
CBMM: Financial Advice for Kernel Memory Managers

Mark Mansi
markm@cs.wisc.edu

University of Wisconsin - Madison

Bijan Tabatabai
btabatabai@wisc.edu

University of Wisconsin - Madison

Michael M. Swift
swift@cs.wisc.edu

University of Wisconsin - Madison

Abstract
First-party datacenter workloads present new challenges to
kernel memory management (MM), which allocates and maps
memory and must balance competing performance concerns
in an increasingly complex environment. In a datacenter, per-
formance must be both good and consistent to satisfy service-
level objectives. Unfortunately, current MM designs often
exhibit inconsistent, opaque behavior that is difficult to repro-
duce, decipher, or fix, stemming from (1) a lack of high-quality
information for policymaking, (2) the cost-unawareness of
many current MM policies, and (3) opaque and distributed
policy implementations that are hard to debug. For example,
the Linux huge page implementation is distributed across 8
files and can lead to page fault latencies in the 100s of ms.

In search of a MM design that has consistent behavior, we
designed Cost-Benefit MM (CBMM), which uses empirically
based cost-benefit models and pre-aggregated profiling in-
formation to make MM policy decisions. In CBMM, policy
decisions follow the guiding principle that userspace bene-
fits must outweigh userspace costs. This approach balances
the performance benefits obtained by a kernel policy against
the cost of applying it. CBMM has competitive performance
with Linux and HawkEye, a recent research system, for all
the workloads we ran, and in the presence of fragmentation,
CBMM is 35% faster than Linux on average. Meanwhile,
CBMM nearly always has better tail latency than Linux or
HawkEye, particularly on fragmented systems. It reduces the
cost of the most expensive soft page faults by 2-3 orders
of magnitude for most of our workloads, and reduces the
frequency of 10-1000µs-long faults by around 2 orders of
magnitude for multiple workloads.

1 Introduction

Datacenter workloads present new challenges to kernel mem-
ory management (MM). MM encompasses a large collection
of kernel mechanisms and policies to allocate and map phys-
ical memory. Cumulatively, they comprise a complex set of

tradeoffs that, when poorly navigated, lead to poor perfor-
mance or unexpected behavior. For example, we found that
for some workloads on Linux, a soft page fault lasting 25ms
occurs every 100ms. This drastic tail latency is due to mem-
ory compaction or reclamation when attempting to allocate
a huge page – a misnavigated tradeoff. Many applications
would violate response latency objectives if one request per
100ms takes 25ms due to a page fault. As a result, Redis, Mon-
goDB, and others advise users to disable Linux’s Transparent
Huge Page (THP) feature [2, 3, 4, 7, 50]. Table 1 lists other
examples of MM policies and their potential pathologies.

The hardware and software in modern datacenters differ
vastly from those in use when MM techniques were first de-
signed. Increased memory capacities allow more workloads to
run but bring challenges too: huge page management becomes
more critical due to increased reliance on TLB performance,
but memory fragmentation and huge page management over-
heads also increase with memory capacity [36]. Datacenters
also prioritize tail latency as a key service-level metric, in
addition to median latency and throughput [19]. Datacen-
ter behavior must be consistent, i.e., low variance, without
compromising performance metrics to satisfy service-level
objectives and efficiency goals.

Unfortunately, current MM designs often fall short of mod-
ern computing needs by exhibiting inconsistent, opaque be-
havior that is difficult to reproduce, decipher, or fix. These
issues come from three key limitations.

First, kernel MM must predict workload behavior in
an information-poor environment. Current MM designs
rely on online measurements, particularly page table ac-
cess/dirty bits and the frequency and location of page faults.
Unfortunately, this information is expensive to collect and low
bandwidth. For example, Google uses access bits to detect
idle memory [15], but other work finds them insufficient to
predict TLB miss overheads accurately [38], even though they
can cost up to 11% of CPU cycles to collect [15]. Other data
collection mechanisms induce additional page faults [16, 24].
Recent work uses performance counters in kernelspace [38],
but currently available counters are hardware-thread-oriented

1



Policy Goal Pathology
Huge Page Allocation Reduce TLB misses and page faults Bloat memory usage if not all memory is used; increase page

fault latency if compaction is required
Eager Paging [29] Move page fault latency to allocation time, sav-

ing time later
Bloat memory usage if not all memory is used

Background Compaction Reduce memory fragmentation and huge page
fault latency

Increase CPU overhead

Background Zeroing Reduce page fault latency Increase CPU overhead
Idle Page Reclamation [32, 47] Improve memory utilization Increase overhead to fault reclaimed pages back in; increase CPU

overhead to choose pages to reclaim

Table 1: Different MM policies and their goals and pathologies

and do not provided the detailed spatial information useful
for most MM policies.

Second, current MM designs often ignore the cost of
various MM operations, leading to inappropriate policy
decisions. For example, Linux allocates a huge page when a
memory region is first touched; however, we find that allocat-
ing and zeroing a huge page costs 106 cycles in the best case.
Thus, promoting a page that averts ≤ 106 cycles worth of
TLB misses and page faults actually regresses performance,
but the kernel does not account for this cost.

Third, current MM designs are implemented as dis-
jointly acting policies distributed throughout the kernel
that are hard to debug. For example, code implementing
Linux’s huge page policies is scattered across more than eight
files (and numerous functions), mixed with unrelated code.
Users and developers observe erratic slowdowns without indi-
cation of what causes them or how to address them. They
often resort to suboptimal coarse-grain solutions, such as
disabling huge pages [2, 3, 4, 7, 50]. By distributing and
obscuring policy-implementing code, current kernel MM im-
plementations make it difficult for both kernel and userspace
developers to decipher system behavior. This opaque sys-
tem implementation and its consequent opaque behavior is
a primary obstacle to improving kernel MM performance,
consistency, and debuggability.

In search of a MM design that has consistent behavior,
we designed Cost-Benefit MM (CBMM). CBMM reflects
that all kernel MM operations have a cost and a benefit to
userspace, and it estimates them using empirically based cost-
benefit models to guide MM policy decisions. By explicitly
modeling cost and benefit, CBMM is more cost-aware than
current designs, so it makes fewer pathologically bad policy
choices. Also, CBMM augments online statistics with offline-
aggregated profiles to improve the quality of information
available to the kernel. CBMM simplifies policy debugging
and enables incremental performance improvement by cen-
tralizing models in a new kernel component: the estimator.
To understand and fix anomalies, one must only understand
the model inputs to determine the cause of a policy decision.

Our prototype implements models for huge page promo-
tion, asynchronous page prezeroing, and eager paging [29],
based on an in-depth analysis of huge page behavior and soft
page faults. At runtime, they may make use of in-built em-

pirically based assumptions (e.g., about average TLB miss
latency), online information (e.g., the current number of free
pages), or offline-aggregated profile information (e.g., fine-
grained information about huge page benefits). We focus on
first-party datacenter workloads – software run by service
providers in their own datacenters – as they are highly con-
trolled and relatively stable over time, allowing better profiling
and modeling [1, 6, 10, 12, 27, 42, 44, 45].

CBMM improves system consistency; it nearly always has
better tail latency than Linux or HawkEye, particularly on
fragmented systems. It reduces the cost of the most expen-
sive soft page faults by 2-3 orders of magnitude for most of
our workloads, and reduces the frequency of 10-1000µs-long
faults by around 2 orders of magnitude for multiple workloads.
Meanwhile, it has competitive performance with Linux and
HawkEye, a recent research system [38], for all the workloads
we ran, and in the presence of fragmentation, CBMM is up to
35% faster than Linux on average – all while using no more
huge pages than Linux or HawkEye in most cases.

2 Motivation: Evaluating Current Behavior

To quantify the extent of these challenges and inform our de-
sign, we do an in-depth analysis of two important kernel MM
code paths, huge page management and page fault handling.
Our experimental setup is described in Section 5.1.

2.1 Measuring Huge Page Benefits
Huge pages speed up many workloads, but nobody has quan-
tified the impact of workload behavior on the amount of
speedup it receives from huge pages. Thus, we measure the
fine-grained benefit of huge pages as described in Section 4.1.
To avoid invasive instrumentation and a detailed survey of
workload implementations, we measure huge page benefits
from the perspective of the kernel: for each workload, we
divide the address space into 100 equally sized ranges, ex-
cluding unmapped regions, and repeatedly run the workload
backing one range at a time with huge pages.

