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abstract

Memory management (MM) is a core responsibility of operating system kernels. It has a crucial impact
on system performance, efficiency, and cost, especially in large-scale deployments. Meanwhile, computing
hardware and software has evolved significantly since the first operating systems were designed. In particular,
our work is inspired by two high-level trends: increasing memory sizes and the rise of warehouse-scale
computers. The core claim of our work is that system designers must use systematic analysis of MM
operations and measurement-based design that prioritizes reasoning about system behavior as a first-class
concern. This includes building new tools and methodologies for analyzing system behavior and eliminating
heuristic-based policies and ad hoc algorithms from MM.

Our work identifies three key problems for modern MM, and takes steps to address them. First, we
identify the Capacity Scaling Problem, wherein system software fails to run as well on systems with terabytes
of DRAM as it does on current systems. We design, implement, and validate 0sim, a simulator for detecting
Capacity Scaling issues in system software using existing commodity hardware. We demonstrate 0sim’s
utility for debugging and quantifying problems and for prototyping solutions.

Second, we identify sources of kernel MM design and behavioral complexity that hinder performance
debugging and improvement, especially at scale. We design, implement, and evaluate Cost-Benefit Memory
Management (CBMM), a novel memory management approach based on the idea that all MM operations
have a cost and a benefit to userspace and that the benefit should outweigh the cost.

Finally, we quantify the importance of physical memory fragmentation as the need for huge pages and
other contiguous memory allocations grows. We conduct a study of physical memory fragmentation in live
systems by instrumenting 248 infrastructure and compute cluster machines at UW-Madison’s Computer
Sciences Department and Center for High-Throughput Computing. We identify memory reclamation and file
cache usage as key sources of memory fragmentation on Linux, make several observations about common
MM behavior across observed systems, and draw conclusions about several potential improvements to MM.
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1 introduction

Memory management (MM) is a core responsibility of operating system kernels. It has a crucial impact

on system performance, efficiency, and cost, especially in large-scale deployments. Meanwhile, computing

hardware and software has evolved significantly since the first modern operating systems were designed. In

particular, our work is inspired by two high-level trends: increasing memory sizes and the rise of warehouse-

scale computers.

Computer memory sizes have grown continuously since the dawn of computing. Past designs that rigidly

limited the maximum amount of memory faced huge difficulties as memory capacity increased exponentially

(e.g., IBM’s System/360 had an architectural limit of 28MB [15]). This growth trend will continue as

technological advances greatly expand the density and decrease the cost of memory. More recently, Intel’s

Optane memory supported up to 6TB on a two-socket machine [78]. Consequently, multi-terabyte systems

may become common, paving the way for future systems with tens to hundreds of terabytes of memory.

Increased memory capacities allow more workloads to run but bring challenges too: huge page management

becomes more critical due to increased reliance on TLB performance, but memory fragmentation and huge

page management overheads also increase with memory capacity [96].

Even as individual machines are getting larger, warehouse-scale computing has made large deployments

of machines ubiquitous. In the early 2000s, service providers realized that building bigger, faster, more

fault-tolerant servers is an impractical way to handle more traffic. They turned instead to large clusters of

bulk-ordered hardware and general-purpose operating systems [20]. At scale, datacenters prioritize tail

latency as a key service-level metric, in addition to median latency and throughput [53]. Datacenter behavior

must be consistent, i.e., low variance, without compromising performance metrics to satisfy service-level

objectives and efficiency goals.

In the midst of these hardware and software changes, physical memory fragmentation has emerged

as an important but unquantified factor affecting performance. Modern systems require large contiguous

physical memory allocations for kernel data structures, caches, suballocators (e.g., slab allocators), and I/O

buffers. Moreover, larger memory capacities are placing increasing importance on reducing TLB misses and

improving efficiency of memory management mechanisms [96]. A primary means of doing so is the use of

huge pages, which require hundreds or thousands of contiguous physical base pages. Fragmentation causes

such memory allocations to fail unnecessarily, which can cause system-wide inefficiencies. Surprisingly, little

prior work characterizes or quantifies fragmentation, even though many papers refer to its impact and many

designs seek to mitigate or avoid it.

In light of these challenges, the core claim of our work is that system designers must use systematic analysis
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of MM operations and measurement-based design that prioritizes reasoning about system behavior as a first-class

concern. This includes building new tools and methodologies for analyzing system behavior and eliminating

heuristic-based policies and ad hoc algorithms from MM.

1.1 Contributions

Our work is organized along three main thrusts. Each thrust identifies a key problem of current or future

system design and seeks to illuminate or mitigate it.

Thrust 1: The Capacity Scaling Problem & 0sim. There is a pressing need to prepare system software for

increased memory capacity. While tolerable today, the linear compute and space overheads of many common

operating system algorithms may be unacceptable with 10-100x more memory. Other system software, such

as language runtimes and garbage collectors also need redesigns to run efficiently on multi-terabyte memory

systems [112]. In Linux, many scalability issues are tolerable for small memories but painful at larger scale,

as we will show. For example, many current kernel MM algorithms scan through lists of pages, including

reclamation, compaction, migration, and huge page promotion, but on systems with hundreds of millions of

pages, the cost of scanning becomes onerous.

We expect system designers to encounter new scalability problems as memory sizes grow to terabyte

scales and beyond. But, exploring system behavior with huge memories, reproducing scalability issues, and

prototyping solutions requires a developer to own or rent a system at great cost or inconvenience. Cloud

offerings for 4TB instances cost over $25 per hour [13, 66, 101]1. Cloud offerings for 11TB or 24TB instances

cost over $100 or $200 per hour, respectively, as of this writing; a discounted three-year contract can reduce

the cost to $240,000 [13, 101]2.

There is a need for new techniques to understand and prototype system software for huge-memory

systems. To this end, we characterize the Capacity Scaling Problem, wherein system software fails to run

as well on huge-memory systems as it does on current systems. We discuss several aspects of the Capacity

Scaling Problem, including computation inefficiencies, bloated memory usage, impliciations for MM policies,

and barriers to development and testing of new systems. In response, we design, implement, and validate

the 0sim simulator for detecting Capacity Scaling issues in system software. We demonstrate via case studies

that 0sim can be used for debugging and quantifying existing problems and prototyping solutions. For
1This was true as of mid-2019, when our original 0sim study was done, and it continues to be true in early 2023, as of this writing.
2At the time of the 0sim study in mid-2019, larger (i.e., > 4TB) instances required a three-year contract at an expense of over

$780,000 [14, 101]. As of early 2023, some cloud providers allow customers to rent some such machines on demand at premium (e.g.,
> $100/hr), with the possible option of a discounted three-year contract [12, 13, 101]. Other cloud providers still require explicit
contracts for 24TB instances [101].
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example, we demonstrate how we used 0sim to debug an ironic out-of-memory condition in memcached on

large-memory systems, and how we used 0sim to observe large-scale memory fragmentation.

Thrust 2: Kernel MM complexity & Cost-Benefit MM. Current MM designs often fall short of modern

computing needs by exhibiting inconsistent, opaque behavior that is difficult to reproduce, decipher, or

fix. For example, as we will discuss, current kernel automatic huge page promotion systems often lead to

unpredictable performance degradations. These issues come from three key limitations.

1. Kernel MM must predict workload behavior in an information-poor environment. Current MM designs

rely on online measurements, particularly page table access/dirty bits and the frequency and location

of page faults. Unfortunately, this information is expensive to collect and low bandwidth. For example,

access bits can cost up to 11% of CPU cycles to collect [35], but other work finds them insufficient to

predict TLB miss overheads accurately [113].

2. Current MM designs often ignore the cost of various MM operations, leading to inappropriate policy

decisions. For example, Linux allocates a huge page when a memory region is first touched; however,

we find that allocating and zeroing a huge page costs a million cycles (∼ 500µsec on a 2GHz processor)

in the best case. Thus, promoting a page that averts less than a million cycles worth of TLB misses and

page faults actually regresses performance, but the kernel does not account for this cost.

3. Current MM designs are implemented as disjointly acting policies distributed throughout the kernel

that are hard to debug. This opaque system implementation and its consequent opaque behavior is a

primary obstacle to improving kernel MM performance, consistency, and debuggability, and it often

leads to suboptimal fixes such as disabling huge pages altogether [5, 49, 102, 111, 143].

In our work, we demonstrate an approach to MM based on thorough measurement of system behavior

to inform system design and policies. We perform a detailed study of the sources of cost and benefit in

soft page fault handling and huge page management. We find that in many cases, kernel heuristics opt

to do expensive operations, such as zeroing huge pages, in cases where they are not worth their cost. To

mitigate this problem we propose and prototype Cost-Benefit Memory Management (CBMM), a MM system

based on our measurements and designed to prioritize reasoning about system behavior. CBMM is based on

the idea that all MM operations have a cost and a benefit to userspace applications, and the benefit should

outweigh the cost. We evaluate CBMM via micro- and macro-benchmarks to demonstrate the potential of

our approach.
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Thrust 3: Physical memory fragmentation. Fragmentation causes memory allocations to fail unnecessarily.

External fragmentation occurs when free memory is too discontiguous to satisfy requests: when adjacent

differently sized allocations have differing lifetimes, free memory will interleave with allocated memory. (It

is distinct from internal memory fragmentation, where an allocated block of memory is underutilized). Both

userspace and kernel memory managers suffer fragmentation, but we focus on kernel memory management

for physical memory.

In current systems, physical memory fragmentation can affect transparent huge page procedures strongly

by forcing them to defragment memory [115]. On Linux, we found that such defragmentation can degrade

page fault latency by 50% to 500%, as we will show in Chapter 4. Moreover, as we will show in Chapter 5,

other important uses for contiguous memory are hindered by fragmentation, such kernel data structures and

I/O buffers.

Surprisingly little prior work exists to characterize or quantify physical memory fragmentation, even

though many papers refer to its impact and many designs seek to mitigate or avoid it. For example, it is

unclear what contiguous memory allocations are actually used for, the degree to which workloads fragment

system memory, what types of memory allocations cause fragmentation, how fragmentation changes over

time, etc.

For this reason, we conduct a study of physical memory fragmentation on modern systems. We instrument

248 live systems in the CS department at UW-Madison, including departmental infrastructure and a high-

performance computing cluster. We analyze the amount, usage, and contiguity of free and allocated physical

memory in the system over 1 week. Our findings show that Linux uses contiguous memory mostly for huge

pages (512 contiguous pages), buffers, and kernel slabs for data structures (2-8 contiguous pages). Moreover,

we identify several common memory usage patterns and find that the file cache and reclamation algorithm

are key sources of fragmentation.

1.2 Organization of this Dissertation

Chapter 2 discusses related work and background information about the current state of kernel MM. Chapters

3, 4, and 5 discuss the three thrusts described in the previous section. Finally, we share observations,

experiences, and conclusions in Chapters 6 and 7.
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2 background

Memory Management (MM) is a broad area of systems programming that concerns the multiplexing

and mapping of physical and virtual memory. Significant prior work exists to create userspace allocators,

language runtimes, static analyses, and libraries to make userspace memory management faster, more

efficient, and more cost-effective; however, we limit our scope to OS kernel MM, rather than userspace. In

current mainstream OSes, the kernel MM is tasked with allocating/reclaiming and mapping/unmapping

physical memory into the virtual address space of different processes. In this chapter, we give an overview of

the state of kernel MM in current mainstream systems software, focusing on Linux (because it is open source

and widely used) and on server-class machines (because our work focuses on the datacenter setting), along

with the challenges that motivate our work.

2.1 Virtual Memory

Excluding embedded systems, all wide-spread modern architectures (e.g., x86/x86_64 and ARM) today use

virtual memory and paging: the kernel and processor collaborate to create an indirection layer between the

memory addresses programs use and those used by memory hardware. The indirection layer is managed

via a collection of tables (called page tables) that translate virtual addresses (those used by programs) into

physical addresses (the actual hardware location). The granularity of this translation is generally several

kilobytes at a time (e.g., 4KB on x86/x86_64) and is called a page.

Virtual memory can implement security isolation, memory overcommitment, simpler programming

models, communication mechanisms, and more. Modern OSes use virtual memory in several ways:

Anonymous memory is memory mapped into the address space of a process but not backed by data in a

file system. Usually, most anonymous memory is used for a process’s stack and heap, but it can also be used

for static/global variables, memory-mapped I/O, or interprocess communication buffers/shared memory.

Linux keeps track of the working set of a process using a hybrid LRU/clock-like algorithm, as discussed

later in this Section. Under memory pressure, anonymous pages may be selected to be written to disk (swap

space) and then freed for other usage.

File/buffer cache memory is memory used for buffering/caching contents backed by a file system [123].

As with anonymous memory, Linux reclaims file cache memory in LRU/clock-like order. A page can be

reclaimed quickly if it is “clean", i.e., the memory contents match the disk contents; otherwise, the page is

“dirty" and needs to be flushed to disk before being freed.
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Kernel memory is memory used by the kernel itself. The kernel uses memory for its own stack and data

structures, many of which are long-lived. In Linux, kernel pages are always pinned in memory – they cannot

be moved or reclaimed until the kernel explicitly frees them. Some kernels, such as Windows, allow some

kernel pages to be reclaimed or moved. Kernel pages are usually inaccessible from userspace.

Driver/Module memory is memory requested by a driver or kernel module for some purpose, often for a

buffer or queue. In Linux, such memory is opaque to the kernel and cannot be moved or reclaimed unless

explicitly allowed by the driver via a registered callback function. Like kernel pages, driver/module memory

is usually inaccessible from userspace.

2.2 What does Memory Management do?

It is the kernel MM’s job to track and multiplex many virtual address spaces onto limited physical address

space. The policies and mechanisms used to do so greatly affect system behavior and performance. In our

work, we argue that many of these policies and mechanisms need to be redesigned in light of the modern

datacenter environment.

Memory Allocation and Reclamation. Virtual memory regions are tracked and allocated per-process,

since each process has a separate address space (in current mainstream OSes, at least). Processes request

virtual memory allocations through a system call such as mmap. Allocating a virtual memory region usually

does not allocate any physical memory; rather, the region is marked as accessible. Upon touching the virtual

memory region, the process will incur a page fault, and physical memory will then be allocated. This scheme

for lazily allocating memory is called demand paging, and it reduces memory bloat from requested-but-unused

memory at the cost of extra page faults. In Linux, prior to version 6.1, allocated virtual memory regions

are tracked via a red-black tree of vm_area_struct structs. Going forward, they will be tracked with maple

trees [126], which simplify some locking and programming problems.

In contrast, phyiscal memory is limited by the hardware physically installed in the system. In Linux, each

page of physical memory is tracked via a struct page – other kernels have similar data structures. struct

page comprises a number of bit flags, locks, and pointers to other data structures, whose purpose changes

with context; for example, the struct marks the position of pages in LRU lists or whether a page is currently

being used for file I/O. Moreover, on NUMA machines, Linux keeps separate lists of struct page for each

NUMA node.

Generally, there is single global kernel physical memory allocator that feeds all other memory allocation

mechanisms. Because of the frequency of physical memory allocations from both userspace and the kernel
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itself, the allocator needs to be fast. On the other hand, to increase memory usage efficiency, the allocator

needs to keep minimal metadata and should minimize internal memory fragmentation. Linux and FreeBSD

both use a buddy allocator. Buddy allocators satisfy all requests with power-of-two-sized-and-aligned blocks

(e.g., a thread requesting 3 pages is allocated 4 pages; a thread requesting 257 pages is allocated 512 pages.

Because of the size and alignment requirements, the allocator can always tell the boundaries of an allocation

when it is freed.). The allocator maintains free lists for all power-of-two-sized blocks up to some maximum

size. If a block of size N is needed but none is available, a block of size (and alignment) 2N is acquired and

split into two “buddy” blocks – one is used to satisfy the allocation, and one is placed on the N-sized free

list. When a page is freed, it is trivial to find the page’s “buddy” because of the alignment requirements;

if the buddy is free, the two blocks can be merged back into a 2N-sized-and-aligned block and placed on

the 2N-sized free list. Generally, Linux allocates the head element on the appropriate free list. However,

some minimal effort is made to allocate pages that are likely still hot in the caches, such as placing cold or

contended pages on the tail of the list.

Under memory pressure (i.e., when free memory is scarce), the kernel must either fail new allocations

or take memory away from current users. The process of taking memory from current users is reclamation.

On Linux and FreeBSD, the selection of which pages to take away is done via a LRU-like or clock-like [36]

algorithm (or some hybrid thereof). While the exact mechanism is under evolution, the general principle is

to have multiple levels of LRU-ish lists; pages that are cold/idle/unused eventually end up in the lowest level

and are eventually selected to be reclaimed – possibly after being flushed to disk. The coldness/idleness of a

page is determined by page accessed/dirty bits in the page tables; the bits are set by the processor when the

page is accessed/written to, and the kernel can scan page tables for these bits to check if the page has been

used. In Linux, each NUMA node and cgroup (used to implement containers) has a set of LRU lists – a hot

and cold list for anonymous memory, and another pair for file cache memory. The separation of such lists

allows reclamation to be targetted at a particular NUMA node or container.

