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Abstract: Executing multiple threads on a single proces-
sor will play a key role the future scaling of computer per-
formance, and while many new architectures propose novel
uses for threads, few address the complexity required to sup-
port multiple threads in a single processor core. This pa-
per describes extensions to WaveScalar, a recently proposed
dataflow instruction set, and the WaveCache, a WaveScalar
processor, that allow multiple threads to execute simultane-
ously. The original WaveCache is significantly less complex
than a modern out-of-order von Neumann processor, and the
modifications it requires for multithreading are very small.
We demonstrate that resulting multithreaded architecturecan
efficiently execute applications from the Splash2 benchmark
suite.

1 Introduction

Threads have proven to be an effective tool for enhancing pro-
gram performance. For many years, they have supplied ex-
plicitly parallel applications, such as web servers, databases,
and some scientific codes, with a simple parallel program-
ming model and substantial speedups on multiple processors.
Current research suggests that future multithreaded proces-
sors may use threads to benefit single-threaded programs by
prefetching data [1], speculatively executing past branches [2]
and across loop iterations [3], and improving system reliabil-
ity [4, 5].

However, supporting multiple threads can introduce sig-
nificant microarchitectural complexity. Simultaneous mul-
tithreading, for instance, dynamically partitions resources
across one or more threads, providing good performance for
both single- and multi-threaded workloads, but SMT proces-
sors are extremely complicated. They incur all the complexity
costs of out-of-order execution but also must provide support
for multiple threads throughout the pipeline including multi-
ple commit queues, multiple store buffers, larger registerfiles
and renaming tables.

WaveScalar [6] is a recently developed dataflow instruc-
tion set that combines the fine-grain threading and syn-
chronization mechanisms that the dataflow instruction fir-

ing rule provides with a simple memory ordering technique
called wave-ordered memory[6]. This provides total-load-
store ordering for coarse-grain, von Neumann-style threads.
The WaveScalar instruction set runs on a new style of low-
complexity, distributed processor. WaveScalar programs ex-
ecute in a sea of simple processing nodes that replace the
central processor and instruction cache of a conventional
computer. Conceptually, instructions execute in-place inthe
memory system and explicitly forward their results to any de-
pendents. In practice, they are stored and executed by an in-
telligent, distributed instruction cache called aWaveCache.
The WaveCache loads instructions from memory and assigns
them to processing elements for execution. The working set
of the application remains in this “intelligent I-cache” over
many, potentially millions of, invocations.

The chief advantages of the WaveCache over superscalars
and other von Neumann processors are its low complexity; re-
liance on local, rather than global, communication; and high
defect tolerance. Dataflow architectures are inherently multi-
threaded (some models even consider each instruction to be
its own thread), so augmenting the WaveCache to support
multiple von Neumann-style threads is much simpler and re-
quires less hardware than adding multithreading support toan
out-of-order superscalar processor.

The WaveCache consists of small, low-complexity pro-
cessing nodes replicated across the die that use nearest-
neighbor, point-to-point messaging. This reduces design
complexity and avoids long wire-delays that can limit clock
speeds. Prior work [6] demonstrates that even with the crud-
est of compilation tools (a binary translator to convert Al-
pha executables to the WaveScalar instruction set), the Wave-
Cache outperforms an extremely aggressive superscalar de-
sign by 2-7X. This work extends the WaveCache to support
multiple threads by simply widening some hardware struc-
tures by a few bits and providing additional, independent
copies of others.

In this work, we describe two key aspects of the
WaveScalar threading system. First, we deconstruct the
prior work on WaveScalar by decoupling dataflow execution
from wave-ordered memory to give threads greater control



over scarce memory-ordering hardware resources. Second,
we introduce a new instruction that facilitates lightweight,
memory-lessinter-thread communication. Using this commu-
nication mechanism, we construct a variety of efficient syn-
chronization and communication primitives including locks,
barriers, condition variables, and simple message passing.

Our results demonstrate that the WaveCache can execute
threaded programs efficiently. We embed our memory-less
synchronization primitives in the Splash-2 benchmark suite to
explore the performance and scalability of traditional coarse-
grain parallel codes executing on the WaveCache.

The next section reviews the WaveScalar instruction set
and the WaveCache. In Section 3, we describe extensions to
the WaveScalar ISA and the WaveCache architecture to sup-
port multiple threads, decouple memory order from execu-
tion, and support efficient lightweight synchronization. Sec-
tion 5 illustrates how these mechanisms are employed to build
memory-less synchronization primitives. Sections 6 and 7
present an evaluation of threading in the WaveCache and our
conclusions.

