
1

(C) 2003 Milo Martin

Token Coherence:
Enabling Faster Multiprocessors by

Decoupling Performance and Correctness

Milo M. K. Martin, Mark D. Hil l, David A. Wood

Wisconsin Multifacet Project
http://www.cs.wisc.edu/multifacet/
University of Wisconsin—Madison

Refs: ISCA’03, Martin Thesis, Martin Interview Talk

Token Coherence – Milo Martinslide 2

Overview

• Focus: server hardware
– Database and web services
– Computers with multiple processors

• Problem: memory sy stem
– Performance bottleneck
– Complexity

• Solution: decoupling
– Correctness as pects from
– Performance aspects

• Result: faster & cheaper server hardware

Token Coherence – Milo Martinslide 3

Outline

• Motivation & background
• Problem: resolving races

• Solution: Token Coherence (specific)

• Evaluation

• Token Coherence (generalized)

• Conclusions

Our
Contributions

Background

Token Coherence – Milo Martinslide 4

A World of Clients and Servers

• Clients
– PCs with web browsers
– Mobile, wireless, embedded

• Servers
– Database and web services
– E.g., e-commerce, financial/banking,

travel reservations, inventory
management, data mining

• Server Hardware
– Improve cost & real-world performance
– Long term: enable new & emerging applications

Clients

Servers

Token Coherence – Milo Martinslide 5

Server Workload Characteristics

• Parallel requests
– From thousands or millions of clients
– Throughput oriented

• Natural fit for multiprocessors
– …and clusters of multiprocessors

• Large workloads →→ large hardware demands
– Dozens of processors
– 100+ GBs of memory
– 100’s of disks

Token Coherence – Milo Martinslide 6

Aside: Simulating Commercial Workloads

• Computer architects use simulation to:
– Characterize and understand workloads
– Evaluate enhancements

• Identified workloads (OLTP, Java, web)
– Tuned & scaled on a real 16-processor machine

• Simulation & detailed characterization
– Simics full-system simulator (1 instruction = 1 cycle)
– Added detailed timing simulation (multi-year effort)

Advanced workload and simulation environment
“ Simulating $2M Server on a $2K PC”

[IEEE Computer, Feb 2003]

2

Token Coherence – Milo Martinslide 7

• Provide a shared-memory abstraction
– Familiar and efficient for programmers

Multiprocessor Server Hardware

P1 P2 P3 P4

• Hardware caches are critical for performance
– E.g., 4MB cache with 64 byte blocks
– 100x difference (1ns - 5ns vs. 100’s of nanoseconds)

Memory System

Token Coherence – Milo Martinslide 8

• Provide a shared-memory abstraction
– Familiar and efficient for programmers

Multiprocessor Server Hardware

Interconnection Network

P1

Cache M1

Interface

P2

Cache M2

Interface

P3

Cache M3

Interface

P4

Cache M4

Interface

• Hardware caches are critical for performance
– E.g., 4MB cache with 64 byte blocks
– 100x difference (1ns - 5ns vs. 100’s of nanoseconds)

Token Coherence – Milo Martinslide 9

Hardware Cache-Coherence Problem

• Goal: provide a consistent view of memory

• Permissions in each cache per block
– One read/write -or-
– Many readers

• Cache coherence protocols
– Distributed & complex
– Correctness critical
– Performance critical

• Races: the main source of complexity
– Requests for the same block at the same time

Token Coherence – Milo Martinslide 10

Outline

• Motivation & background

• Problem: resolving races
– Traditional solutions
– Performance overheads

• Solution: Token Coherence (specific)

• Evaluation

• Token Coherence (generalized)

• Conclusions

Token Coherence – Milo Martinslide 11

• Snooping multiprocessors
– Uses broadcast
– Ordered interconnect
+ Directly locate data (2 hops)

• Directory-based multiprocessors
– Directory tracks writer or readers
+ Avoids broadcast
+ Avoids ordered interconnect
– Indirection for cache-to-cache (3 hops)

