Threads on the Cheap: Multithreaded Execution in a Wave€ach
Processor

Steven Swanson Andrew Schwerin Andrew Petersen
Mark Oskin Susan Eggers
Computer Science and Engineering
University of Washington
{swanson, schweri n, pet er sen, oski n, egger s}@s. washi ngt on. edu

Abstract: Executing multiple threads on a single procesng rule provides with a simple memory ordering technique
sor will play a key role the future scaling of computer pecalled wave-ordered memong]. This provides total-load-
formance, and while many new architectures propose nostre ordering for coarse-grain, von Neumann-style trgead
uses for threads, few address the complexity required te slipe WaveScalar instruction set runs on a new style of low-
port multiple threads in a single processor core. This paemplexity, distributed processor. WaveScalar prograxas e
per describes extensions to WaveScalar, a recently praboseute in a sea of simple processing nodes that replace the
dataflow instruction set, and the WaveCache, a WaveScalantral processor and instruction cache of a conventional
processor, that allow multiple threads to execute simdtarcomputer. Conceptually, instructions execute in-placte
ously. The original WaveCache is significantly less compleemory system and explicitly forward their results to any de
than a modern out-of-order von Neumann processor, and tiendents. In practice, they are stored and executed by an in-
modifications it requires for multithreading are very smaltelligent, distributed instruction cache calledMaveCache
We demonstrate that resulting multithreaded architectane The WaveCache loads instructions from memory and assigns
efficiently execute applications from the Splash2 benchm#rem to processing elements for execution. The working set
suite. of the application remains in this “intelligent I-cache”av
many, potentially millions of, invocations.

The chief advantages of the WaveCache over superscalars
and other von Neumann processors are its low complexity; re-

liance on local, rather than global, communication; andhhig

Thr have provent n effective tool for enhanci [. ;)
eads have proven to be an effective tool for enha "9 PRfect tolerance. Dataflow architectures are inherentlgimu
gram performance. For many years, they have supplied 31 -

. L readed (some models even consider each instruction to be
plicitly parallel applications, such as web servers, dasais, its own thread), so augmenting the WaveCache to support
and some scientific codes, with a simple parallel program- [tiple von Ne;,lmanngt le thrgads is much simpler angpre-
ming model and substantial speedups on multiple processorlsJ P y P

Current research suggests that future multithreaded proé]eu'res less hardware than adding multithreading suppar to

sors may use threads to benefit single-threaded programs0 %tyof-ordersuperscalar processor.

prefetching data [1], speculatively executing pastbras¢p] ~ 1he WaveCache consists of small, low-complexity pro-
and across loop iterations [3], and improving system réliabcessing nodes replicated across the die that use nearest-
ity [4, 5]. neighbor, point-to-point messaging. This reduces design
However, supporting multiple threads can introduce sigomplexity and avoids long wire-delays that can limit clock
nificant microarchitectural complexity. Simultaneous musPeeds. Prior work [6] demonstrates that even with the crud-
tithreading, for instance, dynamically partitions resms €St Of compilation tools (a binary translator to convert Al-
across one or more threads, providing good performancqua executables to the WaveScalar instruction set), theWav
both single- and multi-threaded workloads, but SMT procesache outperforms an extremely aggressive superscalar de-
sors are extremely complicated. They incur all the compfexfign by 2-7X. This work extends the WaveCache to support
costs of out-of-order execution but also must provide suppBrultiple threads by simply widening some hardware struc-
for multiple threads throughout the pipeline including tiul tures by a few bits and providing additional, independent
ple commit queues, multiple store buffers, larger regfiites Copies of others.
and renaming tables. In this work, we describe two key aspects of the
WaveScalar [6] is a recently developed dataflow instrudfaveScalar threading system. First, we deconstruct the
tion set that combines the fine-grain threading and syprior work on WaveScalar by decoupling dataflow execution
chronization mechanisms that the dataflow instruction ffrom wave-ordered memory to give threads greater control

