Actual performance benefit and Bitilp when shmem is applied to each optimization in the x-axis.

Potential Benefit Prediction

To understand the performance optimization guide metrics, we first compute potential ben-

efit metrics for the baseline, which are as follows: Bserial = 0, Bmemlp = 0, Bitilp = 6068,

and Bfp = 9691. Even from the baseline, the kernel is already limited by computation.

Hence, techniques to reduce the cost of computation are critical.

Figure 4.4 shows actual performance benefits and Bitilp when the shared memory optimiza-

tion (shmem) is applied on top of different combinations of optimizations. For example,

ujam indicates the performance delta between ujam and ujam + shmem optimizations.

In the graph, both Actual and Bitilp are normalized to the execution time before shmem

76

is applied. Using the shared memory improves both MLP and ILP. It increases the reuse

of source points, which also increases ILP. Hence, the benefit of using the shared memory

can be predicted using Bitilp, because Bmemlp = 0. As shown in the figure, Bitilp predicts

the actual performance benefit closely for most of the optimization combinations except

tight optimizations. The interaction between shmem and tight optimizations should be

analyzed further.

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

0
0.5

1
1.5

2
2.5

3
3.5

b
as

el
in

e

v
ec

p
ac

k

v
ec

p
ac

k
_

rs
q
rt

v
ec

p
ac

k
_

rs
q
rt

_
sh

m
em

v
ec

p
ac

k
_

rs
q
rt

_
sh

m
em

_
u
ja

m

v
ec

p
ac

k
_

rs
q
rt

_
sh

m
em

_
u
ja

m
_

p
re

f N
o

r
m

a
li

z
e
d

 B
e
n

e
fi

t

S
p

e
e
d

u
p

B_fp

Speedup (Actual)

Figure 4.5: Performance speedup and potential benefits when applying optimizations to the baseline one by one.

Figure 4.5 represents the performance speedup and potential benefits normalized to the

baseline execution time when optimizations are applied one by one.

For the baseline, a high Bfp value indicates that the kernel might have the potential to be

improved. Hence, it is reasonable to try to optimize the baseline kernel. As we apply

adequate optimization techniques that improve the kernel, the potential benefit decreases.

When vecpack, rsqrt, shmem and ujam have been applied, the potential benefit metric

indicates that the kernel may a have very small amount of inefficient computation and the

potential performance gain through further optimizations might be limited. As shown in the

last bar, pref does not lead to a performance improvement. Rather, Bfp slightly increases

due to the inefficient computation for prefetching code.

4.2 Other Performance Modeling Techniques and Tools

Beyond the model of the previous section, there have been a flurry of studies on GPGPU

performance modeling. This section surveys the current landscape of metrics and tools that

77

are available for understanding GPGPU performance.

4.2.1 Limited Performance Visibility

Efficiently programming GPUs remains intellectually challenging and requires significant

effort. The major challenge in programming GPUs is usually saturating the high-bandwidth

computational processing elements by providing them with the required data in a timely

manner. To achieve this goal, it is important for GPGPU applications to make effective

use of the GPU memory hierarchy. Therefore, information about the interaction of an

application with the memory system is necessary to optimize memory accesses and their

performance.

Developers need to manually examine the GPGPU kernel source code and identify the

sources of performance degradation such as long latency loads on the critical path of a

tight loop. This kind of analysis is often done through guesswork and trial-and-error ex-

periments.

Furthermore, multiple levels of concurrency and the high number of concurrent events,

such as in flight memory operations, can make it hard for either the developer or even the

optimizing compiler reason about performance. A highly multithreaded GPU acts like a

complex, nonlinear system with tightly coupled dynamics; a microarchitectural event such

as a memory load should be evaluated in a meaningful context with regard to other events

from the co-existing threads.

Therefore, the performance evaluation process is very time consuming for even experi-

enced application developers and much more difficult and tedious for less-informed pro-

grammers. With millions of units currently in use, GPUs have become the most widely

deployed parallel systems. As more users experiment with GPUs and their use grows in

all classes of computing systems, their cost will continue to decrease. This trend may in

turn expand the GPGPU computing community and necessitate the development of tech-

niques that systematically analyze the source code in the context of a highly multithreaded

execution environment to replace manual investigation of the code.

78

TLP

DLP

MLP

Multiprocessor MultiprocessorMultiprocessor

=

Warp Threads

GPU kernel

Figure 4.6: Multi-level parallelism in a GPGPU Kernel (a) Interleaving of group of threads within a block (warps) resembles the
thread-level parallelism. (b) High number of in-flight memory operations exhibit memory-level parallelism (c) Data-level parallelism is
exploited by operating on multiple memory banks simultaneously to fetch memory words through SIMD instructions. (d) At the thread
level, instruction-level parallelism can partially covering intra-warp stalls.

To provide a formal framework to study this problem, Baghsorkhi et al. introduced the con-

cept of balanced GPGPU computation [11]. This model represents a GPGPU computation

using the computation carried by an average warp. In carrying out a computation the GPU

is said to be balanced if

1. the computation core pipelines are not stalled due to data hazards (register dependen-

cies or long latency global memory loads), structural hazards (shared memory bank

conflicts), or control hazards (SIMD branch divergence);

2. the computation time equals the memory time. The former is the time to complete the

computation assuming an ideal memory system, while the latter is the time needed to

flow all data required by computation cores to and from memory.

One may view this framework as specializing the balance principles framework of Chap-

ter 2 for GPGPUs with a refined processor model.

4.2.2 Work Flow Graphs

To identify bottlenecks that result in an imbalanced computation, Baghsorkhi et al. com-

bine the amount of available concurrency in a kernel (TLP, DLP and ILP) – considering the

79

effect of coexisting threads – and the latencies of the SIMD pipeline and the memory sys-

tem such that the interactive effects of different performance factors are preserved [11]. For

this task, they introduced the work flow graph (WFG). The WFG is an extension of the con-

trol flow graph of a GPGPU kernel. Nodes in the WFG are a long-latency (global) memory

operations, low-latency (scratch-pad) memory operations, barrier synchronizations, blocks

of n continuous computational instructions, or synthetic entry and exit nodes. In addition

to edges that correspond to the control flow graph (transition arcs), the WFG also contains

data-dependence arcs that connect global memory loads to their corresponding uses.