Method for ordering racing requests is key

Two classes of multiprocessors

P P P M

1

2

P P P M

2

1

3

Token Coherence – Milo Martinslide 12

Snooping Example

P2

Read/Write

P0

Requestor

P1

Requestor

M0

Home

Root

Totally Ordered
Interconnect

3

Token Coherence – Milo Martinslide 13

Snooping Example

P2

No Copy

P0

Requestor

P1

Read/Write

M0

Home

Root

Totally Ordered
Interconnect No indirection, but

ordered interconnect

Token Coherence – Milo Martinslide 14

Directory Example

P2

Read/Write

P0

Requestor

P1

Requestor

M0

Home

Request

Fwd

Token Coherence – Milo Martinslide 15

Directory Example

Request

FwdData

Done

P2

No Copy

P0

Requestor

P1

Read/Write

M0

Home

Token Coherence – Milo Martinslide 16

Directory Example

Request

Fwd

P2

No Copy

P0

Requestor

P1

Read/Write

M0

Home

Token Coherence – Milo Martinslide 17

Directory Example

Request

Fwd

Data

Done

P2

No Copy

P0

Read/Write

P1

No Copy

M0

Home

No ordered interconnect, but adds indirection
Token Coherence – Milo Martinslide 18

Snooping v. Directories

Which approach is “ better” ?

• Examine
– Workload trends

– Technology trends

4

Token Coherence – Milo Martinslide 19

Workload Trends

• Commercial workloads
– Many cache-to-cache or sharing misses

• Clustering
– Reduces demand for “scalable” systems
– Build clusters of multiprocessors

• Goals:
– Low sharing-miss latency (2 hops)
– Moderate scalability

Workload trends →→ snooping protocols

Token Coherence – Milo Martinslide 20

Technology Trends

• High-speed point-to-point links
– No (multi-drop) busses

• Goal: unconstrained interconnect
– Decouple interconnect & protocol
– No “ virtual bus” ordering

Technology trends →→ directory protocols

• Increasing design integration
– “Glueless” multiprocessors
– Improve cost & latency

Token Coherence – Milo Martinslide 21

Multiprocessor Taxonomy

Directories

Interconnect
ordering

Yes

No

Snooping

Directory ordering
Yes NoTechnology

Trends

Workload Trends

Our Goal

[ASPLOS ‘00]
[HPCA ‘02]
[ISCA ‘03]
[ISCA ‘03]

Token Coherence – Milo Martinslide 22

Outline

• Motivation & background

• Problem: resolving races

• Solution: Token Coherence (specific)
• Evaluation

• Token Coherence (generalized)

• Conclusions

Token Coherence – Milo Martinslide 23

Best of Both: Basic Approach

• Broadcast with direct responses (like snooping)

• Use unordered interconnect (like directory)

• Works fine with no races…

…but what happens in the case of a race?

Token Coherence – Milo Martinslide 24

1

•P0 issues a request to write (delayed to P2)

Request to write

Basic approach… but not yet correct

P2

Read/Write

P1

No Copy

P0

No Copy

Delayed in interconnect

3

•P1 issues a request to read

Request to read

2
Ack

5

Token Coherence – Milo Martinslide 25

P2

Read/Write

P1

No Copy

P0

No Copy

Basic approach… but not yet correct

1
2

3

4

Read-only Read-only

•P2 responds with data to P1

Token Coherence – Milo Martinslide 26

Basic approach… but not yet correct

P2

Read/Write

P1

No Copy

P0

No Copy 1
2

3

4

5
Read-only Read-only

•P0’s delayed request arrives at P2

Token Coherence – Milo Martinslide 27

Basic approach… but not yet correct

P2

Read/Write

P1

No Copy

P0

Read/Write 1
2

3

4

5

6

7

Read-only Read-only
No Copy

•P2 responds to P0

Token Coherence – Milo Martinslide 28

Basic approach… but not yet correct

P2

Read/Write

P1

No Copy

P0

Read/Write 1
2

3

4

5

6

7

Read-only Read-only
No Copy

Problem: P0 and P1 are in inconsistent states

(P0 can write, P1 can read)

Token Coherence – Milo Martinslide 29

Contribution #1: Token Counting

• Explicitly encode permissions with tokens
• At all times, all blocks have T tokens

E.g., one token per processor
• Components exchange tokens & data

• Controls reading & writing of data
• One or more to read
• All tokens to write

• Tokens: in caches, memory, or in transit

Provides safety in all cases

Token Coherence – Milo Martinslide 30

Basic Approach (Revisited)

• As before:
– Broadcast with direct responses (like snooping)
– Use unordered interconnect (like directory)

• Track tokens for safety

• Reissue requests as needed
– Needed due to racing requests (uncommon)
– Timeout to detect failed completion

• Wait twice average miss latency
• Small hardware overhead

• (Ignore starvation for a moment)

6

Token Coherence – Milo Martinslide 31

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=0

2

Delayed

1

•P0 issues a request to write (delayed to P2)