1 Introduction

over scarce memory-ordering hardware resources. Secondchines’ token stores hampered their performance and scal
we introduce a new instruction that facilitates lightweaighability. The WaveCache eliminates this problem by distribu
memory-lestiter-thread communication. Using this commung the token store and matching logic across the PEs.
nication mechanism, we construct a variety of efficient syn-The consequence of these features is a dataflow execution
chronization and communication primitives including leckmodel and implementation that are realizable in near-term
barriers, condition variables, and simple message passingtechnology and can efficiently execute programs written in
Our results demonstrate that the WaveCache can exeautg language.
threaded programs efficiently. We embed our memory-less
synchronization primitives in the Splash-2 benchmarlestait .
explore the performance and scalability of traditionalrsea 2.1 TheWaveScalar Instruction Set
grain parallel codes executing on the WaveCache. Like previous dataflow instruction sets, WaveScalar casver
The next section reviews the WaveScalar instruction wntr(ﬂ dependences into data dependences by Sending data
and the WaveCache. In Section 3, we describe extensiongdRies to the instructions that need them. Rather than ehang
the WaVescaIar ISA and the WaVecaChe arChiteCture to Shﬂg—the Va|ue of a program Counter’ Wh|Ch causes particu'ar
port multiple threads, decouple memory order from exeGystructions to be fetched and executed on a von Neumann
tion, and support efficient lightweight synchronizatiorecS machine, WaveScalar includes two dataflow instructions tha
tion 5illustrates how these mechanisms are employed td bk plicitly steer values to their intended consumers. A ¢ond
memory-less synchronization primitives. Sections 6 andignal selector [15], takes two input values and a boolean
present.an evaluation of threading in the WaveCache and glector and, depending on the selector’s value, produtes o
conclusions. of the inputs on its output. The reverse operation, a condi-
tional split or¢—! [16], takes an input value and a boolean
output selector and directs the input to one of two possible
2 WaveScalar Review outputs, depending on the selector value.
Like traditional dataflow machines, WaveScalar uses tags
Before discussing the architectural changes made to stuppmiidentify different dynamic instances of data. Unlike-tra
threads, we provide a brief review of the WaveScalar instruditional dataflow machines, where tag creation is either par
tion set and the WaveCache architecture. The WaveScaiaty distributed [17] or completely centralized, Wavesar's
ISA and its WaveCache implementation are a response totémg control mechanism is entirely under software contrad, a
scaling problems facing tomorrow’s superscalar and VLIistributed throughout the WaveCache. A special instruc-
processors and specifically target the increasing complésn, WAVE-ADVANCE, increments the tag, called AVE-
ity of superscalars’ centralized designs, the increasisg dNUMBER, by 1 (modulo a maximum).
parity between computation and communication costs, andvhen compiling imperative language code, the
the decreasing reliability of shrinking circuit technojog WaveScalar compiler breaks the control flow graph of
WaveScalar side-steps these issues with a distributed cam-application into pieces called waves. A wave’s key
puting substrate composed of thousands of simple, largptpperties are: (1) its instructions are partially ordeteere
identical, and interchangeable processing elements (HEs)are no loops); (2) control can only enter at a single point;
reduce communication costs within this substrate, PEsrareand (3) each time a wave executes, its instructions execute
ganized into clusters, each associated with its own stdferbuat most once. These properties allow the compiler to reason
and data cache. Instructions are placed in clusters to ri@aimabout memory ordering within a wave. Note that a wave is
both inter-PE and PE-memory communication. more general than a hyperblock [18], since it can contain
The PEs execute instructions using a dataflow executjoins. This makes it easy for the compiler to increase wave
model [7, 8, 9, 10, 11, 12, 13, 14]. Dataflow computers ex&ze by unrolling loops.
cute programs according to the dataflow firing rule: instruc-Traditional imperative languages provide a programmer
tions execute after all their operands become availablé. \Maith a model of memory known as total load-store ordering.
ues in a dataflow machine generally carry a tag to distingultveScalar brings this feature to dataflow computing by us-
them from other dynamic instances of the same variable.iny wave-ordered memorynder wave-ordered memory, the
value and its tag are known as a token. compiler annotates each memory operation with both its lo-
Previous dataflow machines have excelled at exposing peation in its wave and information about its ordering relati
allelism but required programs to be written in special laships, defined by the control flow graph and instruction order
guages that eliminate side effects. WaveScalar surmduists within basic blocks, to other memory operations in the same
shortcoming with wave-ordered memory, a memory-orderingive. As the memory operations execute, these annotations
scheme that uses compiler-supplied annotations to presdravel to the memory system, allowing to apply memory op-
total load-store ordering and enables programs writtemin ierations in the correct order.
perative languages to execute efficiently. In addition te la Finally, WaveScalar supports object linking, shared li-
guage restrictions, the centralized designs of early dataflbraries, and indirect function calls. Facilitating thesm<c