The initial WFG abstracts the computational kernel independent of the underlying hard-

ware. No weight is assigned to transition arcs initially. A transition arc only indicates

that the destination node can be executed immediately after the source node. The WFG

represents an average warp in a GPGPU kernel. In the case of a branch divergence, dif-

ferent threads may follow different control flow paths. Therefore, proper weight should be

assigned to the diverging control flow paths to indicate the fraction of warps that execute

each path. Similarly, if there are long-latency or low-latency memory accesses along these

diverging paths, the number of memory transactions or bank conflict serialization delays

should be adjusted according to the portion of warps and pattern of threads that issue the

memory instructions.

To estimate the performance on a particular GPU, Baghsorkhi et al. proposed specializing

the arcs in the WFG with information gathered through symbolic evaluation and runtime

inspection of a GPGPU kernel based on hardware parameters such as memory bandwidth,

read latency, memory coalescing rules, memory bank configuration, SIMD work granular-

ity, SIMD engine width, and pipeline latency, among other factors. The resulting WFG

binds the GPGPU kernel code profile to the GPU hardware configuration. After specializ-

ing the WFG for the specific hardware, the weight assigned to each WFG arc indicates the

number of cycles required on average to execute the instruction(s) at the source node in the

granularity of a warp.

80

4.2.3 Stochastic Memory Hierarchy Model

Graphics processors are optimized for throughput oriented workloads, which allowed early

GPUs to omit traditional data caches. More recent GPUs have added small per-core L1

caches to capture inter-thread reuse, and larger unified L2 caches to exploit inter-core shar-

ing. This is a significant step forward to better support a more diverse set of workloads

and reduce some of the performance discrepancies that previously existed. Nevertheless,

the performance of most GPGPU applications is strongly dependent on the efficient use of

the memory subsystem. Current generation of GPUs provide a set of performance counters

that collect statistics such as the overall number of misses for the L1 and the L2 caches,

but the counter values cannot be monitored or sampled during a program execution. In

addition, a time-based sampling can be built on top of the provided instrumentation inter-

faces to identify hotspots in a program. While a high sampling rate will likely distort the

accuracy of the profile data, it is also difficult to achieve high-resolution performance infor-

mation at low sampling rates in the presence of thousands of concurrently running threads.

To overcome this problem, Baghsorkhi et al. presented a new software-based approach for

monitoring the memory hierarchy performance in highly multithreaded general-purpose

graphics processors [12].

The proposed analysis is based on memory traces collected for snapshots of an application

execution. Memory traces are collected by instrumenting the GPU kernel at the source

code level to record the memory addresses accessed during the kernel execution. The

instrumentation framework is designed as a source-to-source transformation module. Static

probes are inserted within the GPU kernel source code, as shown in Listing 4.1, to record

the memory addresses read from and written to by active threads for a subset of thread

blocks as the GPU kernel is executed.

To understand the performance of a GPU kernel with respect to the memory hierarchy, it is

necessary to collect enough traces to capture both intra-thread and inter-thread interactions

of memory operations. To capture inter-thread interferences the execution snapshot for

trace collection is extended horizontally. They collect traces for thread blocks that are

81

Listing 4.1: Instrumented SpMV – device code

global void SpMV(sampling device buffer ∗
samples, float ∗x, const float ∗val, ...)

{
sampling status this thread status;
init sampling status(samples, &this thread status);

tid = threadIdx.y;
bid = blockIdx.y;
t=0;
myi = bid ∗ BLOCKSIZE + tid;

if (myi < (numRows)){

sample mem index(samples, &this thread status, 0,
&(rowInd[myi]));

lb = rowInd[myi];

sample mem index(samples, &this thread status, 2,
&(rowInd[myi + 1]));

ub = rowInd[myi+1];

for (j=lb; j<ub; j++) {

sample mem index(samples, &this thread status, 4,
&(indices[j]));

ind = indices[j];

sample mem index(samples, &this thread status, 6,
&(y[ind]));

yval = y[ind];

sample mem index(samples, &this thread status, 8,
&(val[j]));

t += val[j] ∗ yval;

}
sample mem index(samples, &this thread status, 1,

&(x[myi]));
x[myi] = t;

}

release sampling buffer(& this thread status);
}

82

potentially scheduled close together on different cores (streaming multiprocessors). To

account for intra-thread interactions the execution snapshot is extended such that large

enough traces are collected within a single thread. If required, the execution snapshot is

extended across the boundaries of multiple thread blocks that are scheduled back-to-back

on a single core. With this approach, a subset of the memory traces is collected, but the

subset is detailed enough to reflect locality and interactions within the group of concurrently

running threads.

Collected traces exhibit precise intra-warp (intra-thread) ordering of memory references.

But traces do not maintain any information about the relative order of memory references

issued from different warps or thread blocks as their approach does not rely on the execution

order of memory loads and stores when collecting traces. The rationale for not relying on

the ordering during the execution of the instrumented GPU kernel is that adding static

probes to the kernel source code:

1. changes the kernel resource usage (number of registers), which may consequently al-

ter the number of concurrently active thread blocks on each streaming multiprocessor.

2. increases the number of inflight memory operations, which will distort the state of

caches and the level of congestion in the memory hierarchy.

3. changes the instruction mix of the GPU kernel and introduces spurious synchroniza-

tion or stall points.

As a result, instrumenting the kernel will distort the execution order of the memory op-

erations. To resolve this problem, the order of memory requests arriving at each level of

the memory hierarchy is reconstructed via a Monte Carlo method, an efficient sampling

approach for systems with individual behaviors highly coupled together. Traces are driven

into each level of the memory hierarchy in the cache simulator according to the randomly

sampled ordering in each run according to the following steps:

1. Given a pool of memory requests waiting to be serviced at each level of the memory

hierarchy:

83

0.0 0.2 0.4 0.6 0.8 1.0
Hit Ratio

0

10

20

30

40

50
%

 o
f

si
m

u
la

ti
o
n
s

Average: 0.22 Stdev: 0.02

L2_read_SpMV

Figure 4.7: Probability distribution of the L2 Load Hit Ratio for Sparse Matrix Vector Multiplication Kernel

(a) Generate a valid random ordering from the pool of available memory requests.