Mapping and Unmapping. Before physical memory can be used by a process (or the kernel), it must be

mapped into a virtual address space. There are a large array of choices of how to map a page. Alongside the

address translation, page table entries also contain a variety of bits that control the type of mapping. Some

bits indicating whether a page is read-only, writable, executable, userspace-accessible, mapped in all address

spaces, etc. Other bits indicate that a page is a huge page, uncachable, etc.

By using different page table configurations and sets of bits, the kernel can achieve different effects.

Copy-on-write is achieved by marking a given page as read-only; attempts to write the page will cause a page

fault, and the kernel can then copy the page contents and map the new and old copies as writable. Shared
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memory can be implemented by mapping the same physical page from multiple page table entries (e.g., in

different address spaces).

Memory is unmapped by clearing the “present” bit from the relevant page table entries. Modern proces-

sors cache translations in a hardware cache called the Translation Lookaside Buffer (TLB), so the kernel must

flush the relevant entries of the TLB too (often this requires interrupting other processor cores to inform

them that they should flush their TLBs).

Fragmentation Control. Memory fragmentation is a system state in which memory allocations fail despite

having enough unused memory. External memory fragmentation happens when free memory is too discontigu-

ous to satisfy allocations, even though the total amount of free memory is larger than the requested amount.

Internal memory fragmentation is underutilization of an allocated block of memory.

Generally, because kernels control their own allocations and data structure sizes, internal fragmentation

is less of a problem (e.g., Linux uses slab allocators that try to pack similar data structures into allocated

memory). Likewise, because virtual address spaces are not (practically) limited and each address space

is quite large, virtual memory fragmentation is less of a concern (at the kernel level; userspace allocators

are quite concerned about it). Thus, throughout the rest of this dissertation, when we refer to memory

fragmentation, we mean external fragmentation of physical memory.

Fragmentation is significant because it hinders the allocation of large contiguous chunks of physical

memory. As we will see in Chapter 5, such contiguous memory is needed for kernel data structures, buffers,

and huge pages. On a fragmented system, these allocations may fail or be very slow. Thus, Linux and

FreeBSD contain fragmentation control mechanisms.

One kind of fragmentation control mechanism operates at allocation time by trying to preserve contiguity.

Buddy allocators do this naturally: merging free buddy blocks keeps large contiguous regions separate from

less contiguous regions; having separate free lists for different sized blocks allows smaller allocations to

be satisfied from less contiguous regions, leaving larger regions intact longer [118]. FreeBSD also features

a reservation system that defers the allocation of potential huge pages as long as possible [105]. These

mechanisms are low-overhead and passively reduce fragmentation, but can have limited effectiveness.

In contrast, Linux also features a “compaction” (defragmentation) daemon that actively migrates movable

memory contents away from otherwise contiguous memory. This process can be expensive and can harm

system performance by hogging CPU time, disrupting caches, and locking memory in use by processes while

it is migrated (more later) [87, 115].
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2.3 Challenges in Modern Memory Management

Our work adds to significant prior work from both industry and academia that adapts MM to modern needs.

In this section, we outline several challenges that current MM designs are struggling to address.

Huge Pages

The increasing disparity between processor speeds and memory speeds, necessitates address translation

caches: Translation Lookaside Buffers (TLBs). TLBs are on the critical path of instruction execution, so

they must be fast and highly-associative structures, making them expensive in terms of chip area and

energy. Current generations of hardware are typically limited to about 2000 entries, which is enough to cache

translations for 2000×4KB = 8MB of memory [142,144]. 8MB is< 0.1% of memory on an inexpensive laptop,

let alone a modern server; 8MB is smaller than the working set of many server applications. Applications with

large working sets or random memory accesses suffer from high TLB miss rates and consequent processor

stalls that can consume over 50% of execution time in some cases [21, 83]. As a solution, hardware vendors

have implemented larger page sizes (often called ‘huge pages’ or ‘large pages’ or ‘superpages’; 2MB and 1GB

on x86_64) so that the same number of TLB entries covers a larger portion of memory.

However, systems and applications struggle to use huge pages well. Windows, Linux, and BSD all have

system calls for applications to explicitly request huge pages [11, 87, 144], but (1) they require changing

application/library source code to request and benefit from huge pages and (2) application developers often

do not know how/whether their application would benefit from huge pages [87]. Thus, Linux and BSD

attempt to transparently and automatically “promote” memory regions to be backed by huge pages without

applications requesting it, obviating application changes or developer expertise.

Unfortunately, current transparent huge page (THP) implementations have significant problems. BSD’s

THP feature (based on Navarro et al’s work [105]) is too conservative. Its “reservation”-based system waits

for applications to touch a majority of the base pages in a potential huge page region before it promotes the

region to a huge page. This avoids bloating memory usage if an application does not need the whole huge

page, but it also allows the application to experience many TLB misses before huge page promotion, leaving

performance on the table [87]. In contrast, Linux’s THP is overly aggressive: it promotes memory regions

immediately the first time they are touched. This allows applications to get the maximum benefit from

huge pages, but it can bloat memory usage. Worse, the increased demand for properly aligned contiguous

memory often triggers active memory defragmentation whose overhead can degrade application performance

unpredictably, leading many applications to recommend turning the feature off [5, 49, 87, 102, 111, 143].

Recent work attempts to address these challenges. Ingens, HawkEye, and Translation Ranger improve
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Linux with heuristics for selecting which pages to promote, how and when to compact memory, and how to

balance huge page usage fairly between processes [87, 113, 142]. Quicksilver attempts the same but based on

BSD’s implementation, rather than Linux [144]. Panwar et al find that kernel pinned pages can significantly

degrade the efficacy of memory compaction and propose changes to page placement and compaction [115].

None of these approaches have been adopted into a mainline kernel in Linux or BSD yet, and more research

is needed. In particular, as we will show in Chapter 4, current designs suffer from behavioral complexity that

makes implementation and performance debugging difficult.

Fragmentation

Memory fragmentation is an old problem [67, 68], but it has recently come to the forefront again in recent

work because it hinders the use of huge pages [115,144]. For example, we found that fragmentation degrades

application performance on Linux by 50% to 500% due to failed or delayed attempts to create huge pages.

Prior work extensively studies usermode allocators, including internal and external fragmentation control,

use of huge pages, and more [60, 75, 80, 120, 124]. However, surprisingly little prior work characterizes

physical memory fragmentation from the perspective of kernel MM, despite the fact that many papers

acknowledge its impact. Panwar et al discuss the importance of kernel pinned page placement [115], and

Zhu et al suggest that file cache pages play an important role in fragmentation [144], but no prior work

quantifies or characterizes in detail what fragmentation looks like in the wild. In Chapter 5, we fill this gap

in knowledge.

Scaling with Memory Capacity

Extensive prior work has examined different kinds of scalability problems in system software. For example,

RadixVM tries to overcome performance issues in highly concurrent workloads due to serialization of

memory management operations on kernel data structures [38]. Other studies have suggested that struct

page, struct vm_area_struct, and page tables tend to comprise a large portion of memory management

overhead [59]. Java 11 features a new garbage collector that allows it to scale to terabyte-scale heaps while

retaining low latency [112]. However, overall, there has been fairly little work aimed at improving the

scalability of systems with respect to the memory capacity.

While tolerable today, the linear compute and space overheads of many common operating system

algorithms may be unacceptable with 10-100x more memory. Other system software, such as language

runtimes and garbage collectors also need redesigns to run efficiently on multi-terabyte memory systems [112].

In Linux, many scalability issues are tolerable for small memories but painful at larger scale. For example:
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• With 4TB of memory, Linux takes more than 30s at boot time to initialize page metadata, which reduces

availability when restarts are needed.

• Kernel metadata grows to multiple gigabytes on large systems. On heterogeneous systems, metadata

may overwhelm smaller fast memories [41].

• Memory management algorithms with linear complexity, such as memory reclamation and defragmen-

tation, can cause significant performance overhead when memory scales up 10x in size, as we show

later.

• Huge pages are critical to TLB performance on huge systems, but memory defragmentation to form

huge pages has previously been found to cause large latency spikes for some applications [5,49,102,111].

• Memory management policies built for smaller memories, such as allowing a fixed percentage of cached

file contents to be dirty, perform poorly with huge memories when that small percentage comprises

hundreds of gigabytes [103].

We expect system designers to encounter new scalability problems as memory sizes grow to terabyte

scales and beyond. But, exploring system behavior with huge memories, reproducing scalability issues, and

prototyping solutions requires a developer to own or rent a system at great cost or inconvenience. Thus,

there is a need for new techniques to understand and prototype system software for huge-memory systems.

In Chapter 3, we propose 0sim, a simulator designed to help understand and prototype solutions for these

problems.

Changes in Memory Architectures

Technologic and economic trends have combined to incentivize a wide variety of new memory architectures

and MM designs. Today, servers commonly have multiple sockets, each with a memory controller and

attached DRAM, leading to Non-Uniform Memory Access (NUMA) architectures, in which a core must

endure significantly longer memory access latency for memory attached to a remote socket [90]. New

memory technologies such as persistent memory or Compute eXpress Link (CXL) have made memory

tiering and disaggregation more cost effective and practical [92,99]. While our work does not directly address

NUMA or heterogeous memory technologies, our MM techniques, tools, and findings can help prepare MM

for a world where these technologies are ubiquitous. In Chapter 3, we identify scalability challenges for

large-memory systems and propose tools to study them. And in Chapter 4, we discuss how to make MM

behavior more predictable and debuggable, a prerequisite for the more complex MM policies needed to

support new memory architectures.



12

Policy Goal Pathology
Huge Page Allocation Reduce TLB misses and page faults Bloat memory usage if not all memory is used; increase

page fault latency if compaction is required
Copy-on-Write or Demand
Paging

Reduce unnecessary memory bloat and
initialization time

Increase page fault latency post-initialization if the
page is written/accessed

Eager Paging [83] Move page fault latency to allocation
time, saving time later

Bloat memory usage if not all memory is used

Background Compaction Reduce memory fragmentation and huge
page fault latency

Increase CPU overhead

Background Zeroing Reduce page fault latency Increase CPU overhead
Idle Page Reclamation [88,
138]

Improve memory utilization Increase overhead to fault reclaimed pages back in;
increase CPU overhead to choose pages to reclaim

Table 2.1: Different MM policies and their goals and pathologies

Meanwhile, the end of Denard Scaling, exponentially increasing amounts of data, and stagnating DRAM

costs incentivize service providers to improve Total Cost of Ownership (TCO) by migrating data between

heterogenous memory tiers and types. Facebook and Google both implement “far-memory” migration

systems, in which cold memory contents are moved to slower media to make room for hot contents and

improve hardware utilization [88, 140]. Facebook servers use locally-derived Pressure Stall Information to

guide offloading to compressed memory or an SSD [140]. Google makes use of centralized planning via

aggregated page table access bits to guide memory compression (via Linux’s zswap system) to all machines

in a cluster [88]. At the same time, efforts in the Linux community seek to improve the design of memory

reclamation (e.g., by having multiple “generations” of LRU lists beyond the two existing ones) due to the

increasing prevalence of super-fast storage devices which can make swapping a viable means of increasing

machine capacity [47]. As with new hardware memory architectures, our work provides tools and techniques

to support these new MM paradigms and use cases, for example by making MM policies more predictable

and, thus, more suitable for large-scale applications (Chapter 4).

MM Behavioral Complexity and Visibility

A recurring theme in our work is a pressing need for more and better visibility into system behavior, both at

runtime for guiding MM and offline for system development and debugging. Our work proposes new tools

and new methodologies for understanding system behavior (Chapters 3 and 4), new systems that are easier

to understand (Chapter 4), and new data about the behavior of existing systems (Chapter 5).

MM mechanisms and policies comprise a complex set of tradeoffs that, when poorly navigated, lead to

poor performance or unexpected behavior. Meanwhile, datacenters prioritize tail latency as a key service-level

metric, in addition to median latency and throughput [53]. Datacenter behavior must be consistent, i.e., low

variance, without compromising performance metrics to satisfy service-level objectives and efficiency goals.

Performance consistency at scale is a well-known problem [53] afflicting, among other systems, cluster
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computations [54] and distributed caching [26]. Redundancy is a common workaround [54]. MittOS uses

deadline-aware kernel APIs to improve tail latency [71]. Kwon et al. observe that current huge page support

is “a hodge-podge of best-effort algorithms and spot fixes” [87]. As previously discussed, they and others

identify real concerns and improve performance but often at the expense of increasing kernel heuristic

complexity [32, 87, 113, 115, 142].

Unfortunately, current MM designs still fall short of modern computing needs by exhibiting inconsistent,

opaque behavior that is difficult to reproduce, decipher, or fix. For example, we found that for some

workloads on Linux, a soft page fault lasting 25ms occurs every 100ms. This drastic tail latency is due to

memory compaction or reclamation when attempting to allocate a huge page – a misnavigated tradeoff.

Many applications would violate response latency objectives if one request per 100ms takes 25ms due to

a page fault. As a result, Redis, MongoDB, and others advise users to disable Linux’s Transparent Huge

Page (THP) feature [5, 49, 102, 111, 143]. Table 2.1 lists other examples of MM policies and their potential

pathologies. In Chapter 4, we identify three key limitations that cause these issues and propose solutions.

Visibility into system behavior is also key to understanding the Capacity Scaling Problem; a key challenge

of our work is the unavailability of hardware. Simulation is often used when hardware is unavailable (e.g.,

processor simulators [31]). Unlike other hardware advances, such as increasing processor cores or device

speed, simulating memory capacity on existing hardware is challenging due to the amount of state that must

be maintained. Alameldeen et al. address this by painstakingly scaling down and tuning the benchmarks

and systems they test [10]. While accurate, this methodology is error prone, tedious, and difficult to validate.

In Quartz and Simics, simulation size is limited by the size of the host machine [59, 137]. Researchers have

simulated fast networks by slowing down the simulated machine’s clock [70]. David [8] and Exalt [139]

simulate large storage systems by storing only metadata and generating contents at read time. This technique

is difficult for memory because important metadata is not separated from disposable data in most programs.

Several systems virtualize a cluster of machines to produce a single large virtual machine [23, 37, 127, 133];

Firesim uses cloud-based accelerators to scale simulations [84]. In Chapter 3, we describe 0sim, a simulator

for studying the Capacity Scaling Problem, which priortizes capacity and speed at a modest cost in accuracy.

2.4 Target Setting and Scope

Our work targets kernel MM for first-party datacenter workloads – workloads that service providers run on

their own infrastructure – a critical piece of modern cloud computing.

Modern large-scale applications are commonly deployed on warehouse-scale computers (WSCs). In a

WSC, large numbers of commodity servers are used with distributed algorithms to give the illusion of a
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single high-capacity, high-availability server. By nature, WSCs operate at large scales, often with tens or

hundreds of thousands of servers and dozens or hundreds of interdependent services/applications [20].

Several interesting properties emerge from this environment:

• Tail-latency is key service-level performance metric. Incoming user requests frequently have high

fanout to backend-services, so the latency of the overall response is tied to the latency of the slowest

dependee service [53].

• First-party hardware and software are highly redundant. Generally, hardware is procured and deployed

in bulk. Meanwhile, identical redundant copies of services are on many machines to increase fault-

tolerance and capacity [20]. As a result, there is a level of homogeneity among hardware and software

in a cluster – very few machines are unique and many are identical. Moreover, many workloads run

continuously for long periods of time [20, 28, 65, 79, 100, 129, 132, 134].

• First-party hardware and software are highly controlled. Usually, only the WSC operator has physical

access to deploy hardware. Meanwhile, software teams often deploy their first-party services along a

well known release schedule, leading to relatively incremental changes.

• Disparate workloads are packed onto the same machines. In order to increase system utilization (to

improve efficiency), service providers pack tasks onto machines, leading to highly concurrent and

highly diverse workloads [20, 28, 65, 79, 100, 129, 132, 134].
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3 0sim: preparing system software for a world with

terabyte-scale memories

A whole new world (Don’t you dare close your eyes)
A hundred thousand things to see (Hold your breath, it gets better)
I’m like a shooting star, I’ve come so far
I can’t go back to where I used to be (A whole new world)

With new horizons to pursue
I’ll chase them anywhere
There’s time to spare
Let me share this whole new world with you

— "A Whole New World", Aladdin, Disney, 1992
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Computer memory sizes have grown continuously since the dawn of computing. Past designs that

rigidly limited the maximum amount of memory faced huge difficulties as memory capacity increased

exponentially (e.g., IBM’s System/360 had an architectural limit of 28MB [15]). This growth trend will

continue as technological advances greatly expand the density and decrease the cost of memory. Most

recently, Intel’s 3D Xpoint memory supports up to 6TB on a two-socket machine [78]. Consequently, multi-

terabyte systems may become common, paving the way for future systems with tens to hundreds of terabytes

of memory.