pe //@Ster\ Input Control net

D$

domain

L2

8poosp

L2

net

L2

L2

Figure 2: WaveCache node: Each node of the WaveCache

is a simple ALU and input/output queues. Instructions are
Figure 1:WaveCache: The WaveScalar instruction set is inmapped onto this node which caches and executes them.
tended to be executed by an substrate of computational ele-
ments called the WaveCache.

edge of the grid, along with the L1 directory. Once memory

requests reach the L2 cache, access latencies are 20 cycles,
structs requires an additional instructiompiRECT-SEND, With 1000 cycles to access main memory. The store buffer in
which takes three inputs: a data value (e.g., a function-ar@@ch cluster can support four reads and writes per cycle. The
ment), an address, and an offset (which is statically erco-chip network contains a 4-ported bidirectional switth a
as an immediate value)NbIRECT-SEND sends the value to each cluster. The network latency is one cycle to arriveat th

a consumer instruction located at the address plus thetoffsgwitch from a PE and then one cycle per network hop in the
grid. Simulation of the system in this paper faithfully mésle

) contention on all network links and communication busses
2.2 TheWaveCache: a WaveScalar processor for operand, memory, and cache coherence traffic. Instruc-

In this section, we summarize the design of a WaveCadif) Placement is done on-demand and dynamically stripes
processor to execute WaveScalar binaries that could be gfftructions across the grid.
within the next 5-10 years (Figure 1). This microarchiteetu This design uses a distributed wave-ordered memory inter-
is the baseline model used in the simulation experiments gigce. Each dynamic wave is bound to a store buffer, which
sented in later sections. fields all memory requests for that wave. As a store buffer

The WaveCache is a grid of simple processing elemertsmpletes, it signals the store buffer for the next wave & pr
Each PE (Figure 2) contains buffering and storage for 8 difeed — analogous to a baton pass in a relay race. This scheme
ferent static instructions, although only one can fire eaeh @llows the store buffer to be logically centralized but to mi
cle. A PE also includes logic to control instruction placegrate around the WaveCache as the locus of execution moves.
ment and execution, input and output queues for instruction
operands, communication logic, and a functional unit. PEs
are co-located with their static instructions, forming am-“
teIII;gEent instruction pache, or proces'sor—m—cache.' . 3 Threadsin WaveScalar

s are grouped into domains. Within a domain, instruc-

tions can both execute and send their results to a consum-
ing PE within a single cycle. Four domains are grouped infto the previous section, we described the basic WaveScalar
a cluster, which houses both a store buffer and a traditiomredtruction set and WaveCache microarchitecture. Here, we
4-way set-associative, 16K L1 data cache. The L1 cacliescribe new instructions to manage multiple wave-ordered
are kept coherent using a simple directory-based coherememory sequences and synchronize two threads without go-
scheme that supports a single cache line owner with no shiag-through memory. Then we outline the changes required
ing. There is a 16MB unified L2 cache distributed around the execute multiple threads in the WaveCache.