(b) Drive traces to the current memory hierarchy module following the ordering de-

rived in step (a).

(c) Obtain performance estimations for the current level and prepare the pool of

memory request to be serviced by the next memory hierarchy level.

2. Repeat step 1 for a sufficiently large number of times.

3. Determine the probability distribution of results using histograms and summarize the

confidence of the predictions.

The output of the above model is a probabilistic performance behavior of the memory

system such as hit ratios for the first and second level caches. Figure 4.7 shows the L2

cache hit ratio distribution for the SpMV kernel computed through the above approach. If

certain performance behaviors are most frequently observed – even with limited knowledge

about the exact relative ordering of inter-thread memory requests – they are statistically

sound representatives of the system performance. If different random orderings result in

84

noticeably different performance statistics (a wide spread histogram) then the predictions

are not reliable. Otherwise, though Baghsorkhi et al. [12] do not follow the actual inter-

thread ordering when driving traces into the simulator, they can set up an execution context

similar and close enough to the actual one.

They also propagate the source code locations of memory loads and stores. As a result, they

can produce precise and high resolution profile statistics for individual memory operations

in the GPU kernel source code.

4.2.4 Roofline Model

Williams et al. proposed the roofline model, which is useful for visualizing of compute-

bounded or memory-bounded multicore architectures [97].2 The roofline sets an upper

bound on the performance of a kernel, depending on the kernel’s operational intensity.

When operational intensity as a column hits the roof, either it hits the flat part of the roof,

which means performance is compute bound, or performance is ultimately memory bound.

Figure 4.8 shows an example of the roofline for different architectures. Equation (4.31)

represents the model.

Attainable Gflop/s = min(Peak Gflop/s, Stream BW× actual flop : byte ratio)

(4.31)

The roofline is not limited to just characterizing peak. One can map specific architectural

features to other roofs and ridges below the peak roofline, and thereby visually understand

the impact of changing intensity and adopting particular architectural features on perfor-

mance.

2The first primitive “roofline diagram” drawn in the context of performance analysis appears as Figure 2 of Hockney and Curing-
ton [49].

85

Intensity (flop : byte)

G
flo

p/
s

4

8

16

32

64

128

256

512

1024

(3.3, 86)

(3.3, 171)

(9.1, 933)
●

(7.2, 1030)

1/8 1/4 1/2 1 2 4 8 16

Platform
●a●a●a●a Fermi
aaaa C1060
aaaa Nehalem x 2
aaaa Nehalem

Figure 4.8: An example of roofline graph

4.2.5 Profiling and Performance Analysis of CUDA Workloads Using Ocelot [33]

GPU Ocelot is an open-source dynamic JIT compilation framework for GPU compute

applications targeting a range of GPU and non-GPU execution targets. Ocelot supports

unmodified CUDA applications through its custom implementation of the CUDA Run-

time API. Internally, Ocelot parses CUDA kernels structured as PTX modules. PTX,

NVIDIA’s Parallel Thread Execution (PTX) virtual instruction set, is used to provide a

device-independent program representation that captures the explicitly parallel semantics

of CUDA’s single instruction multiple thread (SIMT) execution model. Ocelot supports

several backend execution targets—a PTX emulator, NVIDIA GPUs, AMD GPUs, and a

translator to LLVM for efficient execution of GPU kernels on multicore CPUs. Device

86

portability is illustrated in Figure 4.9. By executing CUDA applications via GPU Ocelot,

these device backends may be leveraged to provide enhanced analysis, profiling, and sim-

ulation of CUDA workloads to understand performance characteristics and bottlenecks as

well as to apply optimizations for improved performance on native GPU execution targets.

add.s64 %rd2, %rd1, 1
mul.s64 %rd3, %rd2, 4
mov.s64 %rd4, 256

setp.lt.s64 %p1, %rd3, %rd4

L_BB_1:

@%p1 bra L_BB_3

mov.s64 %rd5, 64

setp.lt.s64 %p2, %rd3, %rd5

L_BB_2:

@%p2 bra L_BB_4

abs.f64 %fd1, %fd1

sin.f64 %fd2, %fd1L_BB_3:

st.f64 %fd2, [%rd0 + 4]

reconverge L_BB_2

reconverge L_BB_1

L_BB_4:

exitL_BB_5:

PTX Kernel

Ocelot Infrastructure

GPU Execution
add.s64 %rd2, %rd1, 1
mul.s64 %rd3, %rd2, 4
mov.s64 %rd4, 256

setp.lt.s64 %p1, %rd3, %rd4

L_BB_1:

@%p1 bra L_BB_3

mov.s64 %rd5, 64

setp.lt.s64 %p2, %rd3, %rd5

L_BB_2:

@%p2 bra L_BB_4

abs.f64 %fd1, %fd1

sin.f64 %fd2, %fd1L_BB_3:

st.f64 %fd2, [%rd0 + 4]

reconverge L_BB_2

reconverge L_BB_1

L_BB_4:

exitL_BB_5:

LLVM Translation

x86 Multicore

add.s64 %rd2, %rd1, 1
mul.s64 %rd3, %rd2, 4
mov.s64 %rd4, 256

setp.lt.s64 %p1, %rd3, %rd4

L_BB_1:

@%p1 bra L_BB_3

mov.s64 %rd5, 64

setp.lt.s64 %p2, %rd3, %rd5

L_BB_2:

@%p2 bra L_BB_4

abs.f64 %fd1, %fd1

sin.f64 %fd2, %fd1L_BB_3:

st.f64 %fd2, [%rd0 + 4]

reconverge L_BB_2

reconverge L_BB_1

L_BB_4:

exitL_BB_5:

PTX Emulation

x86

add.s64 %rd2, %rd1, 1
mul.s64 %rd3, %rd2, 4
mov.s64 %rd4, 256

setp.lt.s64 %p1, %rd3, %rd4

L_BB_1:

@%p1 bra L_BB_3

mov.s64 %rd5, 64

setp.lt.s64 %p2, %rd3, %rd5

L_BB_2:

@%p2 bra L_BB_4

abs.f64 %fd1, %fd1

sin.f64 %fd2, %fd1L_BB_3:

st.f64 %fd2, [%rd0 + 4]

reconverge L_BB_2

reconverge L_BB_1

L_BB_4:

exitL_BB_5:

NVIDIA GPU

AMD GPU

control flow

parameters

registers

dom, pdom
trees

dataflow

Figure 4.9: GPU Ocelot dynamic compilation and execution infrastructure.