There is a pressing need to study the scalability of system software and applications on huge-memory

systems (multiple TBs or more) to prepare for increased memory capacity.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1815656&HistoricalAwards=false
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To this end, we built and open-sourced 0sim (“zero·sim”), a virtualization-based platform for simulating

system software behavior on multi-terabyte machines. 0sim runs on a commodity host machine, the platform,

and provides a user with a virtual machine, the simulation target, which has a huge physical memory. 0sim is

fast enough to allow huge, long-running simulations and even direct interaction, enabling both performance

measurements and interactive debugging of scalability issues.

We employ several novel techniques to fit terabytes of target memory contents into gigabytes of platform

memory. First, we observe that many programs are data oblivious: they perform the same computation

independent of input values. Therefore, we can exercise the target with predetermined input; then, 0sim

can compress a 4KB page with predetermined content to 1 bit. Second, current processors may have small

physical address spaces to simplify the CPU design. We use software virtualization techniques to ensure that

simulated physical addresses are never seen by the platform CPU, but instead are translated by 0sim. Thus,

our system can simulate the maximum allowable address space for a given target architecture. Finally, we

enable efficient performance measurement within the simulation by exposing hardware timestamp counters

that report the passage of target time.

0sim simulates both functional and performance aspects of the target as if measured on a real multi-

terabyte machine. 0sim does not aim to be an architecture simulator or to be perfectly accurate, as the target

may differ from the platform in many ways including processor microarchitecture. Instead, 0sim simulates

system software well enough for the important use cases of reproducing scalability problems, prototyping

solutions, and exploring system behavior. 0sim sacrifices some accuracy for simulation speed, enabling huge,

long-running simulations and interactive debugging.

In this paper, we describe the architecture and implementation of 0sim. We validate 0sim’s accuracy

and simulation speed with these goals in mind. 0sim can simulate a target system 20-30x larger than the

platform with only 8x-100x slowdown compared to native execution for the workloads we tested, with more

compressible workloads running faster. For example, we simulate a 4TB memcached target on a 160GB

platform and 1TB memcached target on a 30GB platform with only 8x slowdown. By comparison, architecture

simulators incur 10,000x or worse slowdown [31].

We perform several case studies demonstrating the usefulness of 0sim: we reproduce and extend developer

performance results for a proposed kernel patch; we measure the worst-case impact of memory compaction on

tail latency for memcached as a 22x slowdown; we show that for a mix of workloads Linux can incur irreparable

memory fragmentation even with dozens of GBs of free memory; and that synchronous page reclamation can

be made much more efficient at the cost of very small additional delay. Furthermore, we used 0sim to

interactively debug a scalability bug in memcached that only occurs with more than 2TB of memory. 0sim is

available at https://github.com/multifacet/0sim-workspace.

https://github.com/multifacet/0sim-workspace
https://github.com/multifacet/0sim-workspace
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3.1 The Capacity Scaling Problem

0sim addresses a critical need to study how software scales with memory capacity, including making efficient

use of memory, addressing algorithmic bottlenecks, and designing policies with huge memory capacity in

mind. Moreover, it removes barriers for developers that limit software from being effectively tested and

deployed for huge-memory systems.

Computational Inefficiency. Any operation whose execution time increases linearly with the amount

of memory may become a bottleneck. For example, the Page Frame Reclamation Algorithm, huge page

compaction, page deduplication, memory allocation, and dirty/referenced bit sampling all operate over

per-page metadata. If the kernel attempts to transparently upgrade a range of pages to a huge page, running

huge page compaction may induce unpredictable latency spikes and long tail latencies in applications. This

has led many databases and storage systems to recommend turning off such kernel features despite potential

performance gains [5, 49, 102, 111].

Likewise, allocating, initializing, and destroying page tables can be expensive. This impacts the time

to create and destroy processes or service page faults. Linus Torvalds has suggested that the overhead of

allocating pages to pre-populate page tables makes the MAP_POPULATE flag for mmap less useful because its

latency is unacceptably high [136].

Another example is the Linux kernel’s struct page [42]. Huge-memory systems may have billions of

these structures storing metadata for each 4KB page of physical memory. In a 4TB system, initializing each of

them and freeing them to the kernel’s memory allocator at boot time takes 18 and 15 seconds, respectively,

on our test machines. This has implications for service availability, where the boot time of the kernel may be

on the critical path of a service restart.

Memory Usage. Any memory usage that is proportional to main memory size may consume too much

space in some circumstances. For example, a machine with a modest amount of DRAM and terabytes of

non-volatile memory may find all of its DRAM consumed by page tables and memory management metadata

for non-volatile memory [41].

As previously mentioned, for each 4KB page, the Linux kernel keeps a 200-byte struct page with meta-

data. Similarly, page tables for address translation can consume dozens of gigabytes of memory on huge

systems [59]. While this space may be a small fraction of total memory, it consumes a valuable system

resource, and as discussed above, imposes a time cost for management.
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Huge-Memory-Aware Policies. Effective memory management policies for small memories may perform

poorly at huge scales. For example, the Linux kernel used to flush dirty pages to storage once they exceeded

a percentage of memory, but on huge machines this led to long pauses as gigabytes of data were flushed

out [103]. Also, some applications that use huge memories to buffer streaming data have found the kernel

page cache to be a bottleneck [45]. In an era of huge and/or non-volatile memories, its not clear what role

page caching should play. As high-throughput, low-latency network and storage and huge memories become

more common, it is important to reevaluate kernel policies for buffering and flushing dirty data.

Likewise, policies for large contiguous allocations and fragmentation control need to be examined. Many

modern high-performance I/O devices, such as network cards and solid-state drives, use large physically

contiguous pinned memory buffers [50]. Researchers have proposed large contiguous allocations to mitigate

TLB miss overheads [21, 63]. In order to satisfy such memory allocations, the kernel must control fragmenta-

tion of physical memory, which has been a problem in Linux [43, 45]. A complementary issue is the impact

of internal fragmentation caused by eager paging [63] and transparent huge pages on multi-terabyte systems.

These problems are well-studied for smaller systems, but to our knowledge they have not been revisited on

huge-memory systems and workloads.

Capacity scalability problems are not unique to operating systems. Other system software, such as

language runtimes, also needs to be adapted for huge memory systems. For example, Oracle’s Java Virtual

Machine adopted a new garbage collector optimized for huge-memory systems [112].

Barriers to Development. Huge-memory systems are uncommon due to their expense. Hence, system

software is not well-tested for huge-memory systems that will become common soon. In our work, we often

found that software had bugs and arbitrary hard-coded limits that caused it to fail on huge-memory systems.

Usually, limitations were not well-documented, and failures were hard to debug due to user-unfriendly

failure modes such as unrelated kernel panics or hanging indefinitely. 0sim makes it easier for developers to

test software at scale.

3.2 Design of 0sim

0sim enables evaluation of system software on machines with huge physical memories. We emphasize that

0sim is not an architecture simulator; instead it has the following goals:

• Run on inexpensive commodity hardware.

• Require minimal changes to simulated software.
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Figure 3.1: Design of 0sim (left) and Simulation State (right).

• Preserve performance trends, not exact performance.

• Run fast enough to simulate long-running workloads.

Figure 3.1 (left) shows an overview of 0sim’s architecture. 0sim boots a virtual machine (VM), the

target, with physical memory that is orders-of-magnitude larger than available physical memory on the

host, or platform, while maintaining reasonable simulation speed. 0sim is implemented as a modified kernel

and hypervisor running on the platform but requires no target changes. Any unmodified target OS and a

wide variety of workloads can be simulated by executing them in the target (e.g., via SSH). The x86 rdtsc

instruction can be used in the target to read the hardware timestamp counter (TSC) for simulated time

measurement.

0sim trades off simulation speed and ease of use of the system against accuracy by seeking to preserve

trends rather than precisely predict performance. 0sim preserves trends in both temporal metrics (e.g.,

latency) and non-temporal metrics (e.g., memory usage) in the simulated environment. For example, 0sim

can be used to compare the performance of two targets to measure the impact of an optimization.

The central challenges facing 0sim are (1) emulating huge memories and (2) preserving temporal metrics.

We address (1) using data-oblivious workloads and memory compression. We address (2) by virtualizing

the TSC.

Techniques. 0sim’s design and implementation make use of a number of known software techniques to

efficiently overcommit memory. One of our contributions is to show how 0sim uses these techniques to build

a novel approach to simulation. Page compression and deduplication can increase memory utilization in

the presence of overcommitment; they are implemented in widely-used software, such as Linux, MacOS,

and VMware ESX Server [3, 4, 16, 138]. In Linux, work has been done to increase the achievable memory

compression ratio by using more efficient allocators [104] and optimizing for same-filled pages [55]. Remote-

memory proposals swap pages out over the network to a remote machine, allowing larger workloads to run
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locally [61, 69]. Work has also been done on hardware-based memory compression [7] and zero-aware

optimizations [58], but these proposals require specialized hardware, unlike 0sim.

Data-Obliviousness

Simulating huge-memory systems is fundamentally different from simulating faster hardware, such as

CPUs or network devices. As previously mentioned, simulating huge memories requires maintaining more

state than the platform is capable of holding. 0sim relies on the platform kernel’s swapping subsystem to

transparently overflow target state to a swap device. However, the platform may not have enough swap

space for the state we wish to simulate; even if it did, writing and reading all state from the storage would be

painfully slow and would make huge, long-running simulations impractical.

Our key observation is that many workloads follow the same control flow regardless of their input. We

call such workloads data-oblivious. For example, the memcached in-memory key-value store does not behave

differently based on the values in key-value pairs – only the keys. Another example is fixed computation, such

as matrix multiplication; we can provide matrix workloads with sparse or known matrices. One workload,

the NAS Conjugate Gradient Benchmark [19], naturally uses sparse matrices.

Figure 3.1 (right) depicts the management of target state in 0sim. Providing predetermined datasets to a

data-oblivious workload makes it highly amenable to memory compression without changing its behavior.

0sim recognizes pages with the predetermined content (e.g., a zeroed page) and compresses them down to 1

bit, storing them in a bitmap called zbit. Pages that do not match the predetermined content can instead be

compressed and stored in a highly efficient memory pool called ztier. This allows 0sim to run huge workloads

while maintaining simulation state on a much more modest platform machine. Moreover, because much of

the simulation state is kept in memory, zbit enables much faster simulation than if all state had to be written

to a swap device. For example, on our workstations writing 4KB to an SSD takes about 24µs, while LZO

compression [109] takes only 4µs.

0sim depends on data-obliviousness for simulation performance. Some interesting workloads are difficult

to make data-oblivious, such as graphs and workloads with feedback loops. Nonetheless, to study system

software, such as kernels, data-oblivious workloads usefully exercise the system in different ways including

different memory allocation and access patterns. Thus, we believe data-oblivious workloads are sufficient

to expose numerous problems, and that many of our findings generalize to other workloads. For example,

much of the kernel memory management subsystem can be exercised because it is agnostic to page contents.

We demonstrate this using several case studies in Section 3.6. Moreover, preparing systems for data-oblivious

workloads benefits non-data-oblivious workloads too.



21

Hardware Limitations

Existing commodity systems may not support the amounts of memory we wish to study. For example, one of

our experimental platforms has 39 physical address bits, only enough to address 512GB of memory, whereas

we want to simulate multi-terabyte systems. This hardware limitation prevents running huge-memory

workloads. 0sim overcomes the address-size limitation using shadow page tables [33]: the hypervisor, not

hardware, translates the target physical addresses to platform physical addresses of the appropriate width.

While not implemented, targets running virtual machines [24] or with 5-level paging, which was announced

by Intel but is not yet widely supported [76], can also be simulated with this technique. Similarly, 0sim

supports memory sizes larger than the available swap space by transparently using memory compression in

the hypervisor to take advantage of workload data-obliviousness.

Time Virtualization

Hardware simulators, such as gem5 [31], often simulate the passage of time using discrete events generated

by the simulator. However, this is extremely slow, leading to many orders-of-magnitude slowdown compared

to native execution. Such slowdowns make it impractical to study the behavior of huge-memory systems

over medium or long time scales. Instead, 0sim uses hardware timestamp counters (TSCs) on the platform

to measure the passage of time.

Each physical core has an independent hardware TSC that runs continuously. However, there are

numerous sources of overhead in the hypervisor, such as page faults, that should not be reflected in target

performance measurements. We create a virtual hardware TSC for the target that the hypervisor advances

only when the target is running. We accomplish this with existing hardware virtualization support to adjust

the target’s virtualized TSC. Thus, within the simulation, the hardware reports target time.

3.3 Implementation

This section describes challenging and novel parts of 0sim’s implementation. Note that 0sim only runs in

the platform kernel; 0sim can run any unmodified target kernel. We implement 0sim as a modification to

Linux kernel 4.4 and the KVM hypervisor. The kernel changes comprise about 4,100 new lines of code and

770 changed lines, and for KVM 400 new lines and 12 changed lines. By comparison, the gem5 simulator is

almost 500,000 lines of code [31].

Memory Compression

We modify Linux’s Zswap memory compression kernel module [4] to take advantage of data-obliviousness.
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First, we modify Zswap to achieve compression ratios of 215 for data in the common case: we represent

zero pages with a single bit in the zbit bitmap, indicating whether it is a zero page or not. In practice, page

tables and less-compressible pages (e.g., text sections or application metadata) limit compressibility, but

ideally 1TB can be compressed to 32MB. In zbit, each page gets a bit. When selected for swapping by the

platform, an all-zero target page will be identified by Zswap and compressed down to 1 bit in zbit. When

the swapping subsystem queries Zswap to retrieve a page, it checks zbit. If the page’s bit is set, we return a

zero page; otherwise, Zswap proceeds as normal. Internally, zbit uses a radix tree to store sparse bitmaps

efficiently.

Second, we observe that even non-zero pages can still be significantly compressed and densely stored.

Zswap uses special memory allocators call “zpools” to store compressed pages. The default zpool, zbud,

avoids computational overhead and implementation complexity at the expense of memory overhead. It limits

the effective compression ratio to 2:1 and stores 24 bytes of metadata per compressed page [4].

We implement our own zpool, ztier, that significantly improves over zbud. All memory used by ztier goes

toward storing compressed pages. It reduces metadata with negligible computational overhead by making

use of unused fields of struct page and maintaining free-lists in the unallocated space of pages in the pool.

Moreover, it supports multiple allocation sizes, leading to higher space efficiency. Thus, ztier achieves higher

effective compression ratios than Linux’s zbud at the expense of implementation complexity. For example,

using zbud for a 500GB memcached workload on unmodified Zswap requires 294GB of memory. With zbit,

zbud requires 15GB of RAM to store the compressed pages. In contrast, ztier consumes less than 6GB.

Overall, with our modifications a target page with predetermined content takes 66 bits of platform

memory: 64 bits for a page table entry, 1 bitmap bit, and 1 bit amortized for upper levels of the page tables.

These optimizations allow the platform to keep most target state in memory, but a swap device is still

needed since not all simulation state is compressible, and state may still need to overflow to the swap device.

The amount of needed swap space depends heavily on the workload. Linux assigns swap space before

attempting to insert into Zswap, even though it does not actually write to the swap space if Zswap is used.

Thus, we thin-provision the swap space using device mapper [2] to look much larger than it actually is. We

found that 1TB of swap space was sufficient for most of our workloads. Workloads with high churn or low

compressibility required 2-3TB of swap space.

Shadow Page Tables

As mentioned in Section 3.2, 0sim uses shadow page tables to decouple the size of the target address space

from the amount of physical address bits in the platform processor. The hypervisor reads the guest kernel’s
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Figure 3.2: Example of proposed DTS mechanism. Both vCPUs start at target time t̂0 at platform (real) time
t0. At time t1, vCPU-A pauses due to a trap or interrupt to the hypervisor, but vCPU-B continues to execute.
At time t3, vCPU-A continues, while vCPU-B is paused. At time t4, vCPU-B is ready to run again but is
ahead byD time units, so we delay it by δ time units to give vCPU-A time to reach target time t̂2. At platform
time t5, vCPU-A has caught up, so vCPU-B is allowed to run.

page tables and constructs the shadow page tables which are used by the hardware to translate guest virtual

addresses to host physical addresses. Hardware never sees guest physical addresses. Thus, the target physical

and virtual address spaces are as large as the platform virtual address space (48 bits, rather than 39 bits, on

our machine).