Request to write

3

•P1 issues a request to read

Delayed Request to read

Max Tokens

Token Coherence – Milo Martinslide 32

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=0 1
2

3

4

T=1(R) T=15(R)

•P2 responds with data to P1

T=1

Token Coherence – Milo Martinslide 33

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=0 1
2

3

4

5
T=1(R) T=15(R)

•P0’s delayed request arrives at P2

Token Coherence – Milo Martinslide 34

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=15(R) 1
2

3

4

5

6

7

T=1(R) T=15(R)
T=0

•P2 responds to P0

T=15

Token Coherence – Milo Martinslide 35

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=15(R) 1
2

3

4

5

6

7

T=1(R) T=15(R)
T=0

Token Coherence – Milo Martinslide 36

Token Coherence Example

P2

T=0

P1

T=1(R)

P0

T=15(R)

8

•P0 reissues request

•P1 responds with a token

T=19
Timeout!

7

Token Coherence – Milo Martinslide 37

Token Coherence Example

P2

T=0

P0

T=16 (R/W)

P1

T=0

•P0’s request completed

What about starvation (forward progress)?

Token Coherence – Milo Martinslide 38

Contribution #2:
Guaranteeing Forward Progress

• Handle pathological cases
– Infrequently invoked
– Can be slow, inefficient, and simple

• When normal requests fail to succeed (4x)
– Longer timeout and issue a persistent request
– Request persists until satisfied
– Table at each processor
– “Deactivate” upon completion

• Implementation
– Arbiter at memory orders persistent requests

Token Coherence – Milo Martinslide 39

More Depth in ISCA ’03 & Martin Thesis

• Traffic optimizations
– Transfer tokens without data
– Add an “owner” token
– Upgrade (Read-only to read/write)
– “Exclusive Clean” State

• Note: no silent read-only replacements
– Worst case: 10% traffic overhead

• Encoding tokens in memory
– Using ECC bits
– Reduce read/modify/writes with token cache

Token Coherence – Milo Martinslide 40

Outline

• Motivation & background

• Problem: resolving races

• Solution: Token Coherence (specific)

• Evaluation
• Token Coherence (generalized)

• Conclusions

Token Coherence – Milo Martinslide 41

Evaluation Goal

• Non-goal: exact speedup numbers
– Many parameters and assumptions
– Key parameter: 16 processors

• Goal: Four Questions
1. Are races rare?
2. Can Token Coherence outperform Snooping?
3. Can Token Coherence outperform Directories?
4. Is broadcast overhead reasonable?

Quantitative evidence for qualitative behavior

Token Coherence – Milo Martinslide 42

Q1: Reissued Requests
(percent of all misses)

ApacheSPECjbbOLTP

8

Token Coherence – Milo Martinslide 43

Q1: Reissued Requests
(percent of all misses)

0.3%0.1%0.2%
Persistent
Requests
(Reissued > 4)

0.7%0.3%0.4%Reissued > 1

3%2%2%Reissued
Once

96%98%98%Not Reissued

ApacheSPECjbbOLTPOutcome

Yes; races are rare

Token Coherence – Milo Martinslide 44

Q2: Runtime: Snooping vs. Token Coherence
Hierarchical Switch Interconnect

Similar performance on
same interconnect

Token Coherence – Milo Martinslide 45

Q2: Runtime: Snooping vs. Token Coherence
Direct Interconnect

Snooping not
applicable

Token Coherence – Milo Martinslide 46

Q2: Runtime: Snooping vs. Token Coherence

Yes; Token Coherence
can outperform

snooping
(15-28% faster)

Why? Lower-latency
interconnect

Token Coherence – Milo Martinslide 47

Q3: Runtime: Directory vs. Token Coherence

Yes; Token Coherence
can outperform

directories
(17-54% faster with

slow directory)

Why? Direct “ 2-hop”
sharing misses

Token Coherence – Milo Martinslide 48

Q3: Runtime: Directory vs. Token Coherence

Yes; Token Coherence
can outperform

directories
(17-54% faster with

slow directory)

Why? Direct “ 2-hop”
sharing misses

9

Token Coherence – Milo Martinslide 49

Q4: Traffic per Miss: Directory vs. TokenB

Yes; broadcast
overheads reasonable

for 16 processors
(directory uses 21-25%

less bandwidth)

Token Coherence – Milo Martinslide 50

Q4: Traffic per Miss: Directory vs. TokenB

Yes; broadcast
overheads reasonable

for 16 processors
(directory uses 21-25%

less bandwidth)