PTX Emulation and Trace Analysis GPU Ocelot’s PTX emulator executes CUDA kernels at

the PTX level and provides the complete architectural state of a GPU for each dynamically

executed instruction. Event trace analyzers are written to process a stream of execution

events to create user-defined trace generators which react to dynamic instruction traces

as the program is executing enabling real-time workload characterization and correctness

checks. Ocelot current has over a dozen event trace analyzers for that provide support for

87

memory access checks, race detection, an interactive debugger, and feedback for perform-

ing tuning.

The sequence in which trace generator event handlers is called for a given dynamic instruc-

tion stream is illustrated in Figure 4.10. All registered trace generators are invoked when

a kernel is launched, enabling them to examine the table of memory allocations, analyze

the kernel’s internal representation, and observe parameter values. As each instruction is

executed, trace generators are called before and after the emulator updates its architectural

state. When the kernel has exited, trace generators are again invoked to perform a final

analysis and possibly write results to external data stores.

add.s64 %rd2, %rd1, 1

event();

postEvent();

mul.s64 %rd3, %rd2, 4

event();

postEvent();

mov.s64 %rd4, 256

event();

postEvent();

initialize();

finish();

register file

local
memory

PTX Functional Simulator

shared
memory

texture
memory

param
memory

const
memory

n-way
SIMD

Global
Memory

Instruction traces

Figure 4.10: PTX Emulator trace generation facilities with abstract machine model.

GPU Ocelot enables the creation and application of several analysis tools. They profile ker-

nel execution and provide visual feedback in the form of a heat map illustrating which part

of the program dominates execution time. Statistics related to code within those regions

provide an indication to the programmer of what the potential bottlenecks are. They may

also assess the ratio of computation to memory transfer and determine whether kernels are

definitely memory bound or definitely compute bound.

88

One common purpose for workload characterization is to identify compute intensive re-

gions within a kernel and understand potential causes for inefficient execution. Several

metrics of interest include SIMD utilization, memory efficiency, bank conflicts, and low

compute instruction density. Measuring application behaviors provides the programmer

feedback for performing optimizations. They may, for instance, restructure control be-

haviors of their kernel to improve SIMD utilization, reduce the number of bank conflicts to

shared memory by skewing static memory allocations, or modifying thread access patterns.

Compute intensity may be increased through other optimizations such as loop unrolling,

pointer arithmetic, and barrier elision. The effects of these optimizations on dynamic in-

struction counts may be precisely measured and visualized, as presented in Figure 4.11.
$BB_001_000

entry

$BB_001_002

instructions: 512

$BB_001_001

exit

$BB_001_003

entries: 511

$BB_001_004

instructions: 1

$BB_001_005

entries: 512

$BB_001_006

entries: 512

$BB_001_007

entries: 4608

$BB_001_008

entries: 4097

$BB_001_009

entries: 4608

$BB_001_0010

entries: 512

$BB_001_0012

entries: 512

$BB_001_006

entries: 512

$BB_001_007

entries: 4608

$BB_001_008

entries: 4097

$BB_001_009

entries: 4608

Hottest block
(4608 entries)

Coldest block
(0 entries)

__global__ void scan_naive(..)
{

 ...

 int offset = 1;

 for (; ;)
 {
 pout = 1 - pout; pin = 1 - pout;
 __syncthreads();
 temp[pout*n+thid] = temp[pin*n+thid];

 if (thid >= offset)
 temp[pout*n+thid] += temp[pin*n+thid - offset];

 offset *= 2;
 if (offset >= n) break;
 }
 ...
}

Figure 4.11: Hot region profile of CUDA SDK Scan application.

Instrumentation GPU Ocelot also defines an interface for implementing PTX transforma-

tion passes capable of inserting instrumentation code into kernels before JIT compiles them

for execution on GPUs or other Ocelot device backends. Additionally, callbacks may be

registered with Ocelot to construct, initialize, and analyze data structures associated with

the transformation pass. This enables online dynamic instrumentation of GPU kernels

89

offering considerable speedup over Ocelot’s emulator when evaluating the same analysis

metric. Constructing transformations using Ocelot’s PTX IR can be cumbersome, so a

custom C-to-PTX compilation tool was developed to simplify the process. This relies on

enumerated types and labels in C code to inform the compiler about where in the kernel

to place the instrumentation probe. For example, an instrumentation code block could be

inserted into every basic block of the original kernel or only at loop headers. Built-in func-

tions enable divergence-free reductions across shared memory buffers, so behaviors related

to the warp-based SIMT execution model may be observed and measured.

Remarks GPU Ocelot is available under the new BSD open-source license from its project

site: http://code.google.com/p/gpuocelot/. Its PTX emulator device backend provides

very detailed instruction and memory traces of CUDA workloads, which may be used to

directly profile applications or drive other analysis tools such as trace-driven timing simula-

tors. Several examples of correctness validation tools integrated within Ocelot and enabled

by default detect synchronization and out-of-bounds errors within kernels, and other tools

provide detailed profiling results. PTX instrumentation enables similar capabilities while

executing on native GPU devices without modifying the original application. Ocelot’s

complete implementation of the CUDA Runtime API, rich set of PTX analysis passes, and

kernel transformation pass manager offer a powerful platform for developing additional

profiling and analysis tools for GPU compute workloads.

4.2.6 Other GPGPU Performance Modeling Techniques

Zhang and Owens presented a performance model in which they measured the execution

time spent on the instruction pipeline, shared memory, and global memory to find the bot-

tlenecks [106]. They also target bottleneck identification, but their method does not directly

estimate performance benefits.