Figure 1 shows the results. Each point on the x-axis rep-
resents one range, such that the x-axis represents the virtual
address space. The top y-axis shows the normalized perfor-
mance compared to no huge pages. The bottom y-axis shows

2



0.9950

0.9975

1.0000

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

0.995

1.000

No
rm

. P
ag

e
W

al
k 

Cy
cle

s

(a) mcf

0.98

1.00

1.02

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

0.98

1.00

No
rm

. P
ag

e
W

al
k 

Cy
cle

s

(b) xz

0.95

1.00

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

0.96

0.98

1.00

No
rm

. P
ag

e
W

al
k 

Cy
cle

s

(c) canneal

0.9

1.0

1.1

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

0.99

1.00

No
rm

. P
ag

e
W

al
k 

Cy
cle

s
(d) memcached

1.0

1.1

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

0.998

1.000

1.002

No
rm

. P
ag

e
W

al
k 

Cy
cle

s

(e) mongodb

1.0

1.1

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

1.00

1.02

No
rm

. P
ag

e
W

al
k 

Cy
cle

s

(f) mix (redis-server)

Figure 1: Runtime and usermode cycles spent in page walks
for each address range, normalized to no huge pages (lower
is better). Note the varying y-axes.

the normalized percentage of time spent in usermode page
walks (i.e., TLB misses) for loads and stores.

The impact of huge pages varies extensively between work-
loads. xz and canneal primarily see improvements in load
page walk cycles from backing particular regions of the ad-
dress space corresponding to hot data structures. memcached
and mongodb produce noisy results because of randomness in
the workload. The magnitude of impact ranges from about
0.25% in mongodb to almost 7% in canneal.

Another benefit of huge page usage is fewer page faults. We
found that they have only a minor contribution to performance
(e.g., less than 1.2% of execution time for canneal).

Also, the relationship between runtime improvement and
reduction in page walk cycles is not straightforward. For all
workloads, runtime improvement is loosely correlated with
either load or store page walk cycles. Strong effects on ei-
ther load or store page walk cycles tended to be reflected in
runtime, as seen in xz and canneal, but the magnitude of that
effect varies. Small changes in page walk cycles often have
no apparent effect on runtime.

Discussion Huge page impact varies greatly by workload,
including the type and location of impacted memory accesses
and the magnitude of impact. Additionally, the relationship
between page walk cycles and runtime is complex, illustrating
the challenge of huge page management given the limited,
low-quality information available to the kernel at runtime
such as CPU performance counters and page referenced bits.
For example, dc-mix (not depicted) benefits from backing
individual regions with huge pages, but when THP is turned
on, it sees a net regression in performance due to the overhead
of compaction. CBMM aims to mitigate this problem by
supplying the kernel with higher-quality information.

2.2 Soft Page Fault Latency Breakdown

We instrument Linux’s page fault handler to trace sources of
page fault latency. Page fault tracing allows us to characterize
system-wide costs, such as the cost of zeroing memory. We
identified a set of events that occur during page faults and
associate each with a bitflag (Figure 2m). Our instrumentation
records the total time of the page fault, the time to allocate
memory, and the time to clear/copy memory contents.

We record the flags and timing of all events longer than 104

cycles, and a count of shorter events, allowing us to compute
the proportion of all page faults with each set of flags. We
exclude hard page faults from our results, as they incorporate
other kernel subsystems (e.g., block I/O, file systems). Our
tracing records the total time to handle a page fault, but on x86
the handler can be interrupted in favor of another task, which
inflates the latency of the page fault. This is rare in most work-
loads except mongodb, which uses a userspace asynchronous
I/O framework and thread pool; even though a page fault
handler may be descheduled for a while, userspace requests
continue to make progress because of userspace threading.

Figure 2 shows the soft page fault latency breakdown for
multiple workloads. For each distinct set of flags, the CDF
of page faults with those flags is plotted. Note that the x-axis
uses a log scale. The plot includes samples lower than the
threshold by treating them as if they all took 104 cycles (in
reality, most are faster than that). The figure shows results on
a freshly booted, unfragmented system, which represents best-
case performance; we also recorded results on fragmented
system, and found them significantly worse for all workloads.

The results indicate three challenges current MM designs
face. First, applications trigger a wide variety of kernel be-
haviors. Each of the 15 flag-sets of Figure 2 is a different
combination of code paths. Second, different paths have very
different latencies but are relatively consistent across work-
loads. For example, even in this best case, a huge page consis-
tently takes hundreds of microseconds to be allocated (HUGE
in the figure) due to zeroing overhead. Third, many patho-
logical code paths execute that do not benefit applications.
Most notably, a huge page allocation may invoke a fallback
path (FLBK), which transitively invokes compaction (CMPT) or

3



CLR
CLR, FLBK
CLR, PREZ
HAFAIL, CLR
HAFAIL, CLR, FLBK
HAFAIL, CLR, FLBK, RCLM, CMPT

HUGE
HUGE, FLBK
HUGE, FLBK, CMPT
HUGE, FLBK, PREZ
HUGE, FLBK, RCLM, CMPT
HUGE, PREZ

HUGE, WP
HUGE, WP, FLBK, CMPT
HUGE, WP, HAFAIL, FLBK, RCLM, CMPT
HUGE, ZERO
none
OTHER

WP
WP, CLR
WP, CLR, PREZ
WP, HAFAIL, HSPLT, CLR, FLBK, RCLM,
CMPT
ZERO

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(a) mcf, unfragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(b) mcf, fragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(c) xz, unfragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(d) xz, fragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(e) canneal, unfragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(f) canneal, fragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(g) memcached, unfragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(h) memcached, fragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(i) mongodb, unfragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(j) mongodb, fragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(k) dc-mix, unfragmented

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(l) dc-mix, fragmented

Flag Description
CLR Memory was zeroed (usually during allocation).
CMPT Allocator used memory compaction.
FLBK Allocator used a fallback path during the page fault.
HAFAIL Attempted to allocate a huge page and failed.
HSPLT A huge page was split into base pages.
HUGE A huge page was mapped.
PREZ Allocator allocated a prezeroed page (CBMM only).
RCLM Allocator used direct reclamation.
WP Page fault due to write to a write-protected page.
ZERO A (shared) zero page was mapped.

(m) Subset of bitflags for page fault tracing.

Figure 2: CDF of Linux soft page fault latency by type of page fault. Not all page fault types occur in all workloads.

reclamation (RCLM). Worse, the fallback may fail (HAFAIL),
resulting in a base page allocation after all. In canneal (Fig-
ure 2e) and dc-mix (Figure 2k), these fallback paths can take
dozens or hundreds of milliseconds. In contrast, an Amazon
search for “DRAM” completes in only 900ms from our office.

Discussion Linux’s fallback algorithms are severely cost-
unaware and make system behavior inconsistent: invoking
compaction or reclamation almost certainly outweighs any
benefits of using a huge page. Also, the high cost of zeroing
suggests that memory prezeroing (Section 4.2) may be a use-
ful optimization to make huge pages more useful. Currently,

4



if an average TLB miss costs around 30 cycles, then a huge
page must avert over 33,000 TLB misses to pay for itself.
These results highlight the need for cost-aware MM policies.

3 Cost-Benefit Memory Management

We created the Cost-Benefit Memory Manager (CBMM),
which has several goals:

• Improve kernel MM behavioral consistency,
• Match existing systems’ performance,
• Improve the debuggability of policy decisions,
• Allow incremental improvement of individual policies.

Our key insight is that all MM decisions incur a cost against
and provide a benefit to userspace. For example, huge page
promotion averts TLB misses but may require zeroing or com-
pacting memory. In CBMM, policy decisions follow the guid-
ing principle that userspace benefits must outweigh userspace
costs. By applying this principle uniformly, CBMM signifi-
cantly improves consistency over Linux and HawkEye [38],
while matching their performance. We design models for
three important kernel MM policies: huge page promotion,
asynchronous page prezeroing, and eager paging [29].

CBMM introduces a new component, the estimator, to
the kernel. It estimates the cost and benefit of a given MM
operation whenever a policy decision is needed. If cost <
bene f it, the kernel decides to execute the operation.

The estimator makes estimates based on empirically de-
rived cost and benefit models. Models can optionally use live
metrics and/or pre-aggregated profiling information. Such pre-
aggregated information can mitigate the lack of high-quality
online information. Meanwhile, CBMM explicitly estimates
MM operation costs, improving cost-awareness.

In current MM implementations, policy decisions are scat-
tered across the kernel, making it difficult to coordinate their
actions and difficult to debug anomalous behavior. In contrast,
CBMM invokes the estimator at decision points, which pre-
dicts the cost and benefit of taking an action. This centralizes
decision making and explicitly marks policy decisions points.
It also makes coordination between policies easier.

A key requirement of CBMM is that the system behavior
can be modeled and/or profiled. This requirement holds for
many first-party datacenter workloads, which often run with
high redundancy for long amounts of time [1, 6, 10, 12, 27, 42,
44, 45], giving ample opportunity to observe and instrument
a workload before applying policies to them.

3.1 The Estimator

In CBMM, the MM subsystem invokes the estimator at places
in the code where policy decisions need to be made. We call
these places in the code decision points. It uses models to
estimate the cost and benefit of a particular MM operation and

MM operation
type and params

(e.g., promote 0xABC000) 
Cost, Benefit

(cycles) 
Model

Kernel State 
(e.g., # free pages) 

Preloaded Profiles 
(e.g., fine-grained
huge page benefit) 

Figure 3: CBMM model inputs and outputs.

returns the estimates to the decision point, which executes the
operation if cost < benefit.