2 WaveScalar Review

Before discussing the architectural changes made to support
threads, we provide a brief review of the WaveScalar instruc-
tion set and the WaveCache architecture. The WaveScalar
ISA and its WaveCache implementation are a response to the
scaling problems facing tomorrow’s superscalar and VLIW
processors and specifically target the increasing complex-
ity of superscalars’ centralized designs, the increasing dis-
parity between computation and communication costs, and
the decreasing reliability of shrinking circuit technology.
WaveScalar side-steps these issues with a distributed com-
puting substrate composed of thousands of simple, largely
identical, and interchangeable processing elements (PEs). To
reduce communication costs within this substrate, PEs are or-
ganized into clusters, each associated with its own store buffer
and data cache. Instructions are placed in clusters to minimize
both inter-PE and PE-memory communication.

The PEs execute instructions using a dataflow execution
model [7, 8, 9, 10, 11, 12, 13, 14]. Dataflow computers exe-
cute programs according to the dataflow firing rule: instruc-
tions execute after all their operands become available. Val-
ues in a dataflow machine generally carry a tag to distinguish
them from other dynamic instances of the same variable. A
value and its tag are known as a token.

Previous dataflow machines have excelled at exposing par-
allelism but required programs to be written in special lan-
guages that eliminate side effects. WaveScalar surmounts this
shortcoming with wave-ordered memory, a memory-ordering
scheme that uses compiler-supplied annotations to preserve
total load-store ordering and enables programs written in im-
perative languages to execute efficiently. In addition to lan-
guage restrictions, the centralized designs of early dataflow

machines’ token stores hampered their performance and scal-
ability. The WaveCache eliminates this problem by distribut-
ing the token store and matching logic across the PEs.

The consequence of these features is a dataflow execution
model and implementation that are realizable in near-term
technology and can efficiently execute programs written in
any language.

2.1 The WaveScalar Instruction Set

Like previous dataflow instruction sets, WaveScalar converts
control dependences into data dependences by sending data
values to the instructions that need them. Rather than chang-
ing the value of a program counter, which causes particular
instructions to be fetched and executed on a von Neumann
machine, WaveScalar includes two dataflow instructions that
explicitly steer values to their intended consumers. A condi-
tional selector,φ [15], takes two input values and a boolean
selector and, depending on the selector’s value, produces one
of the inputs on its output. The reverse operation, a condi-
tional split orφ−1 [16], takes an input value and a boolean
output selector and directs the input to one of two possible
outputs, depending on the selector value.

Like traditional dataflow machines, WaveScalar uses tags
to identify different dynamic instances of data. Unlike tra-
ditional dataflow machines, where tag creation is either par-
tially distributed [17] or completely centralized, WaveScalar’s
tag control mechanism is entirely under software control, and
distributed throughout the WaveCache. A special instruc-
tion, WAVE-ADVANCE, increments the tag, called WAVE-
NUMBER, by 1 (modulo a maximum).

When compiling imperative language code, the
WaveScalar compiler breaks the control flow graph of
an application into pieces called waves. A wave’s key
properties are: (1) its instructions are partially ordered(there
are no loops); (2) control can only enter at a single point;
and (3) each time a wave executes, its instructions execute
at most once. These properties allow the compiler to reason
about memory ordering within a wave. Note that a wave is
more general than a hyperblock [18], since it can contain
joins. This makes it easy for the compiler to increase wave
size by unrolling loops.

Traditional imperative languages provide a programmer
with a model of memory known as total load-store ordering.
WaveScalar brings this feature to dataflow computing by us-
ing wave-ordered memory. Under wave-ordered memory, the
compiler annotates each memory operation with both its lo-
cation in its wave and information about its ordering relation-
ships, defined by the control flow graph and instruction order
within basic blocks, to other memory operations in the same
wave. As the memory operations execute, these annotations
travel to the memory system, allowing to apply memory op-
erations in the correct order.

Finally, WaveScalar supports object linking, shared li-
braries, and indirect function calls. Facilitating these con-
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Figure 1:WaveCache: The WaveScalar instruction set is in-
tended to be executed by an substrate of computational ele-
ments called the WaveCache.

structs requires an additional instruction, INDIRECT-SEND,
which takes three inputs: a data value (e.g., a function argu-
ment), an address, and an offset (which is statically encoded
as an immediate value). INDIRECT-SEND sends the value to
a consumer instruction located at the address plus the offset.

2.2 The WaveCache: a WaveScalar processor

In this section, we summarize the design of a WaveCache
processor to execute WaveScalar binaries that could be built
within the next 5-10 years (Figure 1). This microarchitecture
is the baseline model used in the simulation experiments pre-
sented in later sections.