When the platform has enough physical address bits, 0sim can optionally use hardware-based nested

paging extensions [29]. Nested paging does not have the space overhead of shadow page tables, and is faster

because the hypervisor is not on the critical path of address translation. However, the added simulation speed

comes at the expense of some accuracy, as 0sim cannot account for the overhead of nested paging, which

happens transparently in the hardware. Thus, there is a tradeoff between simulation speed and accuracy; for

more accuracy, one can disable nested paging extensions.

Time Virtualization

0sim virtualizes the rdtsc x86 instruction, which returns a cycle-level hardware timestamp counter (TSC).

Each physical core has an independent TSC, and the Linux kernel synchronizes them at boot time. Most

Intel processors have the ability to virtualize the TSC so that the guest TSC is an offset from the platform TSC

of the processor it runs on [77]. 0sim adjusts this offset per-vCPU to hide time spent in the hypervisor rather

than executing the target.

Virtualization itself has associated overheads. For example, the hypervisor emulates privileged instruc-

tions and I/O operations from the target kernel. We modify KVM to hide most virtualization overhead from

the simulation. We record platform TSC values whenever a vCPU stops (i.e., when target time pauses).

Before the vCPU resumes, we read the platform TSC again and offset the target TSC by the elapsed time.
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Preserving timing in multi-core simulations presents an additional challenge because the hypervisor

executes simulated cores concurrently on different platform cores. Since vCPUs can be run or paused

independently by the hypervisor, their target TSCs may become unsynchronized. This can be problematic

if timing measurements may cross cores or be influenced by events on other cores (e.g., synchronization

events, responses from server threads). For some use cases, this can cause measurement inaccuracy.

In this section, we propose a solution to this problem, which we call Dynamic TSC Synchronization (DTS).

While we have implemented DTS in 0sim, we leave it off for all the experiments in this paper because it

increases simulation time and our current implementation can sometimes cause instability; more evaluation

is needed before it should be used. While we have observed drift in our experiments, we find that 0sim is

still accurate enough for many use case, as shown in sections 3.4 and 3.6.

DTS works as follows: To prevent excessive drift, 0sim delays vCPUs that run too far ahead to give

other cores a chance to catch up. Specifically, let t̂v be the target TSC of vCPU v. 0sim delays a vCPU c by

descheduling it from running for δ time units if it is at least D time units ahead of the most lagging target

TSC:

t̂min := min
v

t̂v . Most lagging target TSC

if t̂min < t̂c −D then delay c by δ

else run c

Periodic events such as timer interrupts prevent cores from running ahead indefinitely. Figure 3.2 walks

through an example. Generally, simulator speed will decrease asD decreases and as the number of simulated

cores increases. Users can adjust the parameters D and δ as needed.

DTS has many desirable properties. Most importantly, it bounds the amount of drift between target TSCs

to the threshold D. This means that it is possible to get more accurate measurements by measuring longer,

since error does not accumulate. Moreover, it does not cause target time to jump or go backwards.

LAPIC Timer Interrupts. Operating systems commonly use the arrival of timer interrupts as a form of

clock tick. For example, the Linux kernel scheduler and certain synchronization events (e.g., rcu_sched)

perceive the passage of time using jiffies, which are measured by the delivery of interrupts. We virtualize

the delivery of timer interrupts by delaying their delivery to the target kernel until the appropriate guest

time is reached on the vCPU receiving the interrupt. We empirically verified that the target perceives an

interrupt rate comparable to the platform.

Limitations. Because many events (e.g., I/O) are emulated by the hypervisor, there is no clear way to

properly know how much time they would take on native hardware. Rather than guess or use an arbitrary
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Table 3.1: Specifications of test platforms for 0sim.

Machine OS CPU DRAM Boot Disk Swap Disk

wk-old CentOS 7.6.1810
Linux kernel 4.4.0

Intel Core i7-4770K, 3.50GHz
Haswell 2013

39-bit physical address
48-bit virtual address

31GB DDR3 1600MHz
1TB HDD

SATA 6GBps
7200RPM

2TB HDD
SATA 6GBps

7200RPM

wk-new CentOS 7.6.1810
Linux kernel 4.4.0

Intel Core i7-6700K, 4.00GHz
Skylake 2015

39-bit physical address
48-bit virtual address

62GB DDR4 2133MHz

100GB SSD shared with swap
SATA 6GBps

555MBps seq read
500MBps seq write

10TB thin-provisioned
device backed by

365GB SSD partition

server CentOS 7.6.1810
Linux kernel 4.4.0

2x Intel E5-2660v3, 3.00 GHz
Haswell 2014

46-bit physical address
48-bit virtual address

160GB DDR4 2133MHz
1.2TB HDD
SAS 6GBps
10000RPM

10TB thin-provisioned
device backed by

480GB SSD

baseline (AWS) RHEL 8.0.0
Linux kernel 5.1

Intel E7-8880v3, 2.3 GHz
Haswell 2015

46-bit physical address
48-bit virtual address

3904GB
Frequency Unknown

30GB SSD
AWS EBS gp2 N/A

constant, we opt to make such events take no target time; effectively, the target time is paused while they are

handled by the hypervisor. As a result, 0sim is not suitable for measuring the latency of I/O events, though

it can measure the CPU latency of events in I/O-bound processes. This is similar to other simulators [31].

Our scheme does not account for microarchitectural and architectural behavior changes from virtualization.

Context switching to the platform may have microarchitectural effects that may affect target performance,

such as polluting the caches or the TLB of the platform processor. For example, after the hypervisor swaps in

a page from Zswap, the target may take a TLB miss, which is not accounted for.

In addition, 0sim does not perfectly preserve hardware events. In particular, Linux uses multiple sources

of time, including processor timestamps (e.g., rdtsc), other hardware clocks (e.g., to track time when the

processor sleeps), and the rate of interrupt delivery. 0sim only virtualizes processor timestamps and LAPIC

timer interrupts.

In practice, we find that 0sim preserves behavior well, as we show in Section 3.4. However, targets see a

higher-than-normal rate of I/O interrupts (e.g., networking or storage), which can lead to poor performance

and crashes of I/O intensive workloads.

3.4 Simulator Validation

Before showing case studies in Section 3.6, we demonstrate that 0sim is accurate enough to be useful for

reproducing scalability issues, prototyping solutions, and exploring system behavior. Since 0sim does not

modify the data structures or algorithms of the target, it automatically preserves non-temporal metrics, such

as the amount of memory consumed.
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Methodology

0sim runs on a wide range of commodity hardware, from older workstations to servers. The specifications of

our test platforms can be found in Table 3.1. wk-old is a 6-year-old workstation machine with 31GB of DRAM.

wk-new is a 4-year-old workstation machine with 64GB of DRAM. Both machines cost around $1000-2000

when originally bought. server is a server-class machine with 160GB of DRAM. These machines all cost

orders-of-magnitude less than a huge memory machine or prolonged rental of cloud instances.

We set the CPU scaling governor to performance. Hyperthreads and Intel Turbo Boost are enabled

everywhere for consistency because the server testbed we used does not have a way to disable them.

In all simulations, the target OS is CentOS 7.6.1810 with Linux kernel v5.1.4 since the stock CentOS

kernel is several years old. We disable Meltdown and Spectre [86, 93] mitigations because they cause severe

performance degradation when the host is overcommitted.

To collect metrics from the simulation, we export an NFS server from the platform to the target. This has

reasonable performance and does not introduce new performance artifacts. We provide workloads, such as

memcached and redis, with all-zero data sets. We modify microbenchmarks, like memhog, to use all-zero

values. In all experiments with server applications (e.g., memcached), we run the client program driving the

workload in the same VM as the server. Otherwise, I/O virtualization quickly becomes the bottleneck, so

measurements are actually measuring aspects of the hypervisor, not the target.

All multi-core simulations have 8 simulated cores on desktop-class machines and 6 simulated cores on

server-class machines. We found that even unmodified KVM is unable to boot multi-terabyte virtual machines

with more than 6 cores on server when the platform is overcommitted. We believe this is because KVM’s

emulated hardware devices use real (platform) time, and the overhead of running very huge machines

causes hardware protocol timeouts. In the future, we would like to extend 0sim’s virtualization of time to

address this. In the meantime, we expect 6 simulated cores to be enough to exercise multi-core effects of

software.

Our comparison baseline is direct execution (not simulation) on an AWS x1e.32xlarge instance with

3904GB which costs $26.818 per hour [13]. This is the largest on-demand cloud instance we could find. We

have run simulations up to 8TB, but here we use a maximum size of 4TB for comparison with the baseline.

While 0sim simulates the performance of a native execution (excluding time spent in the hypervisor), the AWS

instance is a virtual machine, so the overheads of virtualization are present, though it is not overcommitted.
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Figure 3.3: (a) CDF of ∆ Time between subsequent calls to rdtsc in simulations on different host machines.
Note the log scale. (b) CDF of latency to touch and fault pages in simulations on different host machines. (c)
Latency of sets of 100 insertions to memcached in simulations on different host machines.

Single-core Accuracy

We first evaluate the accuracy of 0sim for single-core targets. To measure how well 0sim hides hypervisor

activity from the target, we record the differences between subsequent executions of rdtsc. Figure 3.3a shows

the CDF of timestamp differences. For all targets and the baseline, there are three main patterns: first, almost

all measurements are less than 10ns, which is as fine-grained as rdtsc can measure and corresponds roughly

to the pipeline depth of the processor. Second, there is a set of measurements of about 3µs. These correspond

to the page faults from storing the results of the experiment. Finally, some measurements fit neither pattern

and correspond to other system phenomena such as target interrupt handlers and times when the target

kernel scheduler takes the processor away from the workload. 0sim hides hypervisor activity to closely

approximate the baseline behavior on all three simulation platforms.

Conclusion 1: 0sim is able to hide idle hypervisor activity, such as servicing interrupts, from the target at the granularity

of tens of nanoseconds up to the 99%-tile of measurements.

To validate that 0sim preserves the accuracy of the target OS, we run a workload that mmaps and sequentially

touches all target memory. This causes significant kernel activity, as the kernel must handle page faults and

allocate and zero memory. Likewise, significant hypervisor activity must be hidden from the target. Figure

3.3b shows the resulting time per page. Note that the server platform has much larger caches, aiding its

performance. We see that 0sim is able to roughly preserve the time to touch memory, though we note that

0sim is not intended for such fine-grained measurements. The latency for the baseline machine is much

higher (about 2.5µs) for 75% of operations because it includes hypervisor activity, such as allocating and

zeroing pages, across NUMA nodes. In the simulations, hypervisor activity causes new pages to be cached,

hiding inter-NUMA-node latency from the target.

Conclusion 2: In the presence of significant platform activity, 0sim is able to preserve timing of events to within 2.5µs,
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Figure 3.4: (a) Latency per 100 sequential insertions to memcached while host is idle and doing a kernel
build. (b) CDF of latency per 100 sequential insertions to memcached in multi-core simulations on different
host machines. (c) CDF of ∆ Time between subsequent memory accesses in simulations on different host
machines for a workload with poor memory locality.

though it does not model NUMA effects.

To validate that 0sim can simulate more realistic workloads accurately, we simulate a workload that fills a

large memcached server. The keys are unique integers, while the values are 512KB of zeros. We measure

the latency of sets of 100 insertions in a 1TB workload. Memcached is implemented as a hashmap, so the

time to insert is roughly constant for the entire workload. Figure 3.3c shows that 0sim preserves both the

constant insertion time of memcached and the latency of requests compared to the baseline. The linear (note

the logarithmic scale) trend of points at the top of the figure correspond to memcached resizing its hashmap,

which blocks clients because they time-share the single core. This trend is not present in the baseline which

is a multi-core machine and does resizing concurrently on a different core.

Conclusion 3: For real applications on single-core targets, 0sim is able to accurately preserve important trends, in

addition to preserving high-level timing behavior.

Conclusion 4: 0sim produces comparable results when run on different platforms, down to scale of tens of microseconds.

To evaluate the sensitivity of simulation results to activity on the platform, we rerun the previous

memcached experiment with a Linux kernel build running on the platform. Figure 3.4a shows the results on

wk-old compared with the corresponding measurements from above. Despite the significant activity on the

platform, the target sees similar results and trends to those collected above.

Conclusion 5: 0sim masks platform activity well enough to hide significant activity from the target.

Multi-core Accuracy

We evaluate 0sim’s accuracy when running multi-core targets. A memcached client is pinned to one core and

measures the latency of requests to a multi-threaded server not pinned to any core. Figure 3.4b shows a CDF
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Table 3.2: Observed aggregate compressibility ratio for various workloads. NAS CG (class E) runs with its
natural dataset, a sparse matrix. Metis runs a matrix multiplication workload.

Workload Platform Target Compressibility
memcached 62GB 1TB 215:1

redis 160GB 1TB 231:1
Metis 160GB 4TB 327:1

NAS CG 31GB 500GB 16:1

of the measured latencies. The results are noisier than for the single-core simulations, as expected. 0sim is

able to preserve the constant-time behavior of memcached, even without dynamic TSC synchronization. We

believe the tail events for wk-old and wk-new represent increased jitter from multi-core interactions such as

locking. We believe the long tail for server is due to the use of Intel nested paging extensions (EPT): nested

page faults are hidden from the hypervisor, so we cannot adjust for them, as section 3.3 notes. Note that we

measure 100 requests together, accumulating all of their cache misses, TLB misses, guest and host page faults,

and nested page walks. One can obtain more accurate measurements by disabling EPT.

Conclusion 6: While 0sim produces less accurate results for multi-core targets, important trends and timing are

preserved.

Worst-case Inaccuracy

To measure the worst-case impact of microarchitectural events, we run a workload with poor temporal and

spatial locality that touches random addresses in a 4GB memory range. It incurs cache and TLB misses and

both platform and target page faults, which are expensive since the host is oversubscribed. Figure 3.4c shows

that these artifacts result in significant latency visible to the simulation. Around 90% of these events have a

latency of 500ns or less, corresponding to the latency of cache and TLB misses in modern processors. Also,

the server machine shows fewer such events, corresponding to its larger caches and TLB.

Conclusion 7: Experiments that measure largely microarchitectural performance differences such as TLB and cache

misses may be inaccurate on 0sim.

3.5 Data-obliviousness and Speed

To achieve reasonable simulation performance, 0sim requires that the target have good compressibility. We

believe this includes a large class of useful workloads. Table 3.2 reports the aggregate compressibility ratio for

a few example workloads from our experiments, which is the average compressibility of all pages the kernel

attempted to insert into Zswap (this is not the same as the ratio of platform memory to target memory).

Note that an aggregate compressibility ratio of only 20:1 represents a 95% saving in memory usage over the
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Figure 3.5: Simulation duration and slowdown compared to native execution (computed from TSC offset)
for 1TB memcached workload as number of simulated cores varies.

course of the workload. A few results deserve comment. Metis is an in-memory map-reduce framework [82];

unfortunately, it crashes mid-way through huge workloads, highlighting a need to test systems software on

huge-memory systems. Also, NAS CG runs unmodified with its standard data set (a sparse matrix), which is

compression-friendly but not data-oblivious. Overall, these results show that 0sim is able to vastly decrease

the memory footprint of huge data-oblivious workloads, making huge simulations feasible.

Data-obliviousness is critical to simulation performance and has some role in accuracy. We run an

experiment in which we turn off Zswap, relying entirely on swapping. A 1TB memcached workload takes

3x longer to boot and 10x longer to run. Worse, the overhead is so high that despite 0sim’s TSC offsetting

scheme, overhead still leaks into the simulation and leads to target performance degradation proportional to

the size of the workload.

Simulation speed depends heavily on the workload, platform, and number of simulated cores. Figure

3.5 shows the simulation speed of a 1TB memcached workload as the number of simulated cores increases.

Generally, overhead increases with the number of simulated cores, but runtime may decrease due to improved

workload performance.

In our experiments, we generally observe between 8x and 100x slowdown compared to native multi-

core execution. For reference, this is comparable to running the workload on a late-1990s or early 2000s

processor [125]. Architecture simulations often incur slowdowns of 10,000x or worse [31]. We found that

workloads with heavy I/O are slower due to I/O virtualization.

Simulator performance degrades gracefully as platform memory becomes increasingly overcommitted.

Users can balance simulation speed and scalability testing by varying the amount of target physical memory.

In practice, we find that simulation size is limited by hard-coded limits and software bugs, rather than

memory capacity. For example, KVM-QEMU does not accept parameter strings for anything larger than
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7999GB. With engineering effort, such limitations can be overcome. Overall, we find that 0sim makes huge

multi-core simulations of data-oblivious workloads feasible and performant.

3.6 Case Studies

0sim is useful both for prototyping and testing and for research and exploration. We give case studies

showing how we debugged scalability bugs in memcached, explored design space issues in Linux memory

fragmentation management and page reclamation, evaluated a proposed kernel patchset, and reproduced

known performance issues.