3.1 Memory order creation and management put and the data value from theuP input. For exam-

e, if <T,w>.K is the TAKE input and< K, u>.v is the

. : : I
The WaveScalar ISA includes seyeral instructions for man%bT input, THREAD-COORDINATE will produce the output,
ing threads. Previously we described how each dynamic value © o To prevent starvation, AREAD-COORDINATE

:cln ithr?tIWaveCar(iP:/e :]sl\tlaggr;sdnvxlth ?A\waNLéM B\'IEVR' ir-:-t? %f' must consume values in the order in which they arrive.
ciently support von Neumann-style threads, we introduce HREAD-COORDINATE is similar in spirit to other

second field, the IREAD-ID. In addition to differentiating |. : o - .
- : lightweight synchronization primitives [19, 20], but isi-ta
values in different threads, the WaveCache implementat , .
uses HREAD-IDs to replicate instructions across PEs as theOred to WaveScalar's dataflow framework. We will demon-
P §tfate in Section 5 how to useiREAD-COORDINATE to cre-
are loaded. : . .
ate lightweight memory-free locks and barriers that cancoo

We use a straightforward notatioay, w>.v, to describe . -
a token within the WaveScalar ISA. whefrés the THREAD- dinate von Neumann-style threads running in the WaveCache.

ID, w is the WAvE-NUMBER, andv is the data value. To ma-

nipulate THREAD-IDs and WAVE-NUMBERS, we introduce :
several instructions to convert AYe-NUMBERS, THREAD- 4 Threadsin the WaveCache

IDs, and normal data values ADA-TO-THREAD, THREAD- - . .

The original WaveCache architecture was designed to execut
To-DATA, DATA-TO-WAVE and WAVE-To-DATA. These ; : . X .

a single coarse-grained. Adding support for multiple, high

instructions fire according to the same rule as other instruc . .
tions, i.e., their inputs must match on bothAEAD-1D and pérformance threads requires small changes to the design of

the processing elements, the store buffers, the commioricat
WAVE -NUMBER.

) . : . infrastructure and the instruction placement controller.
Since each thread will requires its own total load-store - . o .
The principle change is the additional bus width re-

ordering, we add the ability to create and manage multi-. .
ple wave-ordered memory sequences. Two instructions ¢ ired to transmit the extende_d tag{ﬂEAD'I.D and V\AVFT'
8MBER). To support multiple threads in the PE input

trol the creation and termination of an ordered sequen) .
of memory operations. EMORY-SEQUENCE-START takes gueues, we can simply added a small register to hold the cur-

two inputs: a FREAD-ID that identifies the memory Se_rent THREAD-ID for all data values in the input queues, since
guence and a WE-NUMBER that is the first wave in thatthe queues are not shar.ed across thread§.

sequence. MMORY-SEQUENCE START produces the same Thg placement algorithm now dynamically .Ioads a' copy
THREAD-ID as output, signaling that the memory system f & instruction for each AREAD-ID that uses it, allowing

ready to receive memory requests for that sequence. A dBg number of static instances of an instruction to grow the
ond instruction, MEMORY-SEQUENCESTOP, terminates a number of threads that execute that instruction and reducin

memory-ordered sequence; its single input is tR&REFAD-ID contention for each instance.

of the memory sequence to terminate. The memory systerd N€ ONly change required to the store buffers is the addi-
treats MEMORY-SEQUENCE STOP similarly to an ordered tional hardware to maintain the memory sequences of multi-
store instruction, ensuring that all previous memory opefi€ Wave-ordered threads. Like the input queues at the PEs,
tions in the sequence have finished before the sequence!ti§y-Store buffers are not shared across threads, so a registe
minates holds the HREAD-ID and WAVE-NUMBER for the thread