When a decision point invokes the estimator, it passes in-
formation to the estimator about the type and parameters of
the operations. For example, the decision point would pass
the address to consider promoting or a number of pages to
attempt to prezero. The estimator acts as a black box that re-
turns a cost and benefit estimate for the given MM operation
and parameters. In CBMM, costs and benefits are computed
in units of time saved or lost by userspace, which usually
corresponds closely to user objectives. In particular, CBMM
uses the rate of time saving/loss over some horizon, as many
datacenter workloads run continuously.

3.2 Cost and Benefit Models

Internally, the estimator comprises a collection of cost models
and benefit models for different MM operations. Each model
is built out of simpler submodels that estimate one cost and/or
benefit well; the submodel results are added to produce the
overall result. This allows reuse of submodels for different
decision points, simplifying implementation and leading to
more consistent behavior across decision points. For example,
our huge page cost-benefit models were useful in both the
page fault handler and khugepaged, the background promotion
daemon, and our model for estimating the cost of running a
daemon could be used for multiple daemons in the future.

Concretely, models manifest as C code in the estimator
(in the kernel); in Listings 1 - 3 (discussed further in Sec-
tion 4), we show the models in our prototype of CBMM.
Each (sub)model is a self-contained black box that takes in-
formation from the decision point, combines it with infor-
mation from the ambient kernel state and preloaded profiles
– files loaded into the kernel that supply information about
application-specific behavior – and outputs an estimate, as
shown in Figure 3. The additional input from the kernel state
and preloaded profiles allows the models to be more context-
aware and to make use of higher-quality information about
workload behavior.

Performance Debugging Unlike current heuristics,
CBMM isolates policies to specific cost and benefit models;
their inputs and outputs can be observed, and they can be

5



improved in a single place, easing performance debugging
in CBMM compared to Linux. A central idea behind
CBMM’s debuggability is the ability to observe and control
the inputs to models. Thus, while models can make use of any
kernel or hardware state, they should use only state that has
an intuitive interpretation, rather than internal implementation
metrics. For example, our huge page promotion model takes
into account whether any prezeroed huge pages are available
and uses a profile to determine the worth of promoting a
page. In contrast, internal implementation metrics give
limited information about the origin of their values and how
to cause them to change, making bug fixing difficult; for
example, Linux’s page reclamation algorithm uses an obscure
combination of page table bits, bit flags in the struct page,
and what list a page happens to be on [9].

Model Development in CBMM can be done iteratively by
beginning with a simple model and refining it as needed. For
example, Listing 2 shows our asynchronous prezeroing model.
Initially, we only accounted for the zeroing time of the dae-
mon, but we found that this led to high lock contention on the
allocator, so we refined the model to account for contention.

In designing our models, we found that benefits tend to be
application-specific, whereas costs tend to be system-specific.
For example, each application tends to benefit differently from
huge pages, but the cost to allocate a huge page is application-
independent and depends more on the state of the system
allocator. As a result, our benefit models tend to use preloaded
profiles, whereas our cost models tend to query kernel state.

Models necessarily make assumptions to simplify imple-
mentation and to make their execution cheaper than the actual
MM operations. We based our assumptions on our empirical
measurements, unlike many existing heuristics, which rely
on intuitive simplicity or common-case optimization. For ex-
ample, unlike Linux, CBMM does not blindly assume huge
pages improve performance; rather, it incorporates the cost
of promotion as measured by our experimental analysis and
uses empirically derived profiles to estimate the benefit of
promoting a particular memory region. Notably, CBMM im-
proves system behavior even with imprecise profiles, as we
will show in Section 5.5, making it practical to start with a
simple model and refine it over time.

3.3 Preloaded Profiles

Different applications respond differently to MM policies, and
kernels currently lack high-quality information with which to
predict workload behavior. Preloaded profiles are files loaded
into the kernel when starting a process (e.g., by a cluster man-
ager) to provide models with information about a process’s
behavior. They allow the estimator to benefit from offline
processing for particular policy decisions. In contrast, prior
methodologies resort to measuring inaccurate and expensive
proxy statistics such as page fault counts or page access bits.

In CBMM, preloaded profiles specifically provide spatial,
per-process information; that is, they provide information
about regions of a single address space at arbitrary granu-
larity as small as a 4KB page. For example, a profile may
specify per-region reduction in page walk cycles from use
of huge pages, or a bit indicating whether a page is likely to
be touched or not. Models can query this information when
making cost and benefit estimates. For example, to estimate
the benefit of using a huge page, a model may incorporate the
number of averted page walk cycles, or to determine whether
to eagerly allocate memory or use copy-on-write, a model
may incorporate information about the likelihood of memory
accesses. This structure for preloaded profiles, while simple,
is quite useful because many MM policies make spatial deci-
sions, such as whether/how to map/unmap/remap a memory
region. However, CBMM’s design is flexible enough to admit
future extensions to profiles. For example, it may be desirable
to account for phases of workload activity or to apply profiles
at different granularities, such as per-thread or system-wide.

Profile Management. While CBMM still has benefits even
when profiles are imprecise (see Section 5.5), changes to data
structures or algorithms could result in changing memory
reference patterns. Thus, a natural future extension of CBMM
is automating profile generation and management.

First-party datacenter workloads often run continuously
and redundantly, so profiling could be automated and cen-
tralized at the cluster level. Recent work from industry sug-
gests a trend of large-scale profiling and centralized plan-
ning [32, 35, 42] and demonstrates the feasbility of such an
approach. We have ve done preliminary exploration and be-
lieve that the huge page methodology of Section 4.1 can be
run in a distributed, automated manner by cluster managers.

3.4 System Management

We implemented models directly in the kernel source, but in
principle, they could be implemented via another mechanism,
such as kernel modules. Our models are application-agnostic
(but can be customized if needed, like existing code), so ap-
plication developers do not need kernel access. Many service
providers have kernel teams that could maintain this code.
Meanwhile, profiles are application-specific, and application
developers can use existing configuration/deployment sys-
tems to schedule/manage/store/secure/deploy profiles with-
out special privileges. The kernel memory overhead of pro-
files depends on profile resolution/detailedness. In Section 5,
our largest profile is ∼ 170KB/process and most profiles are
< 50KB/process.

Our implementation uses procfs files to load profiles, but
any user-kernel communication mechanism could be used.
Also, in principle one could load models through boot time
configuration, similar to Facebook’s SoftSKU system [42].

6



3.5 Discussion
CBMM addresses the (1) information-poverty, (2) cost-
obliviousness, and (3) disjointed implementation of existing
MM policy implementations, while other alternatives only par-
tially address them. For example, interfaces such as madvise

are coarse-grained, whereas workload memory access pat-
terns can vary significantly within a region, as shown in Sec-
tion 2.1. Merely disabling overly-aggressive policies, such as
Linux’s THP or defragmentation policies, harms workloads
that require many huge pages, as we will see in Section 5.
Additionally, it is difficult to modify existing policies to target
different performance goals because their implementation is
often distributed across many files, such as Linux’s huge page
policies. CBMM mitigates all three challenges by making
costs and benefits explicit and centralizing policy decisions.
Finally, more research is also needed to determine how far
CBMM’s design can be generalized to other areas of the ker-
nel, such as scheduling, filesystems, or I/O management.

4 Implementation

We implement CBMM based on Linux 5.5.8 for three ker-
nel MM policies: huge page management, asynchronous
prezeroing, and eager paging [29]. We implement the esti-
mator and its models, along with related debugging inter-
faces, code for parsing profiles, and other infrastructure in
1159 lines of C in the kernel in a new and self-contained
file. Additionally, we add 87 lines of instrumentation through-
out the page fault handler and page allocator for page fault
tracing (see Section 2.2). We add 10 calls to the estima-
tor throughout the MM subsystem; each is self-contained
and consists of about 10 lines of code to initialize a struct,
make a function call, and respond to estimates. Asynchronous
prezeroing is implemented in a kernel module from Hawk-
Eye. We modify the module to run in a kernel thread and
to query the estimator before running. Our version of the
module is 196 lines of C. Our implementation is available at
https://github.com/multifacet/cbmm-artifact.

4.1 Huge Page Management
Background Huge page support in current kernels can be
either manual and automatic. A primary challenge is choosing
memory regions to promote: the kernel must determine which
memory regions would see enough benefit from huge pages.

Manual management allows applications to directly request
huge pages for certain memory regions, but it requires modify-
ing the applications, which is often impractical (e.g., Java does
not expose a way to easily control memory allocation). More-
over, modern datacenter workloads are multi-programmed
and diverse in behavior, requiring centralized coordination
during resource allocation [31]. In contrast, automatic huge
page management is a kernel feature that promotes application

memory transparently to applications. This allows unmodified
applications to benefit from huge pages but cannot make use
of application-specific domain knowledge.