Development

The ability to interact with 0sim workloads proved invaluable. While running experiments, memcached

returned an unexpected out-of-memory error after inserting only two 2TB of data out of 8TB. To understand

why memcached was misbehaving, we started an interactive (albeit slow) debugging session on the running

memcached instance. We found that memcached’s allocation pattern triggered a pathological case in glibc’s

malloc implementation that led to a huge number of calls to mmap. This caused allocations to fail due to a

system parameter that limits per-process memory regions. Increasing the limit resolves the issue.

This incident demonstrates that 0sim is useful for finding, reproducing, debugging, and verifying solutions

for bugs that only occur on huge-memory systems. A lead developer of memcached was unsure of the

problem because they had not tried memcached on a system larger than 1.5TB. We hope that 0sim can better

prepare the systems community for the wider availability of huge-memory systems.

Exploration

We give two case studies in the Linux kernel demonstrating how 0sim can be useful for design space

exploration.

Memory Fragmentation

Memory fragmentation at the application level and at the system level has been extensively studied in prior

literature [9,22,25,27,52,64,68,73,80,91,108,114,115,115–117,121,128]. However, we are aware of little work

addressing the effects of fragmentation in huge-memory workloads. Some have suggested that huge-memory

workloads do not suffer extensively from fragmentation [21]. 0sim is well-suited for studying such workloads

and their system-level effects.
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Figure 3.6: Amount of memory in each kernel page allocator free list in mix workload. The y-axis is truncated
to 400GB to show more detail. More red indicates high fragmentation.

The Linux kernel allocator is a variant of the buddy allocator [68, 85, 117] and uses different free lists for

different sizes of contiguous free memory regions. Specifically, there is a free list for each order of allocation,

where the order-n free list contains contiguous regions of 2n pages. The kernel merges free regions to form

the largest possible free memory regions before adding them to the appropriate free list. Thus, if a large

percentage of free pages is in the low-order free lists (closer to 0), memory is highly fragmented.

Methodology. We record the distribution of pages across free lists over time in the Linux v5.1.4 physical

memory allocator. We simulate a 1TB Redis instance in isolation with snapshotting enabled. Redis periodically

snapshots its contents: the Redis process forks, and the child writes its contents to disk, relying on kernel

copy-on-write, and terminates, while the parent continues processing requests.

We then simulate a mixed workload: a redis client and server pair are used to represent a typical key-value

server found in many distributed applications; a Metis workload represents a concurrent CPU and memory

intensive computation; and a memhog workload modified to pin memory and be data-oblivious mimics high-

performance I/O drivers that use large pinned physical memory regions for buffers [50]. These applications

each receive 1/3 of system memory.

Results. Running alone, Redis does not suffer from fragmentation, but in the presence of other workloads

it does. Figure 3.6 shows the amount of free memory in each buddy list throughout the mix workload. More

purple (top) indicates more large-contiguous free physical memory regions, whereas more red (bottom)

indicates that physical memory is highly fragmented. Each time free memory runs low, fragmentation

degrades for subsequent portions of the workload: before time 2.5h, there is little fragmentation, but after

2.5h, almost 40GB of free memory is in orders 8 or lower, and after 4.2h, almost 100GB is in orders 8 or lower.

Note that order 9 or higher is required to allocate a huge page. Upon closer inspection, we see that while most
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regions are contiguous, many individual base pages are scattered around physical memory. These pages

represent some sort of “latent” fragmentation that persists despite the freeing and coalescing of hundreds

of gigabytes of memory. This suggests that any true anti-fragmentation solution must also deal with this

“latent” fragmentation.

The above results deal with external fragmentation – that is, fragmentation that causes the waste of un-

allocated space. While running our experiments, we also discovered that for some workloads, internal

fragmentation (wasted space within an allocation) is a problem at the application-level. Specifically, we

observed that in some cases, a 4TB memcached instance could only hold 2-3TB of data due to pathological

internal fragmentation. If the size of values inserted does not match memcached’s internal unit of memory

allocation, memory is wasted. This wastage increases proportionally to the size of the workload, so it becomes

problematic for multi-terabyte memcached instances. We had to carefully tune the parameters of memcached

to get acceptable memory usage. These observations also suggest that internal fragmentation may be a more

important problem on huge-memory systems.

Page Reclamation.

Datacenter workloads may overcommit servers [46] to improve efficiency. A page reclamation algorithm

satisfies kernel allocations when memory is scarce. In Linux, direct reclamation (DR) satisfies an outstanding

allocation that is blocking userspace (e.g., from a page fault), while idle reclamation (IR) happens in the

background when the amount of free memory goes below a threshold. Reclamation on huge-memory

systems can be computationally expensive because it scans through billions of pages to check for idleness,

potentially offsetting any gains made from the additional available memory. Google and Facebook both

use in-house IR solutions to achieve better memory utilization efficiently [46]. Using 0sim, we measure

the amount of time each algorithm spends per reclaimed page and explore policy modifications to the DR

algorithm to attempt to make it more efficient.

Methodology. We run a workload that hogs all memory and sleeps. Then, we run a memcached workload

that only performs insertions into the key-value store. This causes idle and direct reclamation from the hog

workload. We instrument Linux to measure the time spent in idle and direct reclamation and the number of

pages scanned and reclaimed.

Results. The top of Table 3.3 (“Idle” and “Direct”) shows that DR costs 7µs per reclaimed page, whereas

IR costs 3.5µs per reclaimed page but runs about 5 times longer. This makes sense; DR blocks userspace
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Table 3.3: Time spent and pages scanned and reclaimed with different reclamation policies and modes.

Mode CPU Time (s) Scanned Reclaimed
Idle 24 25,637,891 6,631,878
Direct 5 2,473,659 706,596
Idle 4x 21 19,594,007 5,657,472
Direct 4x 7 6,382,659 1,695,243

Table 3.4: Number of chunks and amount of time spent initializing and freeing memory during boot with
ktask.

machine cores memory chunks init time free time
wk-new 1 1TB 8035 3.5s 2.6s
wk-new 8 1TB 8035 1.1s 1.0s
server 1 4TB 32224 16.2s 13.1s
server 20 4TB 32224 2.5s 3.4s
no-ktask 20 4TB 1 18.2s 15.2s

execution, so it is optimized for latency, rather than efficiency. Thus, it stops as soon as it can satisfy the

required allocation, whereas IR continues until a watermark is met.

We hypothesized that DR would run less frequenctly if it were more efficient. We modify DR to reclaim

four times more memory than requested. Table 3.3 (Idle 4x and Direct 4x) shows that direct and IR now both

spend about 4µs per reclaimed page. Direct reclaim consumes about 2s more than before but runs about

36% less often, decreasing overall reclaimation time by 1s. This suggests that on continually busy systems,

applications that can tolerate slightly longer latency may benefit from our modification.

Reproducing and Prototyping

0sim can be used to reproduce known scalability issues and prototype fixes for them. We demonstrate this

with two case studies in the Linux kernel.

ktask scalability.

The proposed ktask patchset parallelizes CPU-intensive kernel-space work [44, 81], such as struct page

initalization. Using 0sim, we reproduce and extend developer results for the ktask patchset.

Methodology. We apply the patchset [81] to Linux kernel 5.1 and instrument the kernel to measure the

amount of time elapsed during initialization using rdtsc. During boot, the structs are first initialized; then,

they are freed to the kernel memory allocator, making them available to the system. We also record the

number of 32,768-page “chunks” used by ktask, which can be initialized in parallel with each other.
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Figure 3.7: Latency of memcached requests in the presence and absence of continuous compaction. Note the
log scale.

Results. Table 3.4 shows 3x and 5x improvement in initialization for 1TB machine with 8 cores and a 4TB

machine with 20 cores, respectively. This is proportional to the results posted by the patchset author for a

real 512GB machine [81]. However, even with ktask, page initialization is still expensive! On a 4TB machine,

almost 6 seconds of boot time are consumed, whereas, for example, an availability of 5 “nines” corresponds

to about 5 minutes of downtime annually. Some prior discussions among kernel developers [40, 42] have

investigated eliminating struct page for some use cases, and our results suggest that struct page usage in

the kernel is unscalable. Memory management algorithms are needed that do not scale linearly with the

amount of physical memory.

Memory Compaction.

Using 0sim, we reproduce and quantify memory compaction overheads. Huge pages and many high-

performance I/O devices (e.g., network cards) [43, 45] require large contiguous physical memory allocations.

The Linux kernel creates contiguous regions with an expensive memory compaction algorithm. Sudden

compaction can produce unpredictable performance dips in applications, leading many databases and storage

systems to recommend disabling features like Transparent Huge Pages, including Oracle Database [111],

Redis [5], Couchbase [49], and MongoDB [102].

Methodology. We measure the latency of memcached requests in the presence and absence of compaction.

Compaction usually happens in short bursts, making it hard to reproduce, so we modify the kernel to

retry compaction continuously. Measurements with this modification approximate the worst-case during

compaction on a normal kernel.
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Results. Figure 3.7 shows the latency of memcached requests in the presence and absence of compaction

for a 1 TB workload. Median latency degrades by 22x, while 99.999%-tile latency degrades by 10,000x, leading

to occasional very-long latency spikes. Some of the tail effects are due to 0sim overhead, but Figure 3.3a shows

that this overhead cannot cause such a large effect. This suggests that in a production system, compaction

can lead to events that define service tail latency. 0sim can be used to further explore memory allocation and

compaction policies for huge systems.

3.7 Future Work

In Section 3.1, we introduce and describe the Capacity Scaling Problem. More work is needed to understand

the overheads and importance of various potentially unscalable algorithms. For example, many memory

managers use “scanning” algorithms that iterate over all pages, e.g., memory reclamation, compaction,

migration, deduplication, idleness checking. Recent prior work suggests that each of these algorithms may

play an important role in future systems, as discussed in Section 2. Some key questions to answer include:

(1) can these mechanisms work without any scanning or with an asymptotically lower amount of scanning?

(2) are there new hardware features (e.g., improved performance counters, more efficient paging structures)

that can enable more efficient memory management? (3) to what extent should MM on large machines look

different from small machines (e.g., different policies vs entirely new design)?

Another avenue of future work is to improve 0sim itself by making it aware of more hardware features.

Currently, 0sim enables large-scale simulations, but it assumes that memory homogeneous – it is oblivious

to the underlying topology. For example, NUMA nodes and hetergeneous memory types are not exposed

by 0sim to the target machine. Also, support for simulating I/O with low overhead could make many new

workloads usable with 0sim. Finally, improving and validating the DTS mechanism can improve multicore

simulation accuracy.

3.8 Conclusion

System scalability with respect to memory capacity is critical but under-studied. The memory usage, compu-

tational inefficiency, and policy choices of current systems are often unsuitable for huge systems. 0sim is a

simulation platform designed to address this problem. It takes advantage of the data-obliviousness of many

workloads to make their memory contents highly-compressible. 0sim runs on hardware that is easily available

to researchers and developers, enabling both prototyping and exploration of system software. It accurately

preserves behavior and trends. 0sim allowed us to debug unexpected behavior. By open-sourcing 0sim, we
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hope to enable both researchers and developers to prepare system software for a world with terabyte-scale

memories.
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4 cbmm: financial advice for kernel memory managers

I am the very model of a modern mem’ry manager.
I’ve information timely and of the highest caliber.
I know the kinds of mappings, and I guide the page table walker
from virtual to physical, in out-of-order processors.

I’m very well acquainted with matters economical.
I know the operations, both the fruitful and suboptimal.
About perf debugging I’m teeming with a lot of news
with many cheerful facts about the latency of huge page use.

— Adapted from The Pirates of Penzance, Gilbert and Sullivan, 1879
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Kernel MM mechanisms and policies comprise a complex set of tradeoffs that, when poorly navigated,

lead to poor performance or unexpected behavior. For example, we found that for some workloads on Linux,

a soft page fault lasting 25ms occurs every 100ms. This drastic tail latency is due to memory compaction or

reclamation when attempting to allocate a huge page – a misnavigated tradeoff. Many applications would

violate response latency objectives if one request per 100ms takes 25ms due to a page fault. As a result, Redis,

MongoDB, and others advise users to disable Linux’s Transparent Huge Page (THP) feature [5,49,102,111,143].

Table 2.1 lists other examples of MM policies and their potential pathologies.

On the other hand, datacenters prioritize tail latency as a key service-level metric, in addition to median

latency and throughput [53]. System behavior must be consistent, i.e., low variance, without compromising

performance metrics to satisfy service-level objectives and efficiency goals. Unfortunately, current MM

designs often fall short of modern computing needs by exhibiting inconsistent, opaque behavior that is

difficult to reproduce, decipher, or fix. These issues come from three key limitations.
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First, kernel MM must predict workload behavior in an information-poor environment. Current MM

designs rely on online measurements, particularly page table access/dirty bits and the frequency and location

of page faults. Unfortunately, this information is expensive to collect and low bandwidth. For example,

Google uses access bits to detect idle memory [35], but other work finds them insufficient to predict TLB

miss overheads accurately [113], even though they can cost up to 11% of CPU cycles to collect [35]. Other

data collection mechanisms induce additional page faults [36,62]. Recent work uses performance counters in

kernelspace [113], but currently available counters are hardware-thread-oriented and do not provided the

detailed spatial information useful for most MM policies.

Second, current MM designs often ignore the cost of various MM operations, leading to inappropriate

policy decisions. For example, Linux allocates a huge page when a memory region is first touched; however,

we find that allocating and zeroing a huge page costs 106 cycles in the best case. Thus, promoting a page that

averts 6 106 cycles worth of TLB misses and page faults actually regresses performance, but the kernel does

not account for this cost.

Third, current MM designs are implemented as disjointly acting policies distributed throughout the

kernel that are hard to debug. For example, code implementing Linux’s huge page policies is scattered

across more than eight files (and numerous functions), mixed with unrelated code. Users and developers

observe erratic slowdowns without indication of what causes them or how to address them. They often

resort to suboptimal coarse-grain solutions, such as disabling huge pages [5,49,102,111,143]. By distributing

and obscuring policy-implementing code, current kernel MM implementations make it difficult for both

kernel and userspace developers to decipher system behavior. This opaque system implementation and its

consequent opaque behavior is a primary obstacle to improving kernel MM performance, consistency, and

debuggability.

In search of a MM design that has consistent behavior, we designed Cost-Benefit MM (CBMM). CBMM

reflects that all kernel MM operations have a cost and a benefit to userspace, and it estimates them using

empirically based cost-benefit models to guide MM policy decisions. By explicitly modeling cost and benefit,

CBMM is more cost-aware than current designs, so it makes fewer pathologically bad policy choices. Also,

CBMM augments online statistics with offline-aggregated profiles to improve the quality of information

available to the kernel. CBMM simplifies policy debugging and enables incremental performance improve-

ment by centralizing models in a new kernel component: the estimator. To understand and fix anomalies, one

must only understand the model inputs to determine the cause of a policy decision.

Our prototype implements models for huge page promotion, asynchronous page prezeroing, and eager

paging [83], based on an in-depth analysis of huge page behavior and soft page faults. At runtime, they

may make use of in-built empirically based assumptions (e.g., about average TLB miss latency), online
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information (e.g., the current number of free pages), or offline-aggregated profile information (e.g., fine-

grained information about huge page benefits). We focus on first-party datacenter workloads – software run

by service providers in their own datacenters – as they are highly controlled and relatively stable over time,

allowing better profiling and modeling [20, 28, 65, 79, 100, 129, 132, 134].

CBMM improves system consistency; it nearly always has better tail latency than Linux or HawkEye,

particularly on fragmented systems. It reduces the cost of the most expensive soft page faults by 2-3 orders of

magnitude for most of our workloads, and reduces the frequency of 10-1000µs-long faults by around 2 orders

of magnitude for multiple workloads. Meanwhile, it has competitive performance with Linux and HawkEye,

a recent research system [113], for all the workloads we ran, and in the presence of fragmentation, CBMM is

up to 35% faster than Linux on average – all while using no more huge pages than Linux or HawkEye in

most cases.

4.1 Evaluating Current Behavior

To quantify the extent of these challenges and inform our design, we do an in-depth analysis of two important

kernel MM code paths, huge page management and page fault handling. Our experimental setup is described

in Section 4.4.

Measuring Huge Page Benefits

Huge pages speed up many workloads, but nobody has quantified the impact of workload behavior on

the amount of speedup it receives from huge pages. Thus, we measure the fine-grained benefit of huge

pages as described in Section 4.3. To avoid invasive instrumentation and a detailed survey of workload

implementations, we measure huge page benefits from the perspective of the kernel: for each workload, we

divide the address space into 100 equally sized ranges, excluding unmapped regions, and repeatedly run the

workload backing one range at a time with huge pages.

Figure 4.1 shows the results. Each point on the x-axis represents one range, such that the x-axis represents

the virtual address space. The top y-axis shows the normalized performance compared to no huge pages.

The bottom y-axis shows the normalized percentage of time spent in usermode page walks (i.e., TLB misses)

for loads and stores.