There has been a rich body of work on optimizations and tuning of GPGPU applica-

tions [24, 34, 68, 76, 84]. Ryoo et al. [84] introduced two metrics to prune optimization

90

space by calculating the utilization and efficiency of GPGPU applications. Choi et al.

proposed a performance model for a sparse matrix-vector multiply (SpMV) kernel for the

purpose of autotuning [24].

Performance Analysis Tools for CUDA

Plenty of tools are available to analyze the performance of CUDA applications. GPUs

provide more and more hardware performance counters as we speak.

Kim and Shrivastava [58] presented a tool that can be used to analyze the memory access

patterns of a CUDA program. They model the major memory effects such as memory

coalescing and bank conflict. This is compile-time analysis, lacking dynamic information.

Meng et al. [67] proposed a GPGPU performance projection framework. Given CPU code

skeletons, the framework predicts the cost and benefit of GPGPU acceleration.

There are also GPU simulators that can be used for performance analysis. Bakhoda et

al. [13] implemented a GPU simulator (GPGPU-Sim) and analyzed the performance of

CUDA applications using the simulation output. A G80 functional simulator called Barra

by Collange et al. [27] can execute NVIDIA CUBIN files while collecting statistics. GPGPU-

Sim [13] has been widely used to study CUDA workload characteristics. Recently a num-

ber of CPU+GPU simulators have become available. Multi2sim [90], FusionSim [104],

MV5 [45], and MacSim [1]. These are all cycle-level simulator, which can provide details

of performance and even power behavior.

4.2.7 Performance Analysis Tools for OpenCL

In OpenCL, a couple of tools such as ATI Stream Profiler [77], NVIDIA’s Parallel Nsight [71]

and Visual Profiler provide statistics of OpenCL programs. The recently released Intel

OpenCL SDK [52] also includes analysis tools for OpenCL kernels such as Graphics Per-

formance Analyzer and VTune Amplifier XE 2011. Programmer can use these tools to

store a kernel’s execution data into a trace for off-line analysis and to analyze assembly

91

kernel code.

92

Bibliography

[1] MacSim. http://code.google.com/p/macsim/.

[2] Umut A Acar, Guy E Blelloch, and Robert D Blumofe. The data locality of work
stealing. In Proceedings of the twelfth annual ACM symposium on Parallel algo-
rithms and architectures - SPAA ’00, pages 1–12, New York, New York, USA, July
2000. ACM Press.

[3] Advanced Micro Devices, Inc. AMD Brook+.
http://ati.amd.com/technology/streamcomputing/AMD-Brookplus.pdf.

[4] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116–1127, August 1988.

[5] Randy Allen and Ken Kennedy. Optimizing compilers for modern architectures.
Morgan-Kaufmann Publishers, San Francisco, CA, USA, 2002.

[6] AMD. Fusion. http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx.

[7] Gene M Amdahl. Validity of the single processor approach to achieving large-scale
computing capabilities. In Proc.˜AFIPS Joint Computer Conf., volume 30, pages
483–485, Atlantic City, NJ, USA, April 1967.

[8] Lars Arge, Michael T Goodrich, Michael Nelson, and Nodari Sitchinava. Funda-
mental parallel algorithms for private-cache chip multiprocessors. In Proceedings
of the twentieth annual symposium on Parallelism in algorithms and architectures -
SPAA ’08, page 197, New York, New York, USA, 2008. ACM Press.

[9] Nitin Arora, Ryan P. Russell, and Richard W. Vuduc. Fast sensitivity computations
for numerical optimizations. In Proc. AAS/AIAA Astrodynamics Specialist Confer-
ence, AAS 09-435, Pittsburgh, PA, USA, August 2009.

[10] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian, Gabriel H.
Loh, and Onur Mutlu. Staged memory scheduling: achieving high performance
and scalability in heterogeneous systems. In Proceedings of the 39th International
Symposium on Computer Architecture, ISCA ’12, pages 416–427, Piscataway, NJ,
USA, 2012. IEEE Press.

[11] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and
Wenmei W. Hwu. An adaptive performance modeling tool for gpu architectures. In
PPoPP, 2010.

93

[12] Sara S. Baghsorkhi, Isaac Gelado, Matthieu Delahaye, and Wen-mei W. Hwu. Effi-
cient performance evaluation of memory hierarchy for highly multithreaded graphics
processors. In Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pages 23–34, New York, NY, USA,
2012. ACM.

[13] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. Analyzing cuda
workloads using a detailed gpu simulator. In Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium on, pages 163 –174,
april 2009.

[14] G.E. Blelloch, R.A. Chowdhury, P.B. Gibbons, V Ramachandran, S Chen, and
M Kozuch. Provably good multicore cache performance for divide-and-conquer
algorithms. In Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms, volume pp, pages 501–510. Society for Industrial and Applied
Mathematics, 2008.

[15] Guy E Blelloch. Programming parallel algorithms. Communications of the ACM,
39(3):85–97, March 1996.

[16] Guy E Blelloch, Phillip B Gibbons, and Harsha Vardhan Simhadri. Low depth cache-
oblivious algorithms. In Proceedings of the 22nd ACM symposium on Parallelism
in algorithms and architectures - SPAA ’10, page 189, New York, New York, USA,
June 2010. ACM Press.

[17] W.J. Bouknight, S.A. Denenberg, D.E. McIntyre, J.M. Randall, A.H. Sameh, and
D.L. Slotnick. The illiac iv system. Proceedings of the IEEE, 60(4):369 – 388, april
1972.

[18] George E.P. Box, J. Stuart Hunter, and William G. Hunter. Statistics for Experi-
menters: {Design}, Innovation, and Discovery. Wiley-Interscience, 2nd edition,
2005.

[19] Richard P. Brent. The Parallel Evaluation of General Arithmetic Expressions. Jour-
nal of the ACM, 21(2):201–206, April 1974.

[20] N. Brunie, S. Collange, and G. Diamos. Simultaneous branch and warp interweaving
for sustained gpu performance. In Computer Architecture (ISCA), 2012 39th Annual
International Symposium on, pages 49 –60, june 2012.