CBMM combines both the generality of automatic man-
agement and the application-specific knowledge of manual
management. In contrast, current kernels either have only a
manual system (e.g., Windows) or use simplistic heuristics to
power an automatic system. For example, Linux’s THP ag-
gressively tries to promote on the first page fault to the huge
page, potentially leading to memory bloat and increased page
fault latency. FreeBSD waits for a specific percentage of the
huge page to be touched before promoting. Various research
systems use a mix of page access bits, performance counters,
LRU lists, and trial-and-error [31, 38, 49] with mixed success.

Model Listing 1 shows CBMM’s model for huge page
promotion. It is used in both the page fault handler and
khugepaged to decided whether to promote a page. We built
this model based on our analysis of huge page promotion
overheads. It makes a number of simplifying assumptions
when estimating both the cost and benefit, most notably that
the cost is dominated by the allocation and zeroing time and
that compaction and reclamation have a large fixed cost. We
choose to ignore other costs in our model, such as caching,
mapping changes, or potential memory bloat, but CBMM
allows models to be iteratively improved over time.

void hpage_promo_model(u64 addr , mm_cost_delta *cost)
{ // COST. Simplify using assumptions.

// - Alloc is free if have free zeroed pages.
// - Alloc cost is zeroing if have free unzeroed.
// - Alloc cost is 2^32 if need to free mem.
// - We don’t care what node it is on.
// - Constant prep costs (zeroing or copying), ~100us

// ‘have_free_hpage ‘ checks the allocator free list.
const u64 EXPENSIVE = 1ul << 32; // cycles
enum free_hpage_status fhps = have_free_hpage();
u64 alloc_cost = fhps > fhps_none ? 0 : EXPENSIVE;
u64 prep_cost = fhps > fhps_free ? 0 : 100*FREQ_MHZ;
cost ->cost = alloc_cost + prep_cost;

// BENEFIT = averted TLB miss cycles from profile.
cost ->benefit = compute_hpage_benefit(addr); }

Listing 1: CBMM huge page cost-benefit model.

Profiling Our methodology generates for each workload a
mapping from virtual memory regions (i.e., ranges of virtual
addresses) to the number of averted usermode page walk cy-
cles when the region is backed by huge pages. We modify the
Linux kernel to give precise control over promotions. We then
repeatedly run a given workload varying the set of promoted
pages. We additionally run the workload with no huge pages
as a baseline. We use hardware performance counters to mea-
sure the number of TLB misses, the number of cycles spent in
pages walks, and the overall cycle count for kernelspace and
userspace execution. We then take the difference in overhead
and overall runtime between any given set of pages and the
baseline. The size of the sets of promoted pages can be varied
to tradeoff profiling time with precision. Our prototype uses

7

https://github.com/multifacet/cbmm-artifact


the offset into allocation zones instead of virtual addresses, so
that profiles tolerate Address Space Layout Randomization.

Broadly, we found that our workloads could be categorized
as high-processing or low-processing. High-processing work-
loads, such as xz, canneal, or mcf, heavily process their input
data to produce internal data structures; their memory access
patterns are driven by computation over these data structures.
Low-processing workloads, such as memcached, mongodb, and
dc-mix (see Section 5.1), often do little more than data stor-
age and retrieval, so their access patterns are driven by client
request patterns. We found that we can reliably distinguish
between high- and low-processing workloads using the skew-
ness 1 of the distribution of averted page walk cycles. High-
processing workloads often have a small number of highly-
impactful memory regions, so they have a high positive skew
(skew > 2 seems to work empirically). When generating pro-
files for low-processing workloads, we assigned all regions a
benefit equal to the mean benefit measured empirically. For
high-processing workloads, we assigned each region the ben-
efit it individually demonstrated.

At runtime, we can supply a profile to the kernel in the form
of a CSV file that lists virtual address ranges and their benefit
from huge pages. Our implementation aims to demonstrate
the potential of our approach while remaining simple to im-
plement. We do not attempt to account for phases in workload
behavior, but our design is amenable to such an upgrade in
the future by repeating the profiling process at multiple points
during the workload’s execution. We assume the workload
size is stable but can handle other input changes; in Section 5,
we use randomized inputs for most workloads.

4.2 Asynchronous Prezeroing

Background We examine asynchronous prezeroing as a
means of improving the latency of large physical memory
allocations. Asynchronous prezeroing clears free pages using
a background daemon to save time during a page fault when it
would slow down userspace programs. Our analysis indicates
that prezeroing would reduce the cost of a huge page by
almost two orders of magnitude.

Prezeroing has fallen out of favor because the primary cost
of zeroing 4KB pages is cache misses, but prezeroing pages
leaves them cold when users access them, so latency is merely
shifted to userspace [8, 46]. Recently, Panwar et al. find preze-
roing is beneficial for huge pages and use non-temporal store
instructions to avoid cache pollution [38]. However, their ap-
proach requires hand-tuning to avoid excessive CPU usage
or lock contention on the page allocator. CBMM adapts their
prezeroing implementation with a model to determine when
and how long to run, eliminating the need for hand-tuning.

Model Listing 2 shows CBMM’s model for running the
asynchronous prezeroing daemon. The model makes numer-

1skewness is a statistical measure of distribution asymmetry.

ous assumptions; most importantly, it assumes that CPU time
is free unless taken away from userspace (i.e., the system is
not idle) and that the chief costs of prezeroing are the exe-
cution time of zeroing and contention on the allocator lock,
rather than cache pollution. This matches our own analysis
and observations while working on CBMM. The chief benefit
of prezeroing is to move zeroing overhead out of the critical
path of huge page promotion. For simplicity, we assume a
constant processor frequency over short time windows, even
though the frequency varies.

Also, this model exemplifies CBMM’s iterative approach to
building models. We started with a model that only accounted
for CPU time and potential huge page allocations. As we ran
experiments, we discovered the lock contention and improved
the model to account for it by adding the lines labeled as COST
of lock contention in Listing 2, resolving the performance
issue. The entire process took less than a day of debugging,
measurement, and implementation.

void prezeroing_model(mm_action *action ,
mm_cost_delta *cost)

{ // COST of the runtime itself... Assume:
// - Don’t care about NUMA nodes.
// - Zeroing costs ~10^6 cycles.
__kernel_ulong_t cpu_load = get_avenrun();
int ncpus = num_online_cpus();
const u64 HPAGE_ZERO_COST = 1000000;

// ncpus > cpu load average => idle cpu, free to run.
if (ncpus > cpu_load) {

cost ->cost = 0;
} else {

cost ->cost = HPAGE_ZERO_COST * action ->prezero_n;
}

// COST of lock contention. Assume:
// - Cost of lock acquisition = ~150cyc, do it 2x.
// - Lock is unheld for ~1ms/horizon => free locking
const u64 UNHELD = FREQ_MHZ * 1000; // cycles
const u64 SINGLE_CS = 150; // cycles
const u64 crit_sect_cost = SINGLE_CS * 2; // cycles
const u64 nfree = UNHELD / crit_sect_cost;
cost ->cost += (action ->prezero_n > nfree

? action ->prezero_n - nfree : 0) *
critical_section_cost;

// BENEFIT. Assume past usage predicts future usage.
u64 recent_used = mm_estimated_prezeroed_used();
cost ->benefit = min(action ->prezero_n , recent_used)

* HPAGE_ZERO_COST; }

Listing 2: CBMM async prezeroing cost-benefit model

4.3 Eager paging

Background Eager paging allocates physical memory upon
user request, rather than lazily on a page fault (the de-
fault) [29]. It enables large contiguous physical memory allo-
cations, which are easier to back with huge pages and enable
useful hardware optimizations [29, 37, 40, 43, 49]. However,
a drawback to eager paging is memory bloat if the workload
does not use all the allocated memory [29]. Preloaded profiles
unlock this optimization while avoiding memory bloat.

8



Model Listing 3 shows CBMM’s model for eager pag-
ing, which is invoked by mmap or brk system calls. It uses
a preloaded profile to determine which subregions will be
touched and assumes that the model has perfect knowledge,
allowing it to ignore the cost of potential bloat. If more than
one page is being eagerly allocated, we create opportunity for
contiguous allocation.

void eager_paging_model(vm_area_struct *mmap_region ,
mm_cost_delta *cost)

// ASSUME: past usage predicts future; use profile.
// COST: time to create new page.
const u64 PF_NEW_PAGE = FREQ_MHZ * 10; // cycles
struct range *ranges = prev_touched(mmap_region);
cost ->cost = len(ranges) * PF_NEW_PAGE;

// BENEFIT: time to create new page , coalesced faults
const u64 PF_CS = 300; // cycles
cost ->benefit = len(ranges) * PF_NEW_PAGE

+ (len(ranges) - 1) * PF_CS; }

Listing 3: CBMM eager paging cost-benefit model

Profiling We profile eager paging behavior by periodically
reading the /proc/<pid>/pagemap file while the workload is
running. This file contains information about memory map-
pings for the given process and allows us to detect which
virtual memory regions have been faulted in. Pages that were
faulted in during the execution are noted in the profile, and
the model assumes they will be faulted in again in the future.