The impact of huge pages varies extensively between workloads. xz and canneal primarily see improve-

ments in load page walk cycles from backing particular regions of the address space corresponding to hot

data structures. memcached and mongodb produce noisy results because of randomness in the workload. The

magnitude of impact ranges from about 0.25% in mongodb to almost 7% in canneal.
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Figure 4.1: Runtime and usermode cycles spent in page walks for each address range, normalized to no huge
pages (lower is better). Note the varying y-axes.

Another benefit of huge page usage is fewer page faults. We found that they have only a minor contribution

to performance (e.g., less than 1.2% of execution time for canneal).

Also, the relationship between runtime improvement and reduction in page walk cycles is not straight-

forward. For all workloads, runtime improvement is loosely correlated with either load or store page walk

cycles. Strong effects on either load or store page walk cycles tended to be reflected in runtime, as seen in

xz and canneal, but the magnitude of that effect varies. Small changes in page walk cycles often have no

apparent effect on runtime.

Discussion Huge page impact varies greatly by workload, including the type and location of impacted

memory accesses and the magnitude of impact. Additionally, the relationship between page walk cycles

and runtime is complex, illustrating the challenge of huge page management given the limited, low-quality

information available to the kernel at runtime such as CPU performance counters and page referenced bits.

For example, dc-mix (not depicted) benefits from backing individual regions with huge pages, but when

THP is turned on, it sees a net regression in performance due to the overhead of compaction. CBMM aims to

mitigate this problem by supplying the kernel with higher-quality information.
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(b) mcf, fragmented
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(c) xz, unfragmented
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(d) xz, fragmented
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(e) canneal, unfragmented
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(f) canneal, fragmented
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(g) memcached, unfragmented
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(h) memcached, fragmented
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(i) mongodb, unfragmented
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(j) mongodb, fragmented
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(k) dc-mix, unfragmented
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(l) dc-mix, fragmented

Flag Description
CLR Memory was zeroed (usually during allocation).
CMPT Allocator used memory compaction.
FLBK Allocator used a fallback path during the page fault.
HAFAIL Attempted to allocate a huge page and failed.
HSPLT A huge page was split into base pages.
HUGE A huge page was mapped.
PREZ Allocator allocated a prezeroed page (CBMM only).
RCLM Allocator used direct reclamation.
WP Page fault due to write to a write-protected page.
ZERO A (shared) zero page was mapped.

(m) Subset of bitflags for page fault tracing.

Figure 4.2: CDF of Linux soft page fault latency by type of page fault. Not all page fault types occur in all
workloads.

Soft Page Fault Latency Breakdown

We instrument Linux’s page fault handler to trace sources of page fault latency. Page fault tracing allows

us to characterize system-wide costs, such as the cost of zeroing memory. We identified a set of events that

occur during page faults and associate each with a bitflag (Figure 4.2m). Our instrumentation records the
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total time of the page fault, the time to allocate memory, and the time to clear/copy memory contents.

We record the flags and timing of all events longer than 104 cycles, and a count of shorter events, allowing

us to compute the proportion of all page faults with each set of flags. We exclude hard page faults from our

results, as they incorporate other kernel subsystems (e.g., block I/O, file systems). Our tracing records the

total time to handle a page fault, but on x86 the handler can be interrupted in favor of another task, which

inflates the latency of the page fault. This is rare in most workloads except mongodb, which uses a userspace

asynchronous I/O framework and thread pool; even though a page fault handler may be descheduled for a

while, userspace requests continue to make progress because of userspace threading.

Figure 4.2 shows the soft page fault latency breakdown for multiple workloads. For each distinct set

of flags, the CDF of page faults with those flags is plotted. Note that the x-axis uses a log scale. The plot

includes samples lower than the threshold by treating them as if they all took 104 cycles (in reality, most

are faster than that). The figure shows results on a freshly booted, unfragmented system, which represents

best-case performance; we also recorded results on fragmented system, and found them significantly worse

for all workloads.

The results indicate three challenges current MM designs face. First, applications trigger a wide variety

of kernel behaviors. Each of the 15 flag-sets of Figure 4.2 is a different combination of code paths. Second,

different paths have very different latencies but are relatively consistent across workloads. For example, even

in this best case, a huge page consistently takes hundreds of microseconds to be allocated (HUGE in the figure)

due to zeroing overhead. Third, many pathological code paths execute that do not benefit applications. Most

notably, a huge page allocation may invoke a fallback path (FLBK), which transitively invokes compaction

(CMPT) or reclamation (RCLM). Worse, the fallback may fail (HAFAIL), resulting in a base page allocation after

all. In canneal (Figure 4.2e) and dc-mix (Figure 4.2k), these fallback paths can take dozens or hundreds of

milliseconds. In contrast, an Amazon search for “DRAM” completes in only 900ms from our office.

Discussion Linux’s fallback algorithms are severely cost-unaware and make system behavior inconsistent:

invoking compaction or reclamation almost certainly outweighs any benefits of using a huge page. Also, the

high cost of zeroing suggests that memory prezeroing (Section 4.3) may be a useful optimization to make

huge pages more useful. Currently, if an average TLB miss costs around 30 cycles, then a huge page must

avert over 33,000 TLB misses to pay for itself. These results highlight the need for cost-aware MM policies.

4.2 Cost-Benefit Memory Management

We created the Cost-Benefit Memory Manager (CBMM), which has several goals:
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• Improve kernel MM behavioral consistency,

• Match existing systems’ performance,

• Improve the debuggability of policy decisions,

• Allow incremental improvement of individual policies.

Our key insight is that all MM decisions incur a cost against and provide a benefit to userspace. For

example, huge page promotion averts TLB misses but may require zeroing or compacting memory. In

CBMM, policy decisions follow the guiding principle that userspace benefits must outweigh userspace costs. By

applying this principle uniformly, CBMM significantly improves consistency over Linux and HawkEye [113],

while matching their performance. We design models for three important kernel MM policies: huge page

promotion, asynchronous page prezeroing, and eager paging [83].

CBMM introduces a new component, the estimator, to the kernel. It estimates the cost and benefit of a

given MM operation whenever a policy decision is needed. If cost < benefit, the kernel decides to execute

the operation.

The estimator makes estimates based on empirically derived cost and benefit models. Models can

optionally use live metrics and/or pre-aggregated profiling information. Such pre-aggregated information

can mitigate the lack of high-quality online information. Meanwhile, CBMM explicitly estimates MM

operation costs, improving cost-awareness.

In current MM implementations, policy decisions are scattered across the kernel, making it difficult to

coordinate their actions and difficult to debug anomalous behavior. In contrast, CBMM invokes the estimator

at decision points, which predicts the cost and benefit of taking an action. This centralizes decision making

and explicitly marks policy decisions points. It also makes coordination between policies easier.

A key requirement of CBMM is that the system behavior can be modeled and/or profiled. This requirement

holds for many first-party datacenter workloads, which often run with high redundancy for long amounts of

time [20, 28, 65, 79, 100, 129, 132, 134], giving ample opportunity to observe and instrument a workload before

applying policies to them.

The Estimator

In CBMM, the MM subsystem invokes the estimator at places in the code where policy decisions need to be

made. We call these places in the code decision points. It uses models to estimate the cost and benefit of a

particular MM operation and returns the estimates to the decision point, which executes the operation if cost

< benefit.
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MM operation
type and params

(e.g., promote 0xABC000) 
Cost, Benefit

(cycles) 
Model

Kernel State 
(e.g., # free pages) 

Preloaded Profiles 
(e.g., fine-grained
huge page benefit) 

Figure 4.3: CBMM model inputs and outputs.

When a decision point invokes the estimator, it passes information to the estimator about the type and

parameters of the operations. For example, the decision point would pass the address to consider promoting

or a number of pages to attempt to prezero. The estimator acts as a black box that returns a cost and benefit

estimate for the given MM operation and parameters. In CBMM, costs and benefits are computed in units of

time saved or lost by userspace, which usually corresponds closely to user objectives. In particular, CBMM

uses the rate of time saving/loss over some horizon, as many datacenter workloads run continuously.

Cost and Benefit Models

Internally, the estimator comprises a collection of cost models and benefit models for different MM operations.

Each model is built out of simpler submodels that estimate one cost and/or benefit well; the submodel

results are added to produce the overall result. This allows reuse of submodels for different decision points,

simplifying implementation and leading to more consistent behavior across decision points. For example, our

huge page cost-benefit models were useful in both the page fault handler and khugepaged, the background

promotion daemon, and our model for estimating the cost of running a daemon could be used for multiple

daemons in the future.

Concretely, models manifest as C code in the estimator (in the kernel); in Listings 4.4 - 4.6 (discussed

further in Section 4.3), we show the models in our prototype of CBMM. Each (sub)model is a self-contained

black box that takes information from the decision point, combines it with information from the ambient

kernel state and preloaded profiles – files loaded into the kernel that supply information about application-

specific behavior – and outputs an estimate, as shown in Figure 4.3. The additional input from the kernel

state and preloaded profiles allows the models to be more context-aware and to make use of higher-quality

information about workload behavior.

Performance Debugging Unlike current heuristics, CBMM isolates policies to specific cost and benefit

models; their inputs and outputs can be observed, and they can be improved in a single place, easing
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performance debugging in CBMM compared to Linux. A central idea behind CBMM’s debuggability is

the ability to observe and control the inputs to models. Thus, while models can make use of any kernel

or hardware state, they should use only state that has an intuitive interpretation, rather than internal

implementation metrics. For example, our huge page promotion model takes into account whether any

prezeroed huge pages are available and uses a profile to determine the worth of promoting a page. In contrast,

internal implementation metrics give limited information about the origin of their values and how to cause

them to change, making bug fixing difficult; for example, Linux’s page reclamation algorithm uses an obscure

combination of page table bits, bit flags in the struct page, and what list a page happens to be on [18].

Model Development in CBMM can be done iteratively by beginning with a simple model and refining it

as needed. For example, Listing 4.5 shows our asynchronous prezeroing model. Initially, we only accounted

for the zeroing time of the daemon, but we found that this led to high lock contention on the allocator, so we

refined the model to account for contention.

In designing our models, we found that benefits tend to be application-specific, whereas costs tend to be

system-specific. For example, each application tends to benefit differently from huge pages, but the cost to

allocate a huge page is application-independent and depends more on the state of the system allocator. As a

result, our benefit models tend to use preloaded profiles, whereas our cost models tend to query kernel state.

Models necessarily make assumptions to simplify implementation and to make their execution cheaper

than the actual MM operations. We based our assumptions on our empirical measurements, unlike many

existing heuristics, which rely on intuitive simplicity or common-case optimization. For example, unlike

Linux, CBMM does not blindly assume huge pages improve performance; rather, it incorporates the cost

of promotion as measured by our experimental analysis and uses empirically derived profiles to estimate

the benefit of promoting a particular memory region. Notably, CBMM improves system behavior even with

imprecise profiles, as we will show in Section 4.4, making it practical to start with a simple model and refine

it over time.

Preloaded Profiles

Different applications respond differently to MM policies, and kernels currently lack high-quality information

with which to predict workload behavior. Preloaded profiles are files loaded into the kernel when starting a

process (e.g., by a cluster manager) to provide models with information about a process’s behavior. They

allow the estimator to benefit from offline processing for particular policy decisions. In contrast, prior

methodologies resort to measuring inaccurate and expensive proxy statistics such as page fault counts or

page access bits.
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In CBMM, preloaded profiles specifically provide spatial, per-process information; that is, they provide

information about regions of a single address space at arbitrary granularity as small as a 4KB page. For

example, a profile may specify per-region reduction in page walk cycles from use of huge pages, or a bit

indicating whether a page is likely to be touched or not. Models can query this information when making cost

and benefit estimates. For example, to estimate the benefit of using a huge page, a model may incorporate the

number of averted page walk cycles, or to determine whether to eagerly allocate memory or use copy-on-write,

a model may incorporate information about the likelihood of memory accesses. This structure for preloaded

profiles, while simple, is quite useful because many MM policies make spatial decisions, such as whether/how

to map/unmap/remap a memory region. However, CBMM’s design is flexible enough to admit future

extensions to profiles. For example, it may be desirable to account for phases of workload activity or to apply

profiles at different granularities, such as per-thread or system-wide.

Profile Management. While CBMM still has benefits even when profiles are imprecise (see Section 4.4),

changes to data structures or algorithms could result in changing memory reference patterns. Thus, a natural

future extension of CBMM is automating profile generation and management. We give a brief description of

automatic policy discovery in this section. In prior work, we explore in detail the potential role of cluster

managers in policy discovery and deployment [97].

First-party datacenter workloads often run continuously and redundantly, so profiling could be automated

and centralized at the cluster level. Thousands of identical tasks run across a WSC for hundreds of machines-

years, and the workload mix changes incrementally as software teams update their services. Our target

setting has relatively stable and homogeneous hardware and software. Most machines in the cluster are

similar to a large number of other machines (not necessarily a majority) in both hardware and software mix.

Many production WSCs satisfy these conditions [65, 79, 100, 132, 134]. Moreover, recent work from industry

suggests a trend of large-scale profiling and centralized planning [88,95,129] and demonstrates the feasbility

of such an approach.

We have done preliminary exploration and believe that the huge page methodology of Section 4.3 can be

run in a distributed, automated manner by cluster managers. In particular, our methodology runs many

identical copies of a workload with slight policy variations (e.g., regarding which parts of an address space

should use huge pages). In a WSC, many identical copies of each workload are running already for availability

or fault tolerance. A cluster manager can leverage this redundancy by instructing the kernels on different

machines to apply slightly different policies. By collecting metrics from a large number of machines with

slightly different policies, the cluster manager can estimate the impact of the policy differences and choose

the policy that works best. Thus, the cluster manager can build a workload profile and keep it up-to-date in a
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mostly automatic manner.

System Management

We implemented models directly in the kernel source, but in principle, they could be implemented via another

mechanism, such as kernel modules. Our models are application-agnostic (but can be customized if needed,

like existing code), so application developers do not need kernel access. Many service providers have kernel

teams that could maintain this code. Meanwhile, profiles are application-specific, and application developers

can use existing configuration/deployment systems to schedule/manage/store/secure/deploy profiles with-

out special privileges. The kernel memory overhead of profiles depends on profile resolution/detailedness.

In Section 4.4, our largest profile is ∼ 170KB/process and most profiles are < 50KB/process.

Our implementation uses procfs files to load profiles, but any user-kernel communication mechanism

could be used. Also, in principle one could load models through boot time configuration, similar to Facebook’s

SoftSKU system [129].

Discussion

CBMM addresses the (1) information-poverty, (2) cost-obliviousness, and (3) disjointed implementation

of existing MM policy implementations, while other alternatives only partially address them. For example,

interfaces such as madvise are coarse-grained, whereas workload memory access patterns can vary significantly

within a region, as shown in Section 4.1. Merely disabling overly-aggressive policies, such as Linux’s THP

or defragmentation policies, harms workloads that require many huge pages, as we will see in Section 4.4.

Additionally, it is difficult to modify existing policies to target different performance goals because their

implementation is often distributed across many files, such as Linux’s huge page policies. CBMM mitigates

all three challenges by making costs and benefits explicit and centralizing policy decisions. Finally, more

research is also needed to determine how far CBMM’s design can be generalized to other areas of the kernel,

such as scheduling, filesystems, or I/O management.

Similarities to Other Systems. VMware ESX Server explores MM techniques based on economic models

by quantifying the value of idle memory and “taxing” processes for it [138]. Google and Meta both track and

reclaim cold memory from processes, too [35,88,140]. Google’s system centrally and empirically coordinates

content migration to far-memory tiers (e.g., compressed memory) [88], while Meta’s system relies on better

metrics and acts locally on each machine. Google also profiles the lifetime of allocations to decrease memory

fragmentation [95]. These approaches inspired our work; they use empirical measurements and MM-wide

guiding principles to make MM decisions. Our work extends and generalizes this idea. Sriraman et al.
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take a step in this direction by comprehensively profiling Meta’s workloads and using the profiles to guide

coarse-grained boot-time system tuning [129].

4.3 Implementation

We implement CBMM based on Linux 5.5.8 for three kernel MM policies: huge page management, asyn-

chronous prezeroing, and eager paging [83]. We implement the estimator and its models, along with related

debugging interfaces, code for parsing profiles, and other infrastructure in 1159 lines of C in the kernel

in a new and self-contained file. Additionally, we add 87 lines of instrumentation throughout the page

fault handler and page allocator for page fault tracing (see Section 4.1). We add 10 calls to the estimator

throughout the MM subsystem; each is self-contained and consists of about 10 lines of code to initialize

a struct, make a function call, and respond to estimates. Asynchronous prezeroing is implemented in a

kernel module from HawkEye. We modify the module to run in a kernel thread and to query the esti-

mator before running. Our version of the module is 196 lines of C. Our implementation is available at

https://github.com/multifacet/cbmm-artifact.