[21] David Callahan, John Cocke, and Ken Kennedy. Estimating interlock and improving
balance for pipelined architectures. Journal of Parallel and Distributed Computing,
5(4):334–358, August 1988.

[22] Aparna Chandramowlishwaran, Kamesh Madduri, and Richard Vuduc. Diagnosis,
tuning, and redesign for multicore performance: A case study of the fast multipole
method. In Proc. ACM/IEEE Conf. Supercomputing (SC), New Orleans, LA, USA,
November 2010.

[23] Aparna Chandramowlishwaran, Samuel Williams, Leonid Oliker, Ilya Lashuk,
George Biros, and Richard Vuduc. Optimizing and tuning the fast multipole method
for state-of-the-art multicore architectures. In Proc. IEEE Int’l. Parallel and Dis-
tributed Processing Symp. (IPDPS), Atlanta, GA, USA, April 2010.

94

[24] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of sparse
matrix-vector multiply on gpus. In PPoPP, 2010.

[25] Rezaul Alam Chowdhury, Francesco Silvestri, Brandon Blakeley, and Vijaya Ra-
machandran. Oblivious algorithms for multicores and network of processors. In
2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS),
pages 1–12. IEEE, 2010.

[26] George Chrysos. Intel(R) xeon phiTM coprocessor (codename
knights corner). http://www.slideshare.net/IntelXeon/
under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012,
2012.

[27] Sylvain Collange, Marc Daumas, David Defour, and David Parello. Barra: A parallel
functional simulator for gpgpu. Modeling, Analysis, and Simulation of Computer
Systems, International Symposium on, 0:351–360, 2010.

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, 3rd edition, 2009.

[29] J.-L. Cruz, A. Gonzalez, M. Valero, and N.P. Topham. Multiple-banked register file
architectures. In Computer Architecture, 2000. Proceedings of the 27th International
Symposium on, pages 316 –325, june 2000.

[30] Kenneth Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chan-
dramowlishwaran, and Richard Vuduc. Balance principles for algorithm-architecture
co-design. In Proc. USENIX Wkshp. Hot Topics in Parallelism (HotPar), Berkeley,
CA, USA, May 2011.

[31] Wen-mei Hwu David Kirk. Programming Massively Parallel Processors: A Hands-
on Approach, Second Edition. Morgan Kaufmann, 2012.

[32] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr,
Haicheng Wu, and Sudhakar Yalamanchili. Simd re-convergence at thread frontiers.
In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-44 ’11, pages 477–488, New York, NY, USA, 2011. ACM.

[33] Gregory Diamos, Andrew Kerr, Sudhakar Yalamanchili, and Nathan Clark. Ocelot:
A dynamic compiler for bulk-synchronous applications in heterogeneous systems.
In PACT-19, 2010.

[34] Yuri Dotsenko, Sara S. Baghsorkhi, Brandon Lloyd, and Naga K. Govindaraju.
Auto-tuning of fast fourier transform on graphics processors. In Proceedings of the
16th ACM symposium on Principles and practice of parallel programming, PPoPP
’11, pages 257–266, New York, NY, USA, 2011. ACM.

[35] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew
Chang, Yevgeny Gurevich, and Whay S. Lee. The M-Machine multicomputer.
In Proceedings of the 28th annual international symposium on Microarchitecture,
pages 146–156, 1995.

[36] Matteo Frigo, C.E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Computer Sci-

95

http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012

ence (Cat. No.99CB37039), pages 285–297, New York, NY, USA, October 1999.
IEEE Comput. Soc.

[37] Matteo Frigo and Volker Strumpen. Cache oblivious stencil computations. Pro-
ceedings of the 19th annual international conference on Supercomputing ICS 05,
1(212):361, 2005.

[38] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic
warp formation and scheduling for efficient gpu control flow. In Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40,
pages 407–420, Washington, DC, USA, 2007. IEEE Computer Society.

[39] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic warp
formation: Efficient mimd control flow on simd graphics hardware. ACM Trans.
Archit. Code Optim., 6(2):7:1–7:37, July 2009.

[40] W.W.L. Fung and T.M. Aamodt. Thread block compaction for efficient simt con-
trol flow. In High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, pages 25 –36, feb. 2011.

[41] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J.
Dally, Erik Lindholm, and Kevin Skadron. Energy-efficient mechanisms for man-
aging thread context in throughput processors. In Proceedings of the 38th annual
international symposium on Computer architecture, ISCA ’11, pages 235–246, New
York, NY, USA, 2011. ACM.

[42] Alexander G Gray and Andrew W Moore. ‘N-Body’ problems in statistical learn-
ing. In Proc.˜Advances in Neural Information Processing Systems (NIPS), Vancou-
ver, British Columbia, Canada, December 2000.

[43] L GREENGARD and V ROKHLIN. A fast algorithm for particle simulations. Jour-
nal of Computational Physics, 73(2):325–348, December 1987.

[44] Leslie Greengard and Vladimir Rokhlin. A new version of the Fast Multipole
Method for the Laplace equation in three dimensions. Acta Numerica, 6:229,
November 2008.

[45] LAVA group. The MV5 simulator. https://sites.google.com/site/
mv5sim/benchmarks.

[46] T.D. Han and T.S. Abdelrahman.

[47] Mark D Hill and Michael R Marty. Amdahl’s Law in the Multicore Era. Computer,
41(7):33–38, July 2008.

[48] W. Daniel Hillis. Balancing a Design. IEEE Spectrum, 1987.

[49] Roger W. Hockney and Ian J. Curington. f1/2: A parameter to characterize memory
and communication bottlenecks. Parallel Computing, 10(3):277–286, May 1989.

[50] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness. In ISCA, 2009.

[51] Wenmei W. Hwu and John Stone. A programmers view of the new GPU computing

96

https://sites.google.com/site/mv5sim/benchmarks
https://sites.google.com/site/mv5sim/benchmarks

capabilities in the Fermi architecture and CUDA 3.0. White paper, University of
Illinois, 2009.

[52] Intel Corporation. Intel OpenCL SDK. http://software.intel.com/en-us/articles/intel-
opencl-sdk/.