5 Evaluation

CBMM seeks to improve consistency while matching or ex-
ceeding the performance and efficiency of existing systems.
We evaluate CBMM along multiple axes. First, we evaluate
the page fault latency of CBMM to understand its consistency
compared to Linux and HawkEye. Second, we measure the
end-to-end performance of CBMM. Third, we look at the ef-
ficiency of CBMM’s use of huge pages. Finally, we evaluate
the generality of our approach by looking at the sensitivity of
performance to profile changes.

5.1 Methodology
Table 2 describes our workloads. They represent a variety
of software behaviors and exercise the kernel in different
ways. mongodb, memcached, and dc-mix are memory-intensive
workloads common in datacenters. mongodb and memcached

are data stores, and mongodb is I/O heavy and makes use of
the page cache. dc-mix induces memory pressure and tries to
simulate a real system in which a server, device driver, and
batch job are using system resources. We drive the data stores
in these workloads using YCSB [17] with different read-write
ratios to increase the variety of MM behavior. mcf, xz, and
canneal are computational workloads. We scale up the inputs
of xz and canneal to use more memory. In all experiments
with server applications (e.g., memcached, redis, mongodb),

we run the client program on the same machine as the server,
so as not to measure network effects. We run each workload
with its default number of threads and pin all workloads to one
NUMA node to reduce variation caused by NUMA effects.
To reduce noise, we run each experiment 5 times and report
the median results. For all workloads except mcf and xz, the
input is randomized and changes between executions of the
workload. For xz, we use the native input to generate a profile
and use a custom input when evaluating performance.

All experiments run on CloudLab [41] c220g5 machines
with two Intel Xeon Silver 4114 (10C/20T, 2.2 GHz, Skylake
2017), 192GB 2666MHz DDR4 ECC DRAM, and a 480GB
SAS SSD. We set the CPU scaling governor to performance.
Unless otherwise noted, we do not tune our systems at all; the
results represent CBMM’s “out of the box” behavior.

We replace the system allocator with jemalloc, which is
better in a datacenter setting and is used by Facebook [23]. All
experiments run on CentOS 7.8.2003 with the relevant kernel.
We disable Meltdown and Spectre [30, 34] mitigations, which
cause severe performance degradation. We use unmodified
Linux 5.5.8 with Transparent Huge Pages enabled as our base-
line. We configure CBMM similarly to Linux but we preload
a profile of huge page benefits and eager paging, as derived
in Sections 4.1 and 4.3. We also compare against HawkEye
[38], a state-of-the-art research huge page management sys-
tem based on Linux 4.3. We configure HawkEye as in its
paper, including its prezeroing daemon. We ran experiments
against stock Linux 4.3 and found that it performs within 15%
of Linux 5.5.8 on average (see Figure 5). To measure page
fault latency in HawkEye, which runs on a different kernel
without our instrumentation, we use eBPF to instrument the
handle_mm_fault function, which represents the main portion
of the page fault handler. We found that canneal crashes with
a segfault on HawkEye when the system is unfragmented, so
we omit that experiment from results.

Fragmentation We run each workload on a freshly re-
booted system and on a preconditioned system. Precondi-
tioning aims to simulate a long-running datacenter environ-
ment by inducing external fragmentation, which hinders large
physical memory allocations, such as huge pages.

We had difficulty identifying a reproducible fragmentation
methodology. We attempted to reuse techniques from prior
work [38, 49, 51] and also made several attempts at our own
methodologies with little success; on Linux, deferred freeing
of physical memory and kernel daemons such as kcompactd
and kswapd cause variable results. Also, each methodology
preconditions machines in a different way, none of which is
obviously more realistic than the others.

For our evaluation, we choose a simple methodol-
ogy derived from prior work [18, 49, 51]. We enable
CONFIG_SLAB_FREELIST_RANDOM and CONFIG_SHUFFLE_PAGE_

ALLOCATOR when compiling the kernel and add a sysfs file
that triggers shuffling of the kernel physical memory free lists.
To precondition the system, we reboot and then trigger free

9



Workload Description Input Peak Mem
xz data compression [5] profiling: native input, eval: custom scaled up input 150GB
mcf combinatorial optimization, scheduling [5] native input 3GB
canneal simulated annealing, chip routing [13] custom input, randomly generated each time 150GB
mongodb KV store YCSB driver [17], 75%W-25%R 150GB
memcached in-memory KV store YCSB driver [17], 1%W-99%R 150GB
dc-mix redis (KV store), memhog (microbench., creates fragmen-

tation), metis (in-memory map-reduce) [28]
redis: YCSB driver [17], 50%W-50%R; memhog:
N/A; metis: built-in

165GB

Table 2: Description of Workloads – their behavior, inputs, and peak memory usage.

list shuffling. Then we run a program that allocates all system
memory (with mmap(MAP_POPULATE)) and frees all but the first
page of each 2MB region before sleeping for the duration of
the workload. This methodology is simple and yields com-
parable results to other methodologies. We measure the Free
Memory Fragmentation Index [25, 31, 38, 51] after precon-
ditioning but before the workload begins. On CBMM and
HawkEye, preconditioning consistently leaves around 183GB
of free memory with 99% fragmentation. On Linux, half of
runs experience similar results, but in the other half, deferred
page freeing causes < 2GB of memory to be considered free,
making it difficult to measure fragmentation.

5.2 System Behavioral Consistency

Figure 4 shows tail latency on each kernel without fragmen-
tation (when latency should be lowest); note the log x- and
y-scales. To account for differences in the frequency of page
faults due to differing MM decisions, we show the average in-
terval between events, rather than the percentile on the y-axis.

Unlike Linux (Figure 2k), CBMM rarely attempts an ex-
pensive fallback path (e.g., compaction or reclamation) during
huge page promotion, even under fragmentation; allocation
failures usually result in the allocation of base pages. CBMM
often experiences more page faults than Linux or HawkEye,
but as Figure 4 shows, CBMM still sees a lower rate of long
page faults than they do because its cost-awareness leads to
fewer pathological cases, falling back to 4KB pages instead.

Even without fragmentation, CBMM always matches or
improves on the tail latency of Linux and HawkEye, often
by wide margins. In xz, canneal, and memcached, CBMM re-
duces the frequency of page faults taking 10-1000µs by two
to three orders of magnitude compared to Linux or HawkEye.
In canneal and memcached, CBMM reduces the frequency of
(or eliminates) all page faults slower than 10µs by two or
more orders of magnitude compared to Linux. In memcached,
page faults taking over 1ms are nearly eliminated, while in
dc-mix, they are reduced in frequency from nearly constant
in Linux to every 10s or longer in CBMM. mongodb uses a
userspace asynchronous I/O framework, as previously dis-
cussed, so its page fault latencies are dominated by context
switches and other userspace threads; thus, our improvements
are not visible in the figure. However, the figure does show
that CBMM does not regress page fault latency, and as we will
see in the next section, CBMM achieves significantly better

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts
(a) mcf

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(b) xz

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h
Av

g 
tim

e 
be

tw
ee

n 
ev

en
ts

(c) canneal

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(d) memcached

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(e) mongodb

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h
Av

g 
tim

e 
be

tw
ee

n 
ev

en
ts

(f) dc-mix

Figure 4: Soft page fault tail latency distribution on each
system, weighted by page fault rate. A point (x,y) on the plot
indicates that a fault of latency ≥ x happens at an interval of
≥ y on average.

performance than Linux or HawkEye for this workload.
Under fragmentation, CBMM usually achieves even larger

tail latency improvements, particularly compared to Linux.
For all workloads except mongodb, CBMM reduces the fre-
quency of all page faults taking ≥ 50µs by 1-3 orders of
magnitude compared to Linux and up to one order of magni-
tude compared to HawkEye. mongodb performs similarly to
the unfragmented case, as discussed above.

10



mcf xz

can
ne

al

mem
cac

he
d

mon
go

db
dc-

mix

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Ru

nt
im

e 2.2 5.2

Linux
Linux4.3

HawkEye
CBMM

CBMM-tuned
Fragmented

Figure 5: Runtime of workloads on each kernel, normalized
to Linux with THP without fragmentation (lower is better).

Summary CBMM improves tail latency compared to Linux
or HawkEye. For multiple workloads, CBMM reduces the
frequency of slow page faults by one or more orders of mag-
nitude, especially under fragmentation.

5.3 End-to-End Performance

CBMM’s major goal is to improve consistency and the debug-
gability of MM-related performance issues without degrading
performance. Figure 5 shows the performance of each kernel
with and without fragmentation. All results are normalized to
Linux without fragmentation. Note that some of the perfor-
mance difference of HawkEye compared to the other systems
is due to Linux 4.3 (the black bar in the figure). On average,
without fragmentation, CBMM has performance comparable
to Linux and better than HawkEye. On average, with frag-
mentation, CBMM is 7% and 30% faster than HawkEye and
Linux; in fact, it is only 12% slower than without fragmenta-
tion. With minimal tuning, on average, CBMM is 13% and
35% faster than HawkEye and Linux under fragmentation.