To create an ordered thread, a program useabiry- currently using the store buffer.
SEQUENCESTART to turn on memory ordering for a given
THREAD-ID, and then BTA-TO-THREAD and DaTA-ToO- 5 | h d h . .
WAVE to set the HREAD-ID and WAVE-NUMBER on the nter-threa Sync ronization

appropriate instructions. When the thread finishes, itscall

MEMORY-SEQUENCE -STOP to release the state associatelfaditional threading systems provide a set of functiofscal
with its memory-ordered operations. and data types that support thread management and synchro-

nization. On most coarse-grained architectures, thesé-mec

L anisms are heavyweight, because the hardware only pro-
3.2 Memory-less synchronization vides synchronization primitives that act through memory.
The final instruction, FREAD-COORDINATE, allows com- WaveScalar sidesteps main memory for all synchronization,
putations executing under differentiREAD-1Ds to commu- 2Nd uses the AREAD-COORDINATE instruction to synchro-
nicate directly, rather than through shared memorrEap- Nize threads (Sections 5.1 through 5.3).
COORDINATE has unique semantics in the WaveScalar ISA,
;ince itgsegamodified firing rule. AI-TF{EAD.-C0.0RDINA.TE 5.1 General mutexes
instruction fires when the data value on its firsaKE) in-
put matches the AREAD-ID of a value on its second () Recall from Section 3.2 that theHREAD-COORDINATE in-
input. THREAD-COORDINATE produces an output withstruction allows two threads to pass a data value. By vary-
the THREAD-ID and WAVE-NUMBER from the TAKE in- ing the meaning of that value, one can create a variety of

Algorithm 1 barrierthreadfnaxcoun)
Require: maxcountis the desired release threshold

RA Take Put teounte - 0
nextlink < NIL
<7T:w>.ra <7 :w>.L <L:7>.v |00p
receive message “barrier_wait(requestoy”
send message “chain_link (nextlink)” to requestor
nextlink < requestor
. tcount«+ tcount+ 1
if tcount= maxcountthen
send message “barrierreleasétcount — 1)" to
Figure 3: A memory-less mutex. requestor
tcount«— 0
end if
end loop

synchronization objects familiar to imperative-langupge-
grammers and essential to operating systems. We discuss two

of thesemutexesandbarriers, along with the general thread . .
communication mechanism that underpins them. out accessing the memory system. For instance('ldte

- . a (client) thread that wishes to initiate communicationhwit
Combining THREAD-COORDINATE with an INDIRECT- :
. . - . another (server) thread, Using a THREAD-COORDINATE
SEND instruction, as shown in Figure 3, forms a simple mutex : . L
instruction, S publishes a wave number for which it will
that does not rely on the memory system. Instead, threads ac

. . . réceive values (by making the data value of a ¥r to-
quire a mutex by consuminglack tokenand release it by . - B .
: ken), essentially creating a “your number is” ticket that ca
returning the token.

. be used for later communications. Threaih wavew, takes
To acquire a mutex,, a threadl" on wavew sends a to-

the next available ticket by sendirg”, w>.S to THREAD-
ken <T, w>.L to the TAKE port of the mutex’s HREAD- y RO, w

C instructi T h is th COORDINATE'S TAKE port, receiving wave numbex. It can
OORDINATE Instruction, an » w>.ra, Wheréra 1S € -y, 3 geng messages to threaibr waveu. In order to receive
address of the instruction that should receive the lock

ta?'res onse frony, C also includes its current wave number
ken, to the address port of the mutex!SDIRECT-SEND. P

. . : w along with the other messages.
If. L IS .unlocl_<ed, a lock token with AREAD-ID L \,N'" be Although there may be any number of client threads, ar-
sitting in an input queue of AREAD-COORDINATE'S PUT

ort. THREAD-COORDINATE can then fire. sending its re_riving in any order, this implementation allows only a sin-
Eult .<T = v to the mutex’s INDIRECT—SE’ND instrL?ction gle server thread. A more general solution to the problem of
S W . . matching data producers to data consumers would have the
Once the NDIRECT-SEND receivesra and the lock token, it

) . . single server thread manage a pool of worker threads to act as
forwards the token to the instruction locatedrat That in- 9 geap