Huge Page Management

Background Huge page support in current kernels can be either manual and automatic. A primary

challenge is choosing memory regions to promote: the kernel must determine which memory regions would

see enough benefit from huge pages.

Manual management allows applications to directly request huge pages for certain memory regions,

but it requires modifying the applications, which is often impractical (e.g., Java does not expose a way to

easily control memory allocation). Moreover, modern datacenter workloads are multi-programmed and

diverse in behavior, requiring centralized coordination during resource allocation [87]. In contrast, automatic

huge page management is a kernel feature that promotes application memory transparently to applications.

This allows unmodified applications to benefit from huge pages but cannot make use of application-specific

domain knowledge.

CBMM combines both the generality of automatic management and the application-specific knowledge of

manual management. In contrast, current kernels either have only a manual system (e.g., Windows) or use

simplistic heuristics to power an automatic system. For example, Linux’s THP aggressively tries to promote

on the first page fault to the huge page, potentially leading to memory bloat and increased page fault latency.

FreeBSD waits for a specific percentage of the huge page to be touched before promoting. Various research

https://github.com/multifacet/cbmm-artifact
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systems use a mix of page access bits, performance counters, LRU lists, and trial-and-error [87, 113, 142] with

mixed success.

Model Listing 4.4 shows CBMM’s model for huge page promotion. It is used in both the page fault handler

and khugepaged to decided whether to promote a page. We built this model based on our analysis of huge

page promotion overheads. It makes a number of simplifying assumptions when estimating both the cost and

benefit, most notably that the cost is dominated by the allocation and zeroing time and that compaction and

reclamation have a large fixed cost. We choose to ignore other costs in our model, such as caching, mapping

changes, or potential memory bloat, but CBMM allows models to be iteratively improved over time.

void hpage_promo_model (u64 addr , mm_cost_delta *cost)
{

// COST. Simplify using assumptions .
// - Alloc is free if have free zeroed pages .
// - Alloc cost is zeroing if have free unzeroed .
// - Alloc cost is 2^32 if need to free mem.
// - We don ’t care what node it is on.
// - Constant prep costs ( zeroing or copying ), ~100 us

const u64 EXPENSIVE = 1ul << 32; // cycles
const u64 ZEROING_TIME = 100 * FREQ_MHZ ; // 100 us

// ‘have_free_hpage ‘ checks the allocator free list.
enum free_hpage_status fhps = have_free_hpage ();
u64 alloc_cost = fhps > fhps_none ? 0 : EXPENSIVE ;
u64 prep_cost = fhps > fhps_free ? 0 : ZEROING_TIME ;
cost ->cost = alloc_cost + prep_cost ;

// BENEFIT = averted TLB miss cycles from profile .
cost -> benefit = compute_hpage_benefit (addr);

}

Figure 4.4: CBMM huge page cost-benefit model.

Profiling Our methodology generates for each workload a mapping from virtual memory regions (i.e.,

ranges of virtual addresses) to the number of averted usermode page walk cycles when the region is backed

by huge pages. We modify the Linux kernel to give precise control over promotions. We then repeatedly run

a given workload varying the set of promoted pages. We additionally run the workload with no huge pages

as a baseline. We use hardware performance counters to measure the number of TLB misses, the number of

cycles spent in pages walks, and the overall cycle count for kernelspace and userspace execution. We then

take the difference in overhead and overall runtime between any given set of pages and the baseline. The size

of the sets of promoted pages can be varied to tradeoff profiling time with precision. Our prototype uses

the offset into allocation zones instead of virtual addresses, so that profiles tolerate Address Space Layout

Randomization.

Broadly, we found that our workloads could be categorized as high-processing or low-processing. High-

processing workloads, such as xz, canneal, or mcf, heavily process their input data to produce internal data

structures; their memory access patterns are driven by computation over these data structures. Low-processing
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workloads, such as memcached, mongodb, and dc-mix (see Section 4.4), often do little more than data storage

and retrieval, so their access patterns are driven by client request patterns. We found that we can reliably

distinguish between high- and low-processing workloads using the skewness 1 of the distribution of averted

page walk cycles. High-processing workloads often have a small number of highly-impactful memory regions,

so they have a high positive skew (skew > 2 seems to work empirically). When generating profiles for

low-processing workloads, we assigned all regions a benefit equal to the mean benefit measured empirically.

For high-processing workloads, we assigned each region the benefit it individually demonstrated.

At runtime, we can supply a profile to the kernel in the form of a CSV file that lists virtual address ranges

and their benefit from huge pages. Our implementation aims to demonstrate the potential of our approach

while remaining simple to implement. We do not attempt to account for phases in workload behavior, but

our design is amenable to such an upgrade in the future by repeating the profiling process at multiple points

during the workload’s execution. We assume the workload size is stable but can handle other input changes;

in Section 4.4, we use randomized inputs for most workloads.

Asynchronous Prezeroing

Background We examine asynchronous prezeroing as a means of improving the latency of large physical

memory allocations. Asynchronous prezeroing clears free pages using a background daemon to save time

during a page fault when it would slow down userspace programs. Our analysis indicates that prezeroing

would reduce the cost of a huge page by almost two orders of magnitude.

There is much prior work on asynchronous prezeroing of pages [6, 56, 57, 89, 113, 135]. Prezeroing fell out

of favor because the primary cost of zeroing 4KB pages is cache misses, but prezeroing pages leaves them

cold when users access them, so latency is merely shifted to userspace [6, 135]. Recently, Panwar et al. find

prezeroing is beneficial for huge pages and use non-temporal store instructions to avoid cache pollution [113].

However, their approach requires hand-tuning to avoid excessive CPU usage or lock contention on the page

allocator. CBMM adapts their prezeroing implementation with a model to determine when and how long to

run, eliminating the need for hand-tuning.

Model Listing 4.5 shows CBMM’s model for running the asynchronous prezeroing daemon. The model

makes numerous assumptions; most importantly, it assumes that CPU time is free unless taken away from

userspace (i.e., the system is not idle) and that the chief costs of prezeroing are the execution time of zeroing

and contention on the allocator lock, rather than cache pollution. This matches our own analysis and

observations while working on CBMM. The chief benefit of prezeroing is to move zeroing overhead out of
1skewness is a statistical measure of distribution asymmetry.
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the critical path of huge page promotion. For simplicity, we assume a constant processor frequency over

short time windows, even though the frequency varies.

Also, this model exemplifies CBMM’s iterative approach to building models. We started with a model

that only accounted for CPU time and potential huge page allocations. As we ran experiments, we discov-

ered the lock contention and improved the model to account for it by adding the lines labeled as COST of

lock contention in Listing 4.5, resolving the performance issue. The entire process took less than a day of

debugging, measurement, and implementation.

void prezeroing_model ( mm_action *action , mm_cost_delta *cost)
{

// COST of the runtime itself ... Assume :
// - Don ’t care about NUMA nodes .
// - Zeroing costs ~10^6 cycles .
__kernel_ulong_t cpu_load = get_avenrun ();
int ncpus = num_online_cpus ();

const u64 HPAGE_ZERO_COST = 1000000; // cycles

// ncpus > cpu load average => idle cpu , free to run.
if ( ncpus > cpu_load ) {

cost ->cost = 0;
} else {

cost ->cost = HPAGE_ZERO_COST * action -> prezero_n ;
}

// COST of lock contention . Assume :
// - Cost of lock acquisition = ~150 cyc , do it 2x.
// - Lock is unheld for ~1 ms/ horizon => free locking
const u64 UNHELD = FREQ_MHZ * 1000; // = 1ms in cycles
const u64 SINGLE_CS = 150; // cycles

const u64 crit_sect_cost = SINGLE_CS * 2; // cycles
const u64 nfree = UNHELD / crit_sect_cost ;
const u64 ntodo = action -> prezero_n > nfree ? action -> prezero_n - nfree : 0;
cost ->cost += ntodo * critical_section_cost ;

// BENEFIT . Assume past usage predicts future usage .
u64 recent_used = mm_estimated_prezeroed_used ();
cost -> benefit = min(action ->prezero_n , recent_used ) * HPAGE_ZERO_COST ;

}

Figure 4.5: CBMM async prezeroing cost-benefit model

Eager paging

Background Eager paging allocates physical memory upon user request, rather than lazily on a page fault

(the default) [83]. It enables large contiguous physical memory allocations, which are easier to back with

huge pages and enable useful hardware optimizations [83, 106, 119, 131, 142]. However, a drawback to eager

paging is memory bloat if the workload does not use all the allocated memory [83]. Preloaded profiles

unlock this optimization while avoiding memory bloat.

Model Listing 4.6 shows CBMM’s model for eager paging, which is invoked by mmap or brk system calls. It

uses a preloaded profile to determine which subregions will be touched and assumes that the model has
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Workload Description Input Peak Mem
xz data compression [1] profiling: native input, eval: custom scaled up

input
150GB

mcf combinatorial optimization, scheduling [1] native input 3GB
canneal simulated annealing, chip routing [30] custom input, randomly generated each time 150GB
mongodb KV store YCSB driver [39], 75%W-25%R 150GB
memcached in-memory KV store YCSB driver [39], 1%W-99%R 150GB
dc-mix redis (KV store), memhog (microbench., creates frag-

mentation), metis (in-memory map-reduce) [82]
redis: YCSB driver [39], 50%W-50%R; memhog:
N/A; metis: built-in

165GB

Table 4.1: Description of Workloads – their behavior, inputs, and peak memory usage.

perfect knowledge, allowing it to ignore the cost of potential bloat. If more than one page is being eagerly

allocated, we create opportunity for contiguous allocation.

void eager_paging_model ( vm_area_struct * mmap_region , mm_cost_delta *cost)
{

// ASSUME : past usage predicts future ; use profile .
// COST: time to create new page.
const u64 PF_NEW_PAGE = FREQ_MHZ * 10; // 10 us in cycles

struct range * ranges = prev_touched ( mmap_region );
cost ->cost = len( ranges ) * PF_NEW_PAGE ;

// BENEFIT : time to create new page , coalesced faults
const u64 PF_CS = 300; // cycles
cost -> benefit = len( ranges ) * PF_NEW_PAGE + (len( ranges ) - 1) * PF_CS ;

}

Figure 4.6: CBMM eager paging cost-benefit model

Profiling We profile eager paging behavior by periodically reading the /proc/<pid>/pagemap file while the

workload is running. This file contains information about memory mappings for the given process and

allows us to detect which virtual memory regions have been faulted in. Pages that were faulted in during the

execution are noted in the profile, and the model assumes they will be faulted in again in the future.

4.4 Evaluation

CBMM seeks to improve consistency while matching or exceeding the performance and efficiency of existing

systems. We evaluate CBMM along multiple axes. First, we evaluate the page fault latency of CBMM

to understand its consistency compared to Linux and HawkEye. Second, we measure the end-to-end

performance of CBMM. Third, we look at the efficiency of CBMM’s use of huge pages. Finally, we evaluate

the generality of our approach by looking at the sensitivity of performance to profile changes.

Methodology

Table 4.1 describes our workloads. They represent a variety of software behaviors and exercise the kernel

in different ways. mongodb, memcached, and dc-mix are memory-intensive workloads common in datacenters.

mongodb and memcached are data stores, and mongodb is I/O heavy and makes use of the page cache. dc-mix
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induces memory pressure and tries to simulate a real system in which a server, device driver, and batch

job are using system resources. We drive the data stores in these workloads using YCSB [39] with different

read-write ratios to increase the variety of MM behavior. mcf, xz, and canneal are computational workloads.

We scale up the inputs of xz and canneal to use more memory. In all experiments with server applications

(e.g., memcached, redis, mongodb), we run the client program on the same machine as the server, so as not

to measure network effects. We run each workload with its default number of threads and pin all workloads

to one NUMA node to reduce variation caused by NUMA effects. To reduce noise, we run each experiment

5 times and report the median results. For all workloads except mcf and xz, the input is randomized and

changes between executions of the workload. For xz, we use the native input to generate a profile and use a

custom input when evaluating performance.

All experiments run on CloudLab [122] c220g5 machines with two Intel Xeon Silver 4114 (10C/20T, 2.2

GHz, Skylake 2017), 192GB 2666MHz DDR4 ECC DRAM, and a 480GB SAS SSD. We set the CPU scaling

governor to performance. Unless otherwise noted, we do not tune our systems at all; the results represent CBMM’s

“out of the box” behavior.

We replace the system allocator with jemalloc, which is better in a datacenter setting and is used by

Facebook [60]. All experiments run on CentOS 7.8.2003 with the relevant kernel. We disable Meltdown

and Spectre [86, 93] mitigations, which cause severe performance degradation. We use unmodified Linux

5.5.8 with Transparent Huge Pages enabled as our baseline. We configure CBMM similarly to Linux but

we preload a profile of huge page benefits and eager paging, as derived in Sections 4.3 and 4.3. We also

compare against HawkEye [113], a state-of-the-art research huge page management system based on Linux

4.3. We configure HawkEye as in its paper, including its prezeroing daemon. We ran experiments against

stock Linux 4.3 and found that it performs within 15% of Linux 5.5.8 on average (see Figure 4.8). To measure

page fault latency in HawkEye, which runs on a different kernel without our instrumentation, we use eBPF

to instrument the handle_mm_fault function, which represents the main portion of the page fault handler. We

found that canneal crashes with a segfault on HawkEye when the system is unfragmented, so we omit that

experiment from results.

Fragmentation We run each workload on a freshly rebooted system and on a preconditioned system.

Preconditioning aims to simulate a long-running datacenter environment by inducing external fragmentation,

which hinders large physical memory allocations, such as huge pages.

We had difficulty identifying a reproducible fragmentation methodology. We attempted to reuse tech-

niques from prior work [113, 142, 144] and also made several attempts at our own methodologies with little

success; on Linux, deferred freeing of physical memory and kernel daemons such as kcompactd and kswapd
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(a) mcf
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(b) xz
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(c) canneal
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(d) memcached
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(e) mongodb
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(f) dc-mix

Figure 4.7: Soft page fault tail latency distribution on each system, weighted by page fault rate. A point (x,y)
on the plot indicates that a fault of latency > x happens at an interval of > y on average.

cause variable results. Also, each methodology preconditions machines in a different way, none of which is

obviously more realistic than the others.

For our evaluation, we choose a simple methodology derived from prior work [51, 142, 144]. We en-

able CONFIG_SLAB_FREELIST_RANDOM and CONFIG_SHUFFLE_PAGE_ALLOCATOR when compiling the kernel and add

a sysfs file that triggers shuffling of the kernel physical memory free lists. To precondition the system, we

reboot and then trigger free list shuffling. Then we run a program that allocates all system memory (with

mmap(MAP_POPULATE)) and frees all but the first page of each 2MB region before sleeping for the duration of the

workload. This methodology is simple and yields comparable results to other methodologies. We measure

the Free Memory Fragmentation Index [68,87,113,144] after preconditioning but before the workload begins.

On CBMM and HawkEye, preconditioning consistently leaves around 183GB of free memory with 99%

fragmentation. On Linux, half of runs experience similar results, but in the other half, deferred page freeing

causes < 2GB of memory to be considered free, making it difficult to measure fragmentation.
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System Behavioral Consistency

Figure 4.7 shows tail latency on each kernel without fragmentation (when latency should be lowest); note the

log x- and y-scales. To account for differences in the frequency of page faults due to differing MM decisions,

we show the average interval between events, rather than the percentile on the y-axis.

Unlike Linux (Figure 4.2k), CBMM rarely attempts an expensive fallback path (e.g., compaction or

reclamation) during huge page promotion, even under fragmentation; allocation failures usually result in the

allocation of base pages. CBMM often experiences more page faults than Linux or HawkEye, but as Figure

4.7 shows, CBMM still sees a lower rate of long page faults than they do because its cost-awareness leads to

fewer pathological cases, falling back to 4KB pages instead.

Even without fragmentation, CBMM always matches or improves on the tail latency of Linux and HawkEye, often

by wide margins. In xz, canneal, and memcached, CBMM reduces the frequency of page faults taking 10-1000µs

by two to three orders of magnitude compared to Linux or HawkEye. In canneal and memcached, CBMM

reduces the frequency of (or eliminates) all page faults slower than 10µs by two or more orders of magnitude

compared to Linux. In memcached, page faults taking over 1ms are nearly eliminated, while in dc-mix, they

are reduced in frequency from nearly constant in Linux to every 10s or longer in CBMM. mongodb uses a

userspace asynchronous I/O framework, as previously discussed, so its page fault latencies are dominated by

context switches and other userspace threads; thus, our improvements are not visible in the figure. However,

the figure does show that CBMM does not regress page fault latency, and as we will see in the next section,

CBMM achieves significantly better performance than Linux or HawkEye for this workload.