[53] Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for
distributed-memory matrix multiplication. J. Parallel Distrib. Comput., 64:1017–
1026, 2004.

[54] Joseph JàJà. Introduction to parallel algorithms. Addison-Wesley, 1992.

[55] Min Kyu Jeong, Chander Sudanthi, Nigel Paver, and Mattan Erez. A qos-aware
memory controller for dynamically balancing gpu and cpu bandwidth use in an mp-
soc. In the Proceedings of the 2012 Design Automation Conference (DAC12), June
2012.

[56] Hong Jia-Wei and H T Kung. I/O complexity: The red-blue pebble game. In Pro-
ceedings of the thirteenth annual ACM symposium on Theory of computing - STOC
’81, pages 326–333, New York, New York, USA, May 1981. ACM Press.

[57] David Kanter. Inside fermi: Nvidias hpc push. http://www.realworldtech.
com/fermi/6/.

[58] Yooseong Kim and Aviral Shrivastava. Cumapz: A tool to analyze memory access
patterns in cuda. In DAC ’11: Proc. of the 48th conference on Design automation,
June 2011.

[59] H T Kung. Memory requirements for balanced computer architectures. In Proceed-
ings of the ACM Int’l. Symp. Computer Architecture (ISCA), Tokyo, Japan, 1986.

[60] Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-Anh Nguyen,
Rahul Sampath, Aashay Shringarpure, Richard Vuduc, Lexing Ying, Denis Zorin,
and George Biros. A massively parallel adaptive fast multipole method on heteroge-
neous architectures. In Proc. ACM/IEEE Conf. Supercomputing (SC), Portland, OR,
USA, November 2009.

[61] Jaekyu Lee and Hyesoon Kim. TLP aware cache management schemes in a cpu-gpu
heterogeneous architecture. In HPCA-18, 2012.

[62] Adam Levinthal and Thomas Porter. Chap - a simd graphics processor. In Proceed-
ings of the 11th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’84, pages 77–82, New York, NY, USA, 1984. ACM.

[63] Samuel Liu, John Erik Lindholm, Ming Y Siu, Brett W. Coon, and Stuart F. Ober-
man. Operand collector architecture. U.S. Patent Number 7,834,881, 2010.

[64] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: a
system for programming graphics hardware in a c-like language, 2003.

[65] John McCalpin. Memory Bandwidth and Machine Balance in High Performance
Computers. IEEE Technical Committee on Computer Architecture (TCCA) Newslet-
ter, December 1995.

97

http://www.realworldtech.com/fermi/6/
http://www.realworldtech.com/fermi/6/

[66] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metaprogramming.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, HWWS ’02, pages 57–68, Aire-la-Ville, Switzerland, Switzerland, 2002.
Eurographics Association.

[67] Jiayuan Meng, Vitali Morozov, Kalyan Kumaran, Venkatram Vishwanath, and
Thomas Uram. Grophecy: Gpu performance projection from cpu code skeletons.
In SC’11, February 2011.

[68] Jiayuan Meng and Kevin Skadron. Performance modeling and automatic ghost zone
optimization for iterative stencil loops on gpus. In ICS, 2009.

[69] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp subdivision for
integrated branch and memory divergence tolerance. In ISCA-32, 2010.

[70] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,
Onur Mutlu, and Yale N. Patt. Improving gpu performance via large warps and
two-level warp scheduling. In Proceedings of the 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-44 ’11, pages 308–317, New York,
NY, USA, 2011. ACM.

[71] NVIDIA. NVIDIA Parallel Nsight. http://developer.nvidia.com.

[72] NVIDIA Corporation. CUDA Programming Guide, V4.0.

[73] NVIDIA Corporation. CUDA Toolkit, 2012. Version 4.2 as of Sep. 2012, http:
//developer.nvidia.com/cuda/cuda-downloads.

[74] CORPORATE OpenGL Architecture ReviewBoard. OpenGL reference manual: the
official reference document for OpenGL, release 1. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1992.

[75] Matt Pharr and Randima Fernando. GPU Gems 2. Addison-Wesley Professional,
2005.

[76] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanu-
jam, and P. Sadayappan. Combined iterative and model-driven optimization in an
automatic parallelization framework. In SC ’10, pages 1–11, Washington, DC, USA,
2010. IEEE Computer Society.

[77] Budirijanto Purnomo, Norman Rubin, and Michael Houston. Ati stream profiler:
a tool to optimize an opencl kernel on ati radeon gpus. In ACM SIGGRAPH 2010
Posters, SIGGRAPH ’10, pages 54:1–54:1, New York, NY, USA, 2010. ACM.

[78] Abtin Rahimian, Ilya Lashuk, Aparna Chandramowlishwaran, Dhairya Malhotra,
Logan Moon, Rahul Sampath, Aashay Shringarpure, Shravan Veerapaneni, Jeffrey
Vetter, Richard Vuduc, Denis Zorin, and George Biros. Petascale direct numeri-
cal simulation of blood flow on 200k cores and heterogeneous architectures. In
Proc. ACM/IEEE Conf. Supercomputing (SC), New Orleans, LA, USA, November
2010.

[79] Minsoo Rhu and M. Erez. Capri: Prediction of compaction-adequacy for handling
control-divergence in gpgpu architectures. In Computer Architecture (ISCA), 2012
39th Annual International Symposium on, 2012.

98

http://developer.nvidia.com/cuda/cuda-downloads
http://developer.nvidia.com/cuda/cuda-downloads

[80] Michael D. Root and James R. Boer. Directx Complete. McGraw-Hill, Inc., New
York, NY, USA, 1st edition, 1998.

[81] R. M. Russell. The CRAY-1 computer system. Communications of the ACM,
21(1):63–72, January 1978.

[82] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.
Kirk, and Wen mei W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In Proc. of the 13th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming, 2008.

[83] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee
Ueng, and Wen mei W. Who. Program optimization study on a 128-core gpu. In
GPGPU-1, 2007.

[84] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee
Ueng, John A. Stratton, and Wen mei W. Hwu. Program optimization space pruning
for a multithreaded gpu. In CGO-6, pages 195–204, 2008.