Without fragmentation, CBMM matches or exceeds the
performance of Linux or HawkEye for all workloads except
canneal. For canneal, CBMM is 15% slower than Linux be-
cause our profiles underestimate the benefit of huge pages.
For mongodb, CBMM is 9% faster than Linux because it uses
significantly more huge pages.

With fragmentation, CBMM outperforms Linux and/or
HawkEye for all workloads except mcf. mcf uses too little
memory to induce memory pressure; thus, CBMM overesti-
mates the cost of huge pages and uses significantly fewer huge
pages than Linux. In all other workloads, CBMM matches or
outperforms at least one of Linux or HawkEye, often by wide
margins. In dc-mix, canneal, and memcached, CBMM outper-
forms Linux by 34%, 34% and 81%, respectively, because
its cost models allow it to adapt to a fragmented context, re-
flecting CBMM’s focus on consistent behavior. Notably, this
includes all of our datacenter workloads.

To demonstrate CBMM’s benefit to performance debug-
ging, we tune the performance of mcf, canneal, and dc-mix

beyond the above results. In mcf and dc-mix, CBMM under-
estimates the benefit of huge pages, so we adjust the benefit
upward in the respective profiles. We found that canneal ex-
hibits a strong tradeoff between performance and page fault
tail latency. As canneal is a non-interactive computational
workload, we optimize for end-to-end performance by ad-
justing the profile to more aggressively allocate huge pages
for the most import memory regions. After tuning, dc-mix
without fragmentation runs 2% faster, and mcf with fragmen-
tation runs 19% faster, than without tuning, but neither has
a regression in tail latencies. canneal runs 18% faster than
without tuning (46% faster than Linux) at the expense of some
degradation in tail page fault latencies. In total, the tuning
effort took less than a week, most of which was spent waiting
for workloads to run.

Summary CBMM’s has competitive performance with Lin-
ux/THP and HawkEye and better tail latency and more inter-
pretable behavior. In most cases, CBMM matches or exceeds
Linux’s performance. Under fragmentation, CBMM often
performs vastly better than Linux or HawkEye because of its
focus on consistent behavior. Also, CBMM is easily debug-
gable and tunable by adjusting profiles and/or models.

5.4 Efficiency

Allocating huge pages to memory regions that do not need
them wastes contiguous memory and promotion overheads
and possibly bloats memory usage.

Generally, preloaded profiles drive CBMM’s huge page us-
age, while HawkEye and Linux are more indiscriminate with
huge page promotion. Usually, Linux attempts to use more
huge pages than CBMM or HawkEye, often backing almost
all memory with huge pages. HawkEye uses huge pages more
efficiently than Linux, often achieving similar performance
with much fewer huge pages. For most workloads, Linux still
attempts to use huge pages under fragmentation, whereas
CBMM and HawkEye do not, leading to significantly better
tail latencies, and often better performance.

For xz, CBMM’s profile allows it to promote only a small
but important part of the address space, so it matches Linux’s
performance (and outperforms HawkEye) while using almost
80% fewer huge pages. For mongodb, CBMM outperforms
Linux and HawkEye by using more huge pages in the ab-
sence of fragmentation and fewer in its presence, exemplify-
ing CBMM’s cost-awareness.

Summary Despite having the most consistent behavior and
sometimes better performance, CBMM often uses signifi-
cantly fewer huge pages than Linux or HawkEye. By being
cost- and context-aware, CBMM is more targeted in its use of
huge pages, though in some cases, our profiles underestimate
the benefit of huge pages.

11



mcf xz

can
ne

al

mem
cac

he
d

mon
go

db
dc-

mix

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Ru

nt
im

e 2.2 5.2

Linux
CBMM

CBMM-perapp
CBMM-shared

Fragmented

Figure 6: Runtime of CBMM workloads with generalized pro-
files, normalized to Linux with THP without fragmentations
(lower is better).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(a) mcf

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(b) xz

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(c) canneal

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(d) memcached

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(e) mongodb

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(f) dc-mix

Figure 7: Soft page fault tail latency distribution weighted by
page fault rate for different profiles. Compare to Figure 4.

mcf xz

can
ne

al

mem
cac

he
d

mon
go

db
dc-

mix

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Ru

nt
im

e 2.2 5.2

Linux
CBMM

CBMM-async
CBMM-huge

Fragmented

Figure 8: Runtime of CBMM workloads when enabling more
models, normalized to Linux with THP without fragmenta-
tions (lower is better).

5.5 Generality

CBMM has benefits even when a profile is highly imprecise,
primarily by avoiding the pathological behavior of Linux. We
compare three versions of profiles: the standard CBMM pro-
file is as in Section 4.1, perapp assigns a single value to all
memory regions in the workload equal to the average benefit
of enabling THP for the workload, and shared is shared be-
tween all workloads and assigns a single value to all memory
regions equal to the mean benefit of the perapp profiles.

Figure 7 shows how the different profiles affect page fault
tail latency in mcf and xz. The perapp and shared profiles
have minor regressions in page fault tail latencies compared
to the standard profiles but still improve over Linux.

Figure 6 shows the how the different profiles affect per-
formance. In most cases, CBMM with the simpler profiles
outperformed Linux with fragmentation, and the performance
differences between the three profiles are within 5%. The
perapp and shared profiles outperform the standard profiles
slightly in some workloads. One exception is mcf under frag-
mentation, where both the perapp and shared profiles outper-
form the standard profile by 20%, similar to the tuned profile
in Section 5.3, by being more liberal with huge pages.

Summary More precise profiles improve CBMM’s perfor-
mance and tail latency, but imprecise profiles still have good
results. Furthermore, profiles can be used to trade off perfor-
mance and page fault latency.

5.6 CBMM Models

We evaluate the contribution of each model in Section 4 via
three configurations of CBMM: huge enables only the huge
page model, async additionally enables prezeroing, and stan-
dard CBMM enables all three models. Figure 8 shows the
performance of these configurations, while Figure 9 shows
tail latency for mcf and xz.

Each policy provides benefits in different settings. The huge
page model alone (huge) captures most of the performance

12



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(a) mcf

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(b) xz

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(c) canneal

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(d) memcached

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(e) mongodb

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(f) dc-mix

Figure 9: Soft page fault tail latency impact of different mod-
els. Compare to Figure 4.

benefit of CBMM because it prevents costly huge page alloca-
tions.Asynchronous prezeroing (async) decreases page fault
tail latency by making huge pages cheaper. It also reduces
performance slightly on an unfragmented system, where free
pages abound, because prezeroing is wasted work. With frag-
mentation, prezeroing has little effect on performance.

Eager paging does not directly benefit performance but en-
ables larger contiguous allocations where hardware supports
it [29, 37, 40, 43, 49]. To evaluate how well CBMM can make
large allocations, we compare the number of eagerly allocated
regions and peak memory usage of CBMM with eager paging
against Linux with MAP_POPULATE, the mmap flag that eagerly
maps memory. In all workloads, regardless of fragmentation,
CBMM uses eager paging for nearly the entire working set of
the workload. Thanks to profiles, CBMM has < 1% memory
bloat – 3%-48% less memory than MAP_POPULATE would use.

Summary CBMM’s huge page model provides significant
tail latency (and often performance) improvements. Asyn-
chronous prezeroing enables more huge page usage under
fragmentation, but has a modest cost on unfragmented sys-
tems. Eager paging has a modest performance cost but enables
more contiguous memory allocation.

6 Related Work

Performance consistency at scale is a well-known prob-
lem [19] afflicting, among other systems, cluster computa-
tions [20] and distributed caching [11]. Redundancy is a com-
mon workaround [20]. MittOS uses deadline-aware kernel
APIs to improve tail latency [26]. Like MittOS, we seek to fix
consistency issues rather than mitigate their impact.

Kwon et al. observe that current huge page support is “a
hodge-podge of best-effort algorithms and spot fixes” [31].
They and others identify real concerns and improve perfor-
mance but often at the expense of increasing kernel heuristic
complexity [14, 31, 38, 39, 49]. CBMM tames the increasing
complexity of MM policy decisions by consolidating it in one
place and reducing anomalous behavior.

VMware ESX Server explores MM techniques based on
economic models by quantifying the value of idle memory
and “taxing” processes for it [47]. Google and Meta both track
and reclaim cold memory from processes, too [15, 32, 48].
Google’s system centrally and empirically coordinates con-
tent migration to far-memory tiers (e.g., compressed memory)
[32], while Meta’s system relies on better metrics and acts
locally on each machine. Google also profiles the lifetime of
allocations to decrease memory fragmentation [35]. These ap-
proaches inspired our work; they use empirical measurements
and MM-wide guiding principles to make MM decisions. Our
work extends and generalizes this idea. Sriraman et al. take
a step in this direction by comprehensively profiling Meta’s
workloads and using the profiles to guide coarse-grained boot-
time system tuning [42].