The WaveCache is a grid of simple processing elements.
Each PE (Figure 2) contains buffering and storage for 8 dif-
ferent static instructions, although only one can fire each cy-
cle. A PE also includes logic to control instruction place-
ment and execution, input and output queues for instruction
operands, communication logic, and a functional unit. PEs
are co-located with their static instructions, forming an “in-
telligent” instruction cache, or processor-in-cache.

PEs are grouped into domains. Within a domain, instruc-
tions can both execute and send their results to a consum-
ing PE within a single cycle. Four domains are grouped into
a cluster, which houses both a store buffer and a traditional
4-way set-associative, 16K L1 data cache. The L1 caches
are kept coherent using a simple directory-based coherence
scheme that supports a single cache line owner with no shar-
ing. There is a 16MB unified L2 cache distributed around the
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Figure 2: WaveCache node: Each node of the WaveCache
is a simple ALU and input/output queues. Instructions are
mapped onto this node which caches and executes them.

edge of the grid, along with the L1 directory. Once memory
requests reach the L2 cache, access latencies are 20 cycles,
with 1000 cycles to access main memory. The store buffer in
each cluster can support four reads and writes per cycle. The
on-chip network contains a 4-ported bidirectional switch at
each cluster. The network latency is one cycle to arrive at the
switch from a PE and then one cycle per network hop in the
grid. Simulation of the system in this paper faithfully models
contention on all network links and communication busses
for operand, memory, and cache coherence traffic. Instruc-
tion placement is done on-demand and dynamically stripes
instructions across the grid.

This design uses a distributed wave-ordered memory inter-
face. Each dynamic wave is bound to a store buffer, which
fields all memory requests for that wave. As a store buffer
completes, it signals the store buffer for the next wave to pro-
ceed – analogous to a baton pass in a relay race. This scheme
allows the store buffer to be logically centralized but to mi-
grate around the WaveCache as the locus of execution moves.

3 Threads in WaveScalar

In the previous section, we described the basic WaveScalar
instruction set and WaveCache microarchitecture. Here, we
describe new instructions to manage multiple wave-ordered
memory sequences and synchronize two threads without go-
ing through memory. Then we outline the changes required
to execute multiple threads in the WaveCache.



3.1 Memory order creation and management

The WaveScalar ISA includes several instructions for manag-
ing threads. Previously we described how each dynamic value
in the WaveCache is tagged with a WAVE-NUMBER. To ef-
ficiently support von Neumann-style threads, we introduce a
second field, the THREAD-ID. In addition to differentiating
values in different threads, the WaveCache implementation
uses THREAD-IDs to replicate instructions across PEs as they
are loaded.

We use a straightforward notation,<t, w>.v, to describe
a token within the WaveScalar ISA, wheret is the THREAD-
ID, w is the WAVE-NUMBER, andv is the data value. To ma-
nipulate THREAD-IDs and WAVE-NUMBERs, we introduce
several instructions to convert WAVE-NUMBERs, THREAD-
IDs, and normal data values: DATA -TO-THREAD, THREAD-
TO-DATA , DATA -TO-WAVE and WAVE-TO-DATA . These
instructions fire according to the same rule as other instruc-
tions, i.e., their inputs must match on both THREAD-ID and
WAVE-NUMBER.

Since each thread will requires its own total load-store
ordering, we add the ability to create and manage multi-
ple wave-ordered memory sequences. Two instructions con-
trol the creation and termination of an ordered sequence
of memory operations. MEMORY-SEQUENCE-START takes
two inputs: a THREAD-ID that identifies the memory se-
quence and a WAVE-NUMBER that is the first wave in that
sequence. MEMORY-SEQUENCE-START produces the same
THREAD-ID as output, signaling that the memory system is
ready to receive memory requests for that sequence. A sec-
ond instruction, MEMORY-SEQUENCE-STOP, terminates a
memory-ordered sequence; its single input is the THREAD-ID

of the memory sequence to terminate. The memory system
treats MEMORY-SEQUENCE-STOP similarly to an ordered
store instruction, ensuring that all previous memory opera-
tions in the sequence have finished before the sequence ter-
minates

To create an ordered thread, a program uses MEMORY-
SEQUENCE-START to turn on memory ordering for a given
THREAD-ID, and then DATA -TO-THREAD and DATA -TO-
WAVE to set the THREAD-ID and WAVE-NUMBER on the
appropriate instructions. When the thread finishes, it calls
MEMORY-SEQUENCE-STOP to release the state associated
with its memory-ordered operations.