[85] Jae Woong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc. ”gpuperf:
A performance analysis framework for identifying performance benefits in gpgpu
applications”. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallal Programming (PPoPP), 2012.

[86] Burton J. Smith. Readings in computer architecture. chapter Architecture and appli-
cations of the HEP mulitprocessor computer system, pages 342–349. Morgan Kauf-
mann Publishers Inc., 2000.

[87] Allan Snavely, Larry Carter, Jay Boisseau, Amit Majumdar, Kang Su Gatlin, Nick
Mitchell, John Feo, and Brian Koblenz. Multi-processor performance on the Tera
MTA. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing, pages
1–8, 1998.

[88] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data parallelism to
program gpus for general-purpose uses. In Proceedings of the 12th international
conference on Architectural support for programming languages and operating sys-
tems, ASPLOS-XII, pages 325–335, New York, NY, USA, 2006. ACM.

[89] James E. Thornton. Design of a Computer: The Control Data 6600. Foresman Press,
1970.

[90] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
Multi2Sim: A Simulation Framework for CPU-GPU Computing. In Proc. of the 21st
International Conference on Parallel Architectures and Compilation Techniques,
Sept. 2012.

[91] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33:103–111, August 1990.

[92] Leslie G Valiant. A bridging model for multi-core computing. In Proceedings of
the European Symposium on Algorithms (ESA), volume LNCS 5193, pages 13–28,
Universität Karlsruhe, Germany, September 2008. Springer Berlin / Heidelberg.

99

[93] Jeffrey Scott Vitter. External memory algorithms and data structures: dealing with
massive data. ACM Computing Surveys, 33(2):209–271, June 2001.

[94] Jeffrey Scott Vitter. Algorithms and data structures for external memory. In Foun-
dation and Trends in Theoretical Computer Science, volume 2, pages 305–474. now
Publishers Inc., Hanover, MA, USA, 2006.

[95] Vasily Volkov. Better performance at lower occupancy. http://www.cs.
berkeley.edu/˜volkov/volkov10-GTC.pdf.

[96] Vasily Volkov and James W. Demmel. Benchmarking gpus to tune dense linear
algebra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC
’08, pages 31:1–31:11, Piscataway, NJ, USA, 2008. IEEE Press.

[97] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful
visual performance model for multicore architectures. Communications of the ACM,
52(4):65, April 2009.

[98] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demysti-
fying gpu microarchitecture through microbenchmarking. In Performance Analysis
of Systems Software (ISPASS), 2010 IEEE International Symposium on, pages 235
–246, march 2010.

[99] Dong Hyuk Woo and Hsien-Hsin S Lee. Extending Amdahl’s Law for energy-
efficient computing in the many-core era. IEEE Computer, 41(12):24–31, December
2008.

[100] Sven Woop, Jörg Schmittler, and Philipp Slusallek. Rpu: a programmable ray pro-
cessing unit for realtime ray tracing. In ACM SIGGRAPH 2005 Papers, SIGGRAPH
’05, pages 434–444, New York, NY, USA, 2005. ACM.

[101] Lexing Ying, George Biros, and Denis Zorin. A kernel-independent adaptive fast
multipole algorithm in two and three dimensions. Journal of Computational Physics,
196(2):591–626, May 2004.

[102] Kamen Yotov, Tom Roeder, Keshav Pingali, John Gunnels, and Fred Gustavson.
An experimental comparison of cache-oblivious and cache-conscious programs. In
Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and
architectures - SPAA ’07, page 93, New York, New York, USA, 2007. ACM Press.

[103] Georgia L. Yuan, Ali Bakhoda, and Tor M. Aamodt. Complexity effective memory
access scheduling for many-core accelerator architectures. In MICRO-42, pages 34–
44, New York, NY, USA, 2009. ACM.

[104] Vitaly Zakharenko. Fusionsim simulator. www.fusionsim.ca.
[105] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. On-the-fly

elimination of dynamic irregularities for gpu computing. In Proceedings of the six-
teenth international conference on Architectural support for programming languages
and operating systems, ASPLOS ’11, pages 369–380, New York, NY, USA, 2011.
ACM.

[106] Yao Zhang and John D. Owens. A quantitative performance analysis model for GPU
architectures. In HPCA, 2011.

100

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

	GPU Design, Programming, and Trends
	A Brief History of GPU
	A Brief Overview of a GPU System
	An Overview of GPU Architecture

	A GPGPU Programming Model: CUDA
	Kernels
	Thread Hierarchy in CUDA
	Memory Hierarchy
	SIMT Execution
	CUDA language extensions
	Vector Addition Example
	PTX
	Consistency Model and Special Memory Operations
	IEEE floating-point support
	Execution Model of OpenCL

	GPU Architecture
	GPU Pipeline
	Handling Branch Instructions
	GPU Memory Systems

	Other GPU Architectures
	The Fermi Architecture
	The AMD Architecture
	Many Integrated Core Architecture
	Combining CPUs and GPUs on the same Die

	Performance Principles
	Theory: Algorithm design models overview
	Characterizing parallelism: the Work-Depth Model
	Characterizing I/O behavior: the External Memory Model
	Combined analyses of parallelism and I/O-efficiency
	Abstract and concrete measures
	Summary

	From Principles to Practice: Analysis and Tuning
	The computational problem: Particle interactions
	An optimal approximation: the fast multipole method
	Designing a parallel and I/O-efficient algorithm
	A baseline implementation
	Setting an optimization goal
	Identifying candidate optimizations
	Exploring the optimization space
	Summary

	Using Detailed Performance Analysis to Guide Optimization
	Instruction-level Analysis and Tuning
	Execution Time Modeling
	Applying the Model to FMM
	Performance Optimization Guide

	Other Performance Modeling Techniques and Tools
	Limited Performance Visibility
	Work Flow Graphs
	Stochastic Memory Hierarchy Model
	Roofline Model
	Profiling and Performance Analysis of CUDA Workloads Using Ocelot ocelot
	Other GPGPU Performance Modeling Techniques
	Performance Analysis Tools for OpenCL