There is much prior work on asynchronous prezeroing of
pages [8, 21, 22, 33, 38, 46]. Recent work observes that larger
page sizes and non-temporal store instructions make preze-
roing useful again [38]. We demonstrate the usefulness of
our approach by quantifying zeroing costs and the prezeroing
implementation, and integrating them into our prototype.

7 Conclusion

Modern computing needs are placing new demands on kernel
MM. To meet these demands, kernel MM must begin to prior-
itize behavioral consistency and debuggability. We propose
CBMM, a MM system that uses cost-benefit analysis to make
policy decisions. Despite using relatively simple models in its
cost-benefit estimation, CBMM’s principled approach to MM
allows matching the performance of existing systems while

13



also improving system behavioral consistency. CBMM paves
a way for kernel MM behavior to become less opaque, un-
locking further performance and optimizations in the future.

Acknowledgements

We thank the anonymous reviewers, Sujay Yadalam, and Yu-
vraj Patel for their time and insightful feedback on our pa-
per. We thank the anonymous artifact reviewers and Anthony
Rebello for their time spent testing our artifact. We thank
Ashish Panwar for the help getting HawkEye set up. We thank
Michael Marty who gave feedback on early versions of the
project that became CBMM.

This work was funded by NSF grants CNS 1815656 and
CNS 1900758.

Availability

Our artifact is open-source and available at https://github.
com/multifacet/cbmm-artifact. See Appendix A for fur-
ther details.

References

[1] Borg Cluster Traces from Google. https://github.
com/google/cluster-data.

[2] Database Installation Guide. https://docs.oracle.
com/cd/E11882_01/install.112/e47689/pre_
install.htm#LADBI1152.

[3] Disable Transparent Huge Pages (THP).
https://docs.mongodb.com/manual/tutorial/
transparent-huge-pages.

[4] Disabling Transparent Huge Pages (THP).
https://docs.couchbase.com/server/current/
install/thp-disable.html.

[5] SPEC CPU 2017 Benchmark Suite. https://www.
spec.org/cpu2017/.

[6] Microsoft Azure Traces. https://github.com/
Azure/AzurePublicDataset.

[7] Redis Latency Problems Troubleshooting. https://
redis.io/topics/latency.

[8] Remove PG_ZERO and zeroidle (page-zeroing) en-
tirely. https://news.ycombinator.com/item?id=
12227874, August 2016.

[9] Vlastimil Babka. Overview of memory reclaim in the
current upstream kernel. In Linux Plumbers Conference
2021, September 2021.

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Second Edition.
Morgan & Claypool Publishers, 2013.

[11] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Mor
Harchol-Balter, and Siddhartha Sen. RobinHood: Tail
Latency-aware Caching – Dynamic Reallocating from
Cache-rich to Cache-poor. In Proceedings of the Thir-
teenth Conference on Operating Systems Design and
Implementation, OSDI, 2018.

[12] Betsy Beyer, Chris Jones, Jennifer Petoff, and
Niall Richard Murphy. Site Reliability Engineering:
How Google Runs Production Systems. O’Reilly Media,
Inc., 1st edition, 2016.

[13] Christian Bienia. Benchmarking Modern Multiproces-
sors. PhD thesis, Princeton University, January 2011.

[14] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin
Zhong. Theseus: an Experiment in Operating System
Structure and State Management. In Proceedings of the
Fourteenth Symposium on Operating Systems Design
and Implementation, OSDI, 2020.

[15] Shakeel Butt, Suren Baghdasaryan, and Yu Zhao. Find-
ing more DRAM. In Linux Plumbers Conference 2019,
2019.

[16] Richard W. Carr and John L. Hennessy. WSCLOCK –
a Simple and Effective Algorithm for Virtual Memory
Management. In Proceedings of the Eighth ACM Sym-
posium on Operating Systems Principles, SOSP, 1981.

[17] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the First
ACM Symposium on Cloud Computing, SoCC, 2010.

[18] Dan Williams. Randomize free memory. https://lwn.
net/Articles/767614/.

[19] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2), February 2013.

[20] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. In Proceed-
ings of the Sixth Conference on Symposium on Operat-
ing Systems Design & Implementation, OSDI, 2004.

[21] Cort Dougan, Paul Mackerras, and Victor Yodaiken. Op-
timizing the idle task and other MMU tricks. In Pro-
ceedings of the Third Symposium on Operating Systems
Design and Implementation, OSDI, 1999.

[22] Lars Eggert, Alan Cox, Cort Dougan, and
Matt Dillon. Clearing Pages in the Idle

14

https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1152
https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1152
https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1152
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://docs.couchbase.com/server/current/install/thp-disable.html
https://docs.couchbase.com/server/current/install/thp-disable.html
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://redis.io/topics/latency
https://redis.io/topics/latency
https://news.ycombinator.com/item?id=12227874
https://news.ycombinator.com/item?id=12227874
https://lpc.events/event/11/contributions/896/
https://lpc.events/event/11/contributions/896/
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://www.usenix.org/system/files/osdi18-berger.pdf
https://www.usenix.org/system/files/osdi18-berger.pdf
https://www.usenix.org/system/files/osdi18-berger.pdf
https://sre.google/sre-book/table-of-contents/
https://sre.google/sre-book/table-of-contents/
https://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf
https://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.linuxplumbersconf.org/event/4/contributions/282/
https://www.linuxplumbersconf.org/event/4/contributions/282/
https://doi.org/10.1145/800216.806596
https://doi.org/10.1145/800216.806596
https://doi.org/10.1145/800216.806596
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://lwn.net/Articles/767614/
https://lwn.net/Articles/767614/
https://doi.org/10.1145/2408776.2408794
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/dougan/dougan.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/dougan/dougan.pdf


Loop. https://www.mail-archive.com/
freebsd-hackers@freebsd.org/msg13993.html,
July 2000.

[23] Jason Evans. Scalable memory allocation using jemal-
loc, January 2011.

[24] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. BadgerTrap: a Tool to Instrument
x86-64 TLB Misses. ACM SIGARCH Computer Archi-
tecture News, 42(2), 2014.

[25] Mel Gorman and Andy Whitcroft. The What, the Why
and the Where to of Anti-fragmentation. In Proceedings
of the Linux Symposium, volume 1, January 2006.

[26] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi. MittOS:
Supporting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the
Twenty-Sixth Symposium on Operating Systems Princi-
ples, SOSP, 2017.

[27] John Wilkes. More Google Cluster Data.
http://ai.googleblog.com/2011/11/
more-google-cluster-data.html.

[28] Frans Kaashoek, Robert Morris, and Yandong Mao.
Optimizing MapReduce for Multicore Architectures.
Technical Report MIT-CSAIL-TR-2010-020, Computer
Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, May 2010.

[29] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrián Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman Ün-
sal. Redundant Memory Mappings for Fast Access to
Large Memories. In Proceedings of the Forty-Second
Annual International Symposium on Computer Architec-
ture, ISCA, 2015.

[30] Paul Kocher, Jann Horn, Anders Fogh, and Daniel
Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. In Fortieth IEEE Sym-
posium on Security and Privacy, S&P, 2019.

[31] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-
pher J. Rossbach, and Emmett Witchel. Coordinated
and Efficient Huge Page Management with Ingens. In
Proceedings of the Twelfth Conference on Operating
Systems Design and Implementation, OSDI, 2016.

[32] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal,
Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan
Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,

Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and
Parthasarathy Ranganathan. Software-Defined Far Mem-
ory in Warehouse-Scale Computers. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS, 2019.

[33] Christopher Lameter. Increase page fault rate by preze-
roing V1 [0/3]: Overview. https://lkml.org/lkml/
2004/12/21/142, December 2004.

[34] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In Twenty-Seventh USENIX Security
Symposium, USENIX Security, 2018.

[35] Martin Maas, David G. Andersen, Michael Isard, Mo-
hammad Mahdi Javanmard, Kathryn S. McKinley, and
Colin Raffel. Learning-based Memory Allocation for
C++ Server Workloads. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS, 2020.

[36] Mark Mansi and Michael M. Swift. 0sim: Preparing
System Software for a World with Terabyte-scale Mem-
ories. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2020.

[37] Michal Nazarewicz. A deep dive into CMA. https:
//lwn.net/Articles/486301/.

[38] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawk-
Eye: Efficient Fine-grained OS Support for Huge Pages.
In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, 2019.

[39] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Mak-
ing Huge Pages Actually Useful. In Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS, 2018.

[40] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek
Bhattacharjee. Large pages and lightweight memory
management in virtualized environments: can you have
it both ways? In Proceedings of the Forty-Eighth Inter-
national Symposium on Microarchitecture, MICRO-48,
2015.