3.2 Memory-less synchronization

The final instruction, THREAD-COORDINATE, allows com-
putations executing under different THREAD-IDs to commu-
nicate directly, rather than through shared memory. THREAD-
COORDINATE has unique semantics in the WaveScalar ISA,
since it uses a modified firing rule. A THREAD-COORDINATE

instruction fires when the data value on its first (TAKE) in-
put matches the THREAD-ID of a value on its second (PUT)
input. THREAD-COORDINATE produces an output with
the THREAD-ID and WAVE-NUMBER from the TAKE in-

put and the data value from the PUT input. For exam-
ple, if <T , w>.K is the TAKE input and<K, u>.v is the
PUT input, THREAD-COORDINATE will produce the output,
<T , w>.v. To prevent starvation, THREAD-COORDINATE

must consume values in the order in which they arrive.
THREAD-COORDINATE is similar in spirit to other

lightweight synchronization primitives [19, 20], but is tai-
lored to WaveScalar’s dataflow framework. We will demon-
strate in Section 5 how to use THREAD-COORDINATE to cre-
ate lightweight memory-free locks and barriers that can coor-
dinate von Neumann-style threads running in the WaveCache.

4 Threads in the WaveCache

The original WaveCache architecture was designed to execute
a single coarse-grained. Adding support for multiple, high-
performance threads requires small changes to the design of
the processing elements, the store buffers, the communication
infrastructure and the instruction placement controller.

The principle change is the additional bus width re-
quired to transmit the extended tag (THREAD-ID and WAVE-
NUMBER). To support multiple threads in the PE input
queues, we can simply added a small register to hold the cur-
rent THREAD-ID for all data values in the input queues, since
the queues are not shared across threads.

The placement algorithm now dynamically loads a copy
of an instruction for each THREAD-ID that uses it, allowing
the number of static instances of an instruction to grow the
number of threads that execute that instruction and reducing
contention for each instance.

The only change required to the store buffers is the addi-
tional hardware to maintain the memory sequences of multi-
ple wave-ordered threads. Like the input queues at the PEs,
the store buffers are not shared across threads, so a register
holds the THREAD-ID and WAVE-NUMBER for the thread
currently using the store buffer.

5 Inter-thread synchronization

Traditional threading systems provide a set of function calls
and data types that support thread management and synchro-
nization. On most coarse-grained architectures, these mech-
anisms are heavyweight, because the hardware only pro-
vides synchronization primitives that act through memory.
WaveScalar sidesteps main memory for all synchronization,
and uses the THREAD-COORDINATE instruction to synchro-
nize threads (Sections 5.1 through 5.3).

5.1 General mutexes

Recall from Section 3.2 that the THREAD-COORDINATE in-
struction allows two threads to pass a data value. By vary-
ing the meaning of that value, one can create a variety of
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Figure 3: A memory-less mutex.

synchronization objects familiar to imperative-languagepro-
grammers and essential to operating systems. We discuss two
of these,mutexesandbarriers, along with the general thread
communication mechanism that underpins them.

Combining THREAD-COORDINATE with an INDIRECT-
SEND instruction, as shown in Figure 3, forms a simple mutex
that does not rely on the memory system. Instead, threads ac-
quire a mutex by consuming alock tokenand release it by
returning the token.

To acquire a mutexL, a threadT on wavew sends a to-
ken <T , w>.L to the TAKE port of the mutex’s THREAD-
COORDINATE instruction, and<T , w>.ra, wherera is the
address of the instruction that should receive the lock to-
ken, to the address port of the mutex’s INDIRECT-SEND.
If L is unlocked, a lock token with THREAD-ID L will be
sitting in an input queue of THREAD-COORDINATE’s PUT

port. THREAD-COORDINATE can then fire, sending its re-
sult,<T , w>.v, to the mutex’s INDIRECT-SEND instruction.
Once the INDIRECT-SEND receivesra and the lock token, it
forwards the token to the instruction located atra. That in-
struction can then trigger its dependents, returning control to
the locking thread. However, if a token with THREAD-ID L

is not present on the PUT port of the THREAD-COORDINATE

instruction,L is locked, and the THREAD-COORDINATE can-
not fire untilL’s current holder releases it. Therefore, the in-
structions dependent on the instruction atra cannot fire.

A thread releases a mutex by sending the lock token to
the THREAD-COORDINATE’s PUT port. To guarantee that all
memory operations in a critical section protected by the mu-
tex complete before it releases the mutex, a thread holding the
mutex issues a MEMORY-NOP-ACK instruction, which stalls
until all previous ordered memory operations have finished.
Finally, it makes the mutex release dependent on the value
returned by MEMORY-NOP-ACK.