: : . . a matchmaker between clients and available servers.
struction can then trigger its dependents, returning obixdr
the locking thread. However, if a token wittHREAD-ID L
is not present on the @r port of the THREAD-COORDINATE 5.3 General purposebarriers

instruction,L is locked, and the FIREAD-COORDINATE can- barrier i ialized giti iabl | d
not fire until L's current holder releases it. Therefore, the m“ arner is a specialized condition variable commonly use

structions dependent on the instructiomatcannot fire. in thread synchronization. It supports one important opera
A thread releases a mutex by sending the lock tokent% n: wait. Calls towait block until some specified number

the THREAD-COORDINATE'S PUT port. To guarantee that all® threads have arrived at the barrier. After this condif®n

memory operations in a critical section protected by the i:} all vx{?lt|ngt:1hthre§ds ar; tLelgased, l\glﬂlt retutr'ns in each

tex complete before it releases the mutex, a thread hold'mg? € waiting threads, and fheir execition continues.

mutex issues a EMMORY-NOP-AcK instruction, which stalls . Our |mplementat|o!1 Of. a general purpoge barrier uses the

until all previous ordered memory operations have finishéﬂt.er'thread communication method described above and no

Finally, it makes the mutex release dependent on the vajljgmory operatlpns. A parrler objectis 3|mply a thread exe-
returned by MEMORY-NOP-ACK. cuting the loop in Algorithm 1. A thread waits on a barrier

by sending it avait message and making its subsequent oper-
ations dependent on the barrier’s reply. The barrier redpon
5.2 Inter-thread communication using immediately with achain-link message, notifying a waiting
THREAD-COORDINATE thread of the BREAD-1D and WAVE-NUMBER of the previ-
ous waiter (if there is one). When the exit condition is met,
The THREAD-COORDINATE instruction also provides athe barrier sendsmeleasemessage to the last thread to arrive.
mechanism for arbitrary inter-thread communication withJpon receiving aelease a thread propagates it to the thread

Speedup vs 1 thread

fft lu ocean radix raytrace average

B 1 Thread 2 Threads (04 Threads Bl 8 Threads [16 Threads\ 32 Threadsl 64 Threads@ 128 Threads

Figure 4: Splash-2 on the WaveCache. We evaluate each of our Splash-2 benchmarks on the basetimeG&che with
between 1 and 128 threads. The bars represent speedup iex@tation time. The numbers above the single-threadesd bar
are IPC for that configuration. One benchmasdix, cannot utilize 128 threads with the input data set we usthatovalue

is absent.

identified in itschain-linkmessage. Distributing the queue athreads than 128 simply means that it fully utilizes the Wave
waiting threads across the waiting threads is a conveniapt WCache’s resources with fewer threads and, therefore, dhoul
to eliminate dependence on the memory system. A straighé-run with that number.
forward extension of this barrier design provides a general
condition variable. We omit its description for brevity.)

7 Conclusion

6 Results We have presented simple extensions to the WaveScalar in-
struction set that facilitate execution of multiple thread

In this section, we evaluate the WaveCache with five applihe WaveCache architecture requires only very minor ex-
cations from the Splash-2 benchmark suite, each modified@osions to support multiple threads, and the resulting ar-
use the memory-less synchronization primitives describedchitecture is much simpler than a traditional, von Neumann-
Section 5. We compiled each application with the DEC &@sed SMT processor. Using these modest extensions to the
compiler using -O4 optimizations. A binary translatorés ISA and hardware combined with our memory-less synchro-
toolchain was used to convert these binaries into WaveBcalization primitives, the WaveCache can effeciently execut
executables and to integrate our memoryless synchronizaitithreaded programs written in traditional imperatiae-
tion library. We executed the applications on an executicgiages, such as those from the Splash-2 benchmark suite.
driven simulator, which models the WaveCache architecture
described in Section 2.2.

Figure 4 contains speedup results for all five benchmarlgg,eferenceS
as compared to their single-threaded running time. On] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based
erage, the WaveCache achieves ovex Kpeedup with 16

. prefetching for linked data structures,” Rroceedings of the
threads and 15 speedup with 64 threads, althougtytrace eighth international conference on Architectural suppfut

reaches a substantially better22 programming languages and operating systepps 115-126,
Increasing to 128 threads reduces performance (except for ACM Press, 1998.

lu'and ocealj,.becaus.e the Wf'alveCaChe becomes COT‘Q.ESt J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A
by the Iarger. 'nStr_UCt'on working set and L1 da_lta eviction scalable approach to thread-level speculationPlioceedings
due to capacity misses. Note, however, that unlike Von Neu- o the 27th Annual International Symposium on Computer Ar-
mann multiprocessors, the performance improvement gained chitecture (Vancouver, British Columbia), pp. 1-12, |EEE
by adding additional threads comes with no additional hard- Computer Society and ACM SIGARCH, June 12—14, 2000.
ware. That an application achieves better performance at 64 Computer Architecture New28(2), May 2000.