[41] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific Infrastructure for Advancing
Cloud Architectures and Applications. ;login:, 39(6),
December 2014.

15

https://www.mail-archive.com/freebsd-hackers@freebsd.org/msg13993.html
https://www.mail-archive.com/freebsd-hackers@freebsd.org/msg13993.html
https://engineering.fb.com/2011/01/03/core-data/scalable-memory-allocation-using-jemalloc/
https://engineering.fb.com/2011/01/03/core-data/scalable-memory-allocation-using-jemalloc/
https://doi.org/10.1145/2669594.2669599
https://doi.org/10.1145/2669594.2669599
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-369-384.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-369-384.pdf
https://doi.org/10.1145/3132747.3132774
https://doi.org/10.1145/3132747.3132774
https://doi.org/10.1145/3132747.3132774
http://ai.googleblog.com/2011/11/more-google-cluster-data.html
http://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://dspace.mit.edu/bitstream/handle/1721.1/54692/MIT-CSAIL-TR-2010-020.pdf
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2749469.2749471
https://ieeexplore.ieee.org/document/8835233
https://ieeexplore.ieee.org/document/8835233
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1145/3297858.3304053
https://lkml.org/lkml/2004/12/21/142
https://lkml.org/lkml/2004/12/21/142
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3373376.3378451
https://doi.org/10.1145/3373376.3378451
https://doi.org/10.1145/3373376.3378451
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
http://doi.acm.org/10.1145/3297858.3304064
http://doi.acm.org/10.1145/3297858.3304064
http://doi.acm.org/10.1145/3173162.3173203
http://doi.acm.org/10.1145/3173162.3173203
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2830772.2830773
https://www.usenix.org/publications/login/dec14/ricci
https://www.usenix.org/publications/login/dec14/ricci
https://www.usenix.org/publications/login/dec14/ricci


[42] A. Sriraman, A. Dhanotia, and T. F. Wenisch. Soft-
SKU: Optimizing Server Architectures for Microservice
Diversity @Scale. In Proceedings of the Forty-Sixth
Annual International Symposium on Computer Architec-
ture, ISCA, 2019.

[43] Madhusudhan Talluri and Mark D. Hill. Surpassing
the TLB performance of superpages with less operat-
ing system support. ACM SIGPLAN Notices, 29(11),
November 1994.

[44] Huangshi Tian, Yunchuan Zheng, and Wei Wang. Char-
acterizing and Synthesizing Task Dependencies of Data-
Parallel Jobs in Alibaba Cloud. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC, 2019.

[45] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the Next Generation. In
Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys, 2020.

[46] Linus Torvalds. Page zeroing strategy.
https://yarchive.net/comp/linux/page_
zeroing_strategy.html, December 2000.

[47] Carl A. Waldspurger. Memory Resource Management
in VMware ESX Server. In Proceedings of the Fifth
Symposium on Operating Systems Design and Imple-
mentation, OSDI, 2002.

[48] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon
Yang, Hao Wang, Blaise Sanouillet, Bikash Sharma,
Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-
itrios Skarlatos. TMO: transparent memory offloading
in datacenters. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS,
2022.

[49] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Translation Ranger: Operating System
Support for Contiguity-aware TLBs. In Proceedings of
the Forty-Sixth International Symposium on Computer
Architecture, ISCA, 2019.

[50] Wenbo Zhang. Why We Disable Linux’s THP
Feature for Databases. https://pingcap.com/blog/
why-we-disable-linux-thp-feature-for-databases,
December 2020.

[51] Weixi Zhu, Alan L. Cox, and Scott Rixner. A Com-
prehensive Analysis of Superpage Management Mecha-
nisms and Policies. In 2020 USENIX Annual Technical
Conference, ATC, 2020.

16

https://ieeexplore.ieee.org/abstract/document/8980331
https://ieeexplore.ieee.org/abstract/document/8980331
https://ieeexplore.ieee.org/abstract/document/8980331
https://doi.org/10.1145/195470.195531
https://doi.org/10.1145/195470.195531
https://doi.org/10.1145/195470.195531
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3342195.3387517
https://yarchive.net/comp/linux/page_zeroing_strategy.html
https://yarchive.net/comp/linux/page_zeroing_strategy.html
http://dl.acm.org/citation.cfm?id=1060289.1060307
http://dl.acm.org/citation.cfm?id=1060289.1060307
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3503222.3507731
http://doi.acm.org/10.1145/3307650.3322223
http://doi.acm.org/10.1145/3307650.3322223
https://pingcap.com/blog/why-we-disable-linux-thp-feature-for-databases
https://pingcap.com/blog/why-we-disable-linux-thp-feature-for-databases
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi


A Artifact Appendix

Abstract
In order to aid future research and facilitate the re-
production of our work, we open-sourced our artifact,
which is available at https://github.com/multifacet/
cbmm-artifact. Our artifact includes both the CBMM ker-
nel, which is a modification of the 5.5.8 Linux kernel, and
our tooling for running the experiments discussed in the pa-
per. The README.md file in the artifact contains detailed
instructions for running each experiment in the paper and
reproducing the results and plots therein.

Scope
Running the experiments as specified in the README on
similar hardware to our own setup (described in Section 5.1)
should allow the reviewer to generate comparable results to
those in the accepted version of the paper.

Specifically, our paper’s key claims are:

• CBMM improves page fault tail latency, our measure of
MM system behavioral consistency, compared to Linux
and HawkEye (Figures 2 and 4).

• CBMM does not regress application runtime, and under
fragmentation can often significantly improve runtime
compared to Linux and/or HawkEye (Figure 5).

• CBMM often uses huge pages more frugally than Linux
or HawkEye despite getting better tail latency and com-
parable (or better) performance (Figure 6).

• CBMM has benefits even when profiles are imprecise
(Section 5.5, 5.6).

Because running all experiments is time and resource inten-
sive, we provide a screencast and intermediate results for the
reviewers. This should allow generation of checkable partial
results in a reasonable amount of time.

Contents
This artifact contains:

• README.md: contains instructions for how to use the arti-
fact.

• paper.pdf: the accepted version of the paper, without
any modifications responding to reviewer requests.

• cbmm/: a git submodule containing our primary artifact,
the CBMM kernel, which is a modified version of Linux
5.5.8.

• cbmm-runner/: a git submodule of our runner tool, which
runs our experiments.

• profiles/: a set of profiles we used in our evaluation.
More info is available in the README.

• scripts/:

– Convenience scripts for running experiments (more
in "Detailed Instructions"),

– Scripts for processing experimental output into a
consumable/plottable form,

– Scripts for plotting experimental results to generate
the figures from the paper.

• figures/: copies of the figures from the paper.

Hosting
Our artifact is hosted on GitHub at https://github.com/
multifacet/cbmm-artifact. Git tag atc22ae specifies the
version submitted for review, but more recent versions of
the main branch contain helpful additions, such as additional
figures not included in the paper for lack of space.

Requirements
Reviewers will need a machine with specs similar to Section
5.1:

• 192GB DRAM

• Multiple cores

• ≥ 50GB free disk space

• Running Centos 7

• Can install the CBMM kernel in place of the existing
Linux kernel

• Internet connection

They will also need any other Linux machine that can con-
nect to the first machine via passwordless SSH. This machine
drives the experiments to run on the first machine.

They will also need access to SPEC 2017 ISO, which we
cannot provide due to licensing constraints.

Full details are in the README.

17

https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact/blob/main/README.md
https://github.com/multifacet/cbmm-artifact/blob/main/README.md
https://github.com/multifacet/cbmm-artifact/blob/main/README.md
https://github.com/multifacet/cbmm-artifact/blob/main/paper.pdf
https://github.com/multifacet/cbmm/tree/ffc5a23759fcbf862ed68eaad460eeb06d79431d
https://github.com/multifacet/cbmm-runner/tree/fe900a21e1701658b73019cafab5d54340c626d2
https://github.com/multifacet/cbmm-artifact/tree/main/profiles
https://github.com/multifacet/cbmm-artifact/blob/main/README.md
https://github.com/multifacet/cbmm-artifact/tree/main/scripts
https://github.com/multifacet/cbmm-artifact/tree/main/figures
https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact/tree/atc22ae
https://github.com/multifacet/cbmm-artifact/tree/main
https://github.com/multifacet/cbmm-artifact/blob/main/README.md#hardware-and-software-requirements

	Introduction
	Motivation: Evaluating Current Behavior
	Measuring Huge Page Benefits 
	Soft Page Fault Latency Breakdown 

	Cost-Benefit Memory Management
	The Estimator
	Cost and Benefit Models
	Preloaded Profiles
	System Management
	Discussion

	Implementation 
	Huge Page Management 
	Asynchronous Prezeroing 
	Eager paging 

	Evaluation 
	Methodology 
	System Behavioral Consistency
	End-to-End Performance 
	Efficiency
	Generality 
	CBMM Models

	Related Work
	Conclusion
	Artifact Appendix 