5.2 Inter-thread communication using
THREAD-COORDINATE

The THREAD-COORDINATE instruction also provides a
mechanism for arbitrary inter-thread communication with-

Algorithm 1 barrier thread(maxcount)

Require: maxcountis the desired release threshold
tcount← 0
next link← NIL
loop

receive message “barrier wait(requestor)”
send message “chain link(next link)” to requestor
next link← requestor
tcount← tcount+ 1
if tcount= maxcountthen

send message “barrier release(tcount − 1)” to
requestor
tcount← 0

end if
end loop

out accessing the memory system. For instance, letC be
a (client) thread that wishes to initiate communication with
another (server) thread,S. Using a THREAD-COORDINATE

instruction,S publishes a wave numberu for which it will
receive values (by makingu the data value of a PUT to-
ken), essentially creating a “your number is” ticket that can
be used for later communications. ThreadC in wavew, takes
the next available ticket by sending<C, w>.S to THREAD-
COORDINATE’s TAKE port, receiving wave numberu. It can
then send messages to threadS for waveu. In order to receive
a response fromS, C also includes its current wave number
w along with the other messages.

Although there may be any number of client threads, ar-
riving in any order, this implementation allows only a sin-
gle server thread. A more general solution to the problem of
matching data producers to data consumers would have the
single server thread manage a pool of worker threads to act as
a matchmaker between clients and available servers.

5.3 General purpose barriers

A barrier is a specialized condition variable commonly used
in thread synchronization. It supports one important opera-
tion: wait. Calls towait block until some specified number
of threads have arrived at the barrier. After this conditionis
met, all waiting threads are released, i.e.,wait returns in each
of the waiting threads, and their execution continues.

Our implementation of a general purpose barrier uses the
inter-thread communication method described above and no
memory operations. A barrier object is simply a thread exe-
cuting the loop in Algorithm 1. A thread waits on a barrier
by sending it await message and making its subsequent oper-
ations dependent on the barrier’s reply. The barrier responds
immediately with achain-link message, notifying a waiting
thread of the THREAD-ID and WAVE-NUMBER of the previ-
ous waiter (if there is one). When the exit condition is met,
the barrier sends areleasemessage to the last thread to arrive.
Upon receiving arelease, a thread propagates it to the thread
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Figure 4: Splash-2 on the WaveCache. We evaluate each of our Splash-2 benchmarks on the baseline WaveCache with
between 1 and 128 threads. The bars represent speedup in total execution time. The numbers above the single-threaded bars
are IPC for that configuration. One benchmark,radix, cannot utilize 128 threads with the input data set we use, sothat value
is absent.

identified in itschain-linkmessage. Distributing the queue of
waiting threads across the waiting threads is a convenient way
to eliminate dependence on the memory system. A straight-
forward extension of this barrier design provides a general
condition variable. We omit its description for brevity.

6 Results

In this section, we evaluate the WaveCache with five appli-
cations from the Splash-2 benchmark suite, each modified to
use the memory-less synchronization primitives describedin
Section 5. We compiled each application with the DEC cc
compiler using -O4 optimizations. A binary translator-based
toolchain was used to convert these binaries into WaveScalar
executables and to integrate our memoryless synchroniza-
tion library. We executed the applications on an execution-
driven simulator, which models the WaveCache architecture
described in Section 2.2.

Figure 4 contains speedup results for all five benchmarks,
as compared to their single-threaded running time. On av-
erage, the WaveCache achieves over 11× speedup with 16
threads and 15× speedup with 64 threads, althoughraytrace
reaches a substantially better 22×.

Increasing to 128 threads reduces performance (except for
lu andocean), because the WaveCache becomes congested
by the larger instruction working set and L1 data evictions
due to capacity misses. Note, however, that unlike Von Neu-
mann multiprocessors, the performance improvement gained
by adding additional threads comes with no additional hard-
ware. That an application achieves better performance at 64

threads than 128 simply means that it fully utilizes the Wave-
Cache’s resources with fewer threads and, therefore, should
be run with that number.

7 Conclusion

We have presented simple extensions to the WaveScalar in-
struction set that facilitate execution of multiple threads.
The WaveCache architecture requires only very minor ex-
tensions to support multiple threads, and the resulting ar-
chitecture is much simpler than a traditional, von Neumann-
based SMT processor. Using these modest extensions to the
ISA and hardware combined with our memory-less synchro-
nization primitives, the WaveCache can effeciently execute
multithreaded programs written in traditional imperativelan-
guages, such as those from the Splash-2 benchmark suite.
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