[3] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multisgal [18] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
processors,” irProceedings of the 22nd annual international Bringmann, “Effective compiler support for predicated exe
symposium on Computer architectu/&CM Press, 1995. tion using the hyperblock,” i25th Annual International Sym-

[4] E. Rotenberg, “Ar-smt: A microarchitectural approaotfault posium on Microarchitecturel 992.

tolerance in microprocessors,”roceedings of the 29th Inter-[19] S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Glga
national Symposium on Fault-Tolerant Compufidgne 1999. and W. S. Lee, “Exploiting fine-grain thread level parafiedi

[5] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and |. Pomer- on the MIT multi-ALU processor,” inlSCA pp. 306-317,
anz, “Transient-fault recovery for chip multiprocessbiis, 1998.
Proceedings of the 30th annual international symposium ¢20] P.S.Barth, R. S. Nikhil, and Arvind, “M-structures: texnding
Computer architecturgop. 98—-109, ACM Press, 2003. a parallel, non-strict, functional languages with stafiesth.

[6] S.Swanson and M. Oskin, “Wavescalar,limernational Sym- Rep. MIT/LCS/TR-327, MIT, 1991.

posium on Microarchitecture2003.

[7] J. B. Dennis, “A preliminary architecture for a basic afiw
processor,” inProceedings of the 2nd Annual Symposium on
Computer Architecturel975.

[8] A. L. Davis, “The architecture and system method of ddi1.:
recursively structured data driven machine,Proceedings of
the fifth annual symposium on Computer architect@&8.

[9] S. Sakai, y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba,
“An architecture of a dataflow single chip processor, Firo-
ceedings of the 16th annual international symposium on Com-
puter architecturepp. 46-53, ACM Press, 1989.

[10] T. Shimada, K. Hiraki, K. Nishida, and S. Sekiguchi, ‘dhva-
tion of a prototype data flow processor of the sigma-1 for sci-
entific computations,” iflProceedings of the 13th annual inter-
national symposium on Computer architectupp. 226-234,
IEEE Computer Society Press, 1986.

[11] J. R. Gurd, C. C. Kirkham, and |. Watson, “The manchester
prototype dataflow computerCommunications of the ACM
vol. 28, no. 1, pp. 34-52, 1985.

[12] M. Kishi, H. Yasuhara, and Y. Kawamura, “Dddp-a distitibd
data driven processor,” lBonference Proceedings of the tenth
annual international symposium on Computer architecture
pp. 236-242, IEEE Computer Society Press, 1983.

[13] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes,
“The epsilon dataflow processor,” Proceedings of the 16th
annual international symposium on Computer architegture
pp. 36-45, ACM Press, 1989.

[14] G. Papadopoulos and D. Culler, “Monsoon: An explicken-
store architecture,” irProceedings of the 17th International
Symposium on Computer Architectukéay 1990.

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and.F. K
Zadeck, “Efficiently computing static single assignmentrfo
and the control dependence graphCM Transactions on Pro-
gramming Languages and Systewdl. 13, pp. 451-490, Oc-
tober 1991.

[16] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and
J. Wawrzynek, “Fine-grain parallelism with minimal hardea
support: A compiler-controlled threaded abstract machine
Proceedings of the4th International Conference on Archite
tural Support for Programming Languages and Operating Sys-
tems 1991.

[17] Arvind and R. Nikhil, “Executing a program on the mit teg-
token dataflow architecture/[EEE Transactions on Comput-
ers vol. 39, no. 3, pp. 300-318, 1990.