Why? Requests are
smaller than data

(8B v. 64B)

Requests & forwards

Responses

Token Coherence – Milo Martinslide 51

Evaluation Summary

1. Are races rare? Yes

2. Can Token Coherence outperform Snooping?
Yes: Lower-latency interconnect

3. Can Token Coherence outperform Directories?
Yes: Direct sharing-misses

4. Is broadcast overhead reasonable?
Yes (Reasonable for 16 processors)

Token Coherence – Milo Martinslide 52

Outline

• Motivation & background

• Problem: resolving races

• Solution: Token Coherence (specific)

• Evaluation

• Token Coherence (generalized)
• Conclusions

Token Coherence – Milo Martinslide 53

Traditional v. Token Coherence
• Traditional protocols

– Fixed point of ordering requests
• Interconnect or directory

– Monolithic
• Intertwine correctness and performance

• Token Coherence
– Unordered requests for common cases
– Track tokens (safety)
– Guarantee forward progress

Separate Correctness and Performance
Token Coherence – Milo Martinslide 54

Contribution #3: Decoupled Coherence

Cache Coherence Protocol

Correctness Substrate
(all cases)

Performance Protocol
(common cases)

Safety
(Token Counting)

Forward Progress
(persistent requests)

Many Implementation choices

10

Token Coherence – Milo Martinslide 55

Example Opportunity of Decoupling

• Predict a destination-set [ISCA ‘03]
– Based on past history
– Need not be correct (fall back on broadcast)
– 90% of snooping’s benefit, 1/3rd the traffic

• Enables larger or more cost-effective systems

P2P2P2P2PnP1

T=16

P0 T=16

• Broadcast is not required

Token Coherence – Milo Martinslide 56

Performance Protocols

• Opportunities
– Aggressively target the common case
– Requests are just “hints” to move data & tokens

• Correctness substrate may ignore hints

• Robust
– Can’t cause “correctness” violations
– A null or random protocol is correct
– Rely on correctness substrate

Token Coherence – Milo Martinslide 57

Verifiability & Complexity

• Divide and conquer complexity
– Formal verification is future work
– Difficult to quantify, but promising
– E.g. simple replacements (no handshake)

• Strong invariants
– Locally enforced with tokens
– Response-centric; independent of requests
– Prevent data-corruption bugs

• Explicit forward progress
– Simple mechanism

• Further innovation →→ no correctness worr ies
Token Coherence – Milo Martinslide 58

Outline

• Motivation & background

• Problem: resolving races

• Solution: Token Coherence (specific)

• Evaluation

• Token Coherence (generalized)

• Other research & future directions
• Conclusions

Token Coherence – Milo Martinslide 59

Other Collaborative Research

• Coherence protocols
– Destination-set prediction [ISCA ‘03]
– Bandwidth adaptive coherence [HPCA ‘02]
– Timestamp-based ordering [ASPLOS ‘00]

• Correctness & specification
– Value prediction & consistency [Micro ‘01]
– Protocol specification [TPDS ‘02]
– SLICC: A domain specific language for protocol

specification

• Improving hardware availability [ISCA ‘02]

• Compiler/hardware interaction [Micro ‘97]

Token Coherence – Milo Martinslide 60

Future Directions: Servers

• Tackling complexity through decoupling
– Simpler, faster, cheaper, more robust

• Other hardware examples
– Hierarchical multiprocessors (CMPs)
– Multiprocessor interconnection networks

(e.g., domain specific TCP/IP)
– Simplify processor design with “correctness” checker

• Possible software example (for collaboration)
– Content distribution networks, secure systems

11

Token Coherence – Milo Martinslide 61

Future Directions: Clients

• Mobile, wireless, embedded, sensors
– Not PCs

• Energy consumption, cost, performance
– Applying techniques from servers to clients
– Exploit explicit parallelism

• Example: Intel Xscale
– 1 GHz →→ 200 MHz reduces energy used by 30x
– 5 x 200 MHz in parallel, use 1/6th the energy

• Same research approach:
– Identify emerging workloads, trends, problems
– Build tools, characterize, find innovate solutions

Token Coherence – Milo Martinslide 62

Conclusions

• Token Coherence (generalization)
– Decouple correctness from performance
– Correctness substrate

• Tokens for safety
• Persistent requests for forward progress

– Performance protocol for performance

• Token Coherence (broadcast version)
– Low sharing-miss latency (no indirection)
– Requires no interconnect ordering
– Can be faster than current alternatives

• Enables further protocol innovation