Under fragmentation, CBMM usually achieves even larger tail latency improvements, particularly compared to

Linux. For all workloads except mongodb, CBMM reduces the frequency of all page faults taking > 50µs by 1-3

orders of magnitude compared to Linux and up to one order of magnitude compared to HawkEye. mongodb

performs similarly to the unfragmented case, as discussed above.

Summary CBMM improves tail latency compared to Linux or HawkEye. For multiple workloads, CBMM

reduces the frequency of slow page faults by one or more orders of magnitude, especially under fragmentation.

End-to-End Performance

CBMM’s major goal is to improve consistency and the debuggability of MM-related performance issues

without degrading performance. Figure 4.8 shows the performance of each kernel with and without frag-

mentation. All results are normalized to Linux without fragmentation. Note that some of the performance

difference of HawkEye compared to the other systems is due to Linux 4.3 (the black bar in the figure). On
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Figure 4.8: Runtime of workloads on each kernel, normalized to Linux with THP without fragmentation
(lower is better). The upper and lower triangles around each bar represent the max and min observed value.
The “6MAX” text at the top of the plot indicates max values above the boundary of the plot.

average, without fragmentation, CBMM has performance comparable to Linux and better than HawkEye. On

average, with fragmentation, CBMM is 7% and 30% faster than HawkEye and Linux; in fact, it is only 12% slower

than without fragmentation. With minimal tuning, on average, CBMM is 13% and 35% faster than HawkEye

and Linux under fragmentation.

Without fragmentation, CBMM matches or exceeds the performance of Linux or HawkEye for all work-

loads except canneal. For canneal, CBMM is 15% slower than Linux because our profiles underestimate the

benefit of huge pages. For mongodb, CBMM is 9% faster than Linux because it uses significantly more huge

pages.

With fragmentation, CBMM outperforms Linux and/or HawkEye for all workloads except mcf. mcf uses

too little memory to induce memory pressure; thus, CBMM overestimates the cost of huge pages and uses

significantly fewer huge pages than Linux. In all other workloads, CBMM matches or outperforms at least

one of Linux or HawkEye, often by wide margins. In dc-mix, canneal, and memcached, CBMM outperforms

Linux by 34%, 34% and 81%, respectively, because its cost models allow it to adapt to a fragmented context,

reflecting CBMM’s focus on consistent behavior. Notably, this includes all of our datacenter workloads.

To demonstrate CBMM’s benefit to performance debugging, we tune the performance of mcf, canneal,

and dc-mix beyond the above results. In mcf and dc-mix, CBMM underestimates the benefit of huge pages,

so we adjust the benefit upward in the respective profiles. We found that canneal exhibits a strong tradeoff

between performance and page fault tail latency. As canneal is a non-interactive computational workload, we

optimize for end-to-end performance by adjusting the profile to more aggressively allocate huge pages for

the most import memory regions. After tuning, dc-mix without fragmentation runs 2% faster, and mcf with

fragmentation runs 19% faster, than without tuning, but neither has a regression in tail latencies. canneal
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Figure 4.9: Percent of anonymous memory backed by huge pages on CBMM, HawkEye, and Linux with THP.

runs 18% faster than without tuning (46% faster than Linux) at the expense of some degradation in tail

page fault latencies. In total, the tuning effort took less than a week, most of which was spent waiting for

workloads to run.

Summary CBMM’s has competitive performance with Linux/THP and HawkEye and better tail latency

and more interpretable behavior. In most cases, CBMM matches or exceeds Linux’s performance. Under

fragmentation, CBMM often performs vastly better than Linux or HawkEye because of its focus on consistent

behavior. Also, CBMM is easily debuggable and tunable by adjusting profiles and/or models.

Efficiency

Allocating huge pages to memory regions that do not need them wastes contiguous memory and promotion

overheads and possibly bloats memory usage. Figure 4.9 shows the percentage of anonymous memory used

by each workload that is backed by a huge page in CBMM, HawkEye, and Linux (with THP) with and

without fragmentation preconditioning.

Generally, preloaded profiles drive CBMM’s huge page usage, while HawkEye and Linux are more

indiscriminate with huge page promotion. Usually, Linux attempts to use more huge pages than CBMM or

HawkEye, often backing almost all memory with huge pages. HawkEye uses huge pages more efficiently

than Linux, often achieving similar performance with much fewer huge pages. For most workloads, Linux
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Figure 4.10: Runtime of CBMM workloads with generalized profiles, normalized to Linux with THP without
fragmentations (lower is better).

still attempts to use huge pages under fragmentation, whereas CBMM and HawkEye do not, leading to

significantly better tail latencies, and often better performance.

For xz, CBMM’s profile allows it to promote only a small but important part of the address space, so it

matches Linux’s performance (and outperforms HawkEye) while using almost 80% fewer huge pages. For

mongodb, CBMM outperforms Linux and HawkEye by using more huge pages in the absence of fragmentation

and fewer in its presence, exemplifying CBMM’s cost-awareness.

Summary Despite having the most consistent behavior and sometimes better performance, CBMM often

uses significantly fewer huge pages than Linux or HawkEye. By being cost- and context-aware, CBMM is

more targeted in its use of huge pages, though in some cases, our profiles underestimate the benefit of huge

pages.

Generality

CBMM has benefits even when a profile is highly imprecise, primarily by avoiding the pathological behavior

of Linux. We compare three versions of profiles: the standard CBMM profile is as in Section 4.3, perapp

assigns a single value to all memory regions in the workload equal to the average benefit of enabling THP for
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Figure 4.11: Soft page fault tail latency distribution, weighted by page fault rate, for different profiles.
Compare to Figure 4.7.

the workload, and shared is shared between all workloads and assigns a single value to all memory regions

equal to the mean benefit of the perapp profiles.

Figure 4.11 shows how the different profiles affect page fault tail latency in mcf and xz. The perapp and

shared profiles have minor regressions in page fault tail latencies compared to the standard profiles but still

improve over Linux.

Figure 4.10 shows the how the different profiles affect performance. In most cases, CBMM with the simpler

profiles outperformed Linux with fragmentation, and the performance differences between the three profiles are

within 5%. The perapp and shared profiles outperform the standard profiles slightly in some workloads. One

exception is mcf under fragmentation, where both the perapp and shared profiles outperform the standard

profile by 20%, similar to the tuned profile in Section 4.4, by being more liberal with huge pages.
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Figure 4.12: Runtime of CBMM workloads when enabling more models, normalized to Linux with THP
without fragmentations (lower is better).

Summary More precise profiles improve CBMM’s performance and tail latency, but imprecise profiles still

have good results. Furthermore, profiles can be used to trade off performance and page fault latency.

CBMM Models

We evaluate the contribution of each model in Section 4.3 via three configurations of CBMM: huge enables

only the huge page model, async additionally enables prezeroing, and standard CBMM enables all three

models. Figure 4.12 shows the performance of these configurations, while Figure 4.13 shows tail latency for

mcf and xz.

Each policy provides benefits in different settings. The huge page model alone (huge) captures most of

the performance benefit of CBMM because it prevents costly huge page allocations.Asynchronous prezeroing

(async) decreases page fault tail latency by making huge pages cheaper. It also reduces performance slightly on

an unfragmented system, where free pages abound, because prezeroing is wasted work. With fragmentation,

prezeroing has little effect on performance.

Eager paging does not directly benefit performance but enables larger contiguous allocations where

hardware supports it [83, 106, 119, 131, 142]. To evaluate how well CBMM can make large allocations, we

compare the number of eagerly allocated regions and peak memory usage of CBMM with eager paging
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Figure 4.13: Soft page fault tail latency impact of different models. Compare to Figure 4.7.

against Linux with MAP_POPULATE, the mmap flag that eagerly maps memory. In all workloads, regardless of

fragmentation, CBMM uses eager paging for nearly the entire working set of the workload. Thanks to profiles,

CBMM has < 1% memory bloat – 3%-48% less memory than MAP_POPULATE would use.

Summary CBMM’s huge page model provides significant tail latency (and often performance) improve-

ments. Asynchronous prezeroing enables more huge page usage under fragmentation, but has a modest

cost on unfragmented systems. Eager paging has a modest performance cost but enables more contiguous

memory allocation.

4.5 Future Work

Our work demonstrates the importance of deeply understanding the behavior of existing systems; numerous

aspects of the MM remain uncharacterized and poorly understood. For example, file caches and driver-used
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memory can comprise significant portions of system memory usage, but little prior work has characterized

them. It is also unclear how other kernel subsystems impact MM, e.g., block I/O, scheduler. Understanding

these aspects of system behavior is key to making MM suitable for modern workloads.

In our work, we found that often existing instrumentation was insufficient for understanding system

behavior. For example, while BPF is useful for measuring the latency of different events (e.g., different

types of page faults), we found it unreliable. Various compiler optimizations such as code inlining and

stack frame elision make it hard for BPF to attach to different events, while unstable interfaces break custom

instrumentation between kernel versions. These issues highlight the need for better instrumentation, as well

as for designing MM code with instrumentation as a first-class concern.

Finally, we believe that policy generation, management, and maintenance can be centralized in the cluster

manager, allowing all machines in a cluster to take advantage of 1st-party datacenter workloads. We have

done some initial exploration of this idea [97], but more work is needed to demonstrate the viability of such

an approach.

4.6 Conclusion

Modern computing needs are placing new demands on kernel MM. To meet these demands, kernel MM

must begin to prioritize behavioral consistency and debuggability. We propose CBMM, a MM system that

uses cost-benefit analysis to make policy decisions. Despite using relatively simple models in its cost-benefit

estimation, CBMM’s principled approach to MM allows matching the performance of existing systems while

also improving system behavioral consistency. CBMM paves a way for kernel MM behavior to become less

opaque, unlocking further performance and optimizations in the future.
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5 characterizing physical memory fragmentation

A [system] [fragmented] against itself cannot [run memcached].
— Abraham Lincoln, 1858
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Surprisingly little prior work exists to characterize or quantify fragmentation, even though many papers

refer to its impact and many designs seek to mitigate or avoid it. For example, it is unclear what contiguous

memory allocations are actually used for, the degree to which workloads fragment system memory, what

types of memory allocations cause fragmentation, how fragmentation changes over time, etc. To fill the above

gaps in knowledge, we conduct the first study of external physical memory fragmentation in productions

settings.

5.1 Study: Linux Allocation Sizes

It is unknown what allocation sizes are common, and thus what causes and is impacted by fragmentation.

We use BPF to record all contiguous multi-page allocations in Linux for several batch and server workloads

on server-class machines using a similar experimental setup to CBMM.

Finding 1. In Linux, the most common use of contiguous memory is huge pages (512 contiguous pages). I/O-

heavy processes also use contiguous memory for buffers and slab allocators for kernel data structures (usually 2-8

contiguous pages). (Table 5.1)
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Process Description Contiguous Memory Usage (Size per Allocation in Pages)
java Java virtual machine THP (512), Slab(memory mapping, process) (2-8)
jbd ext4 journaling kernel thread Slab(block I/O) (2-8)
lettuce-epol Asynchronous I/O (redis) UDS (2-4), THP (512)
mcf_s SPEC 2017 mcf THP (512)
memcached In-memory key-value store THP (512)
pgrep Searches for processes by name Slab(file,dirent,path) (2-8)
redis Redis key-value store server UDS (2-4), THP (512), Slab(filesystem) (8)
sshd Secure Shell daemon (server) Networking packetization buffer (8), Slab(TCP, memory map-

ping) (2-8)
sudo Execute as superuser Slab(memory mapping, file, path) (2-8), THP (512)
xz_s SPEC 2017 xz THP (512), Slab(file,dirent,path) (2-8)

Table 5.1: Contiguous memory usage (in order of number of allocations) of notable processes in workloads.
THP = Transparent Huge Pages. UDS = Unix Domain Socket buffer. Slab(X) = kernel slab allocator for X
data structures.

Typically, a single process’s use of contiguity was dominated by one use case. In memcached, mcf, and xz,

huge pages comprise 84%, 48%, and 86% of all large allocations. In redis, almost 100% of large allocations

back a Unix Domain Socket buffer for threads to communicate. In sshd, 87% of contiguous memory is for

network data packetization buffers. All processes triggered kernel slab allocations for kernel data structures,

which have been shown to increase fragmentation [115]. Daemons, such as ext4’s journaling thread, also

make slab allocations (e.g., I/O buffers).

Implications: Though Linux maintains intermediate-sized free lists, they are rarely used except to fill

lower-order lists. Separating the allocation mechanisms for 2-8 page chunks and huge pages may preserve

contiguity for longer. For example, smaller allocations could be made from a different part of the physical

address space from huge pages.

5.2 Study: Real World Fragmentation

In order to gain a better understanding of fragmentation in the real world, we instrument live machines in the

Computer Sciences department at University of Wisconsin-Madison, including departmental infrastructure

and infrastructure and compute nodes from the Center for High-Throughput Computing.

Methodology

Host Type

(Amt)

CPU Thds/Cores/Sockets (Family; N machines if >1) Mem (N if

>1)

Description

hpc-exec (8 BM) 48T/48C/4S (Opteron’13), 32T/16C/2S (Sandy

Bridge’12), 40T/20C/2S (Skylake’17), 40T/20C/2S

(Ivy Bridge’13), 4T/4C/1S (HarperBridge’08)

128GB (5),

512GB (2),

16GB (1)

Generic execution hosts
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Host Type

(Amt)

CPU Thds/Cores/Sockets (Family; N machines if >1) Mem (N if

>1)

Description

hpc-gpu1 (4 BM) 32T/16C/2S (Haswell’14), 40T/20C/2S (Skylake’17),

96T/48C/2S (EPYC’19)

2TB (2), 512GB,

128GB

GPU execution hosts

hpc-gpu2 (2 BM) 160T/80C/4S (Skylake’17), 40T/20C/2S (Skylake’17) 512GB, 256GB Dockerized GPU workloads for

particular project

hpc-hmem (2 BM) 80T/40C/4S (Ivy Bridge’14), 80T/40C/4S (Broadwell’16) 2TB, 4TB High-memory hosts

hpc-hypr (6 BM) 32T/16C/2S (Sandy Bridge’12), 12T/12C/2S (Opteron’10) 96GB (4), 64GB

(1), 32GB (1)

Hypervisor hosts

hpc-ceph (2 BM) 32T/16C/2S (Ivy Bridge’13) 128GB Ceph object store hosts

hpc-subm (2 BM) 32T/16C/2S (Sandy Bridge’12) 96GB User access points for submit-

ting jobs

hpc-es (1 BM) 12T/12C/2S (Opteron’10) 64GB Host running elastic search +

kibana

hpc-graf (1 BM) 48T/48C/4S (Opteron’13) 128GB Host running graphana + nosql

database

hpc-fprx (2 VM) 4 vCPUs (Intel, AMD) 32GB Squid forward proxy

hpc-rprx (2 VM) 12 vCPUs (Intel) 32GB Squid reverse proxy

hpc-stag (1 VM) 4 vCPUs (AMD) 8GB Host for staging data into local

HPC storage

hpc-web (1 VM) 4 vCPUs (Intel) 4GB Static content web server

hpc-dkca (1 VM) 2 vCPUs (Intel) 4GB Docker caching registry

hpc-gang (1 VM) 8 vCPUs (AMD) 64GB Ganglia time-series metric gath-

erer

hpc-mntr (1 VM) 4 vCPUs (Intel) 8GB Icigna/nagios monitoring ser-

vice

cs-rsch

(32 BM, 12 VM)

2 vCPUs (Broadwell ’16; 7), 4T/4C/1S (Yorkfield ’08; 6),

56T/28C/2S (Broadwell ’16; 3), 2T/2C/1S (Blackford ’05;

3), 1 vCPU (Broadwell ’16; 3), 4T/4C/1S (Yorkfield ’08;

2), 32T/32C/4S (Opteron ’13; 2), 128T/64C/2S (EPYC

’17), 128T/64C/2S (EPYC ’20), 48T/24C/2S (Cascade Lake

’19), 48T/24C/1S (EPYC ’20), 40T/20C/2S (Skylake ’17),

32T/32C/2S (Opteron ’13), 32T/16C/2S (Skylake ’17),

32T/16C/2S (Sandy Bridge ’12), 32T/16C/2S (Haswell

’14), 32T/16C/2S (EPYC ’19), 24T/12C/1S (Ryzen ’19),

16T/16C/2S (Opteron ’13), 4T/4C/1S (Opteron ’10),

4T/4C/1S (Ivy Bridge ’12), 2C/2T/1S (Opteron ’09), 15

vCPUs (Broadwell ’16), 2 vCPUs (Haswell ’14)

2.3TB (1), 1TB

(1), 512GB

(3), 384GB

(1), 256GB

(5), 225GB (1),

64GB (4), 33GB

(1), 32GB (5),

16GB (1) 8GB

(12), 4GB (3),

2GB (6)

Various hosts used by different

research projects
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Host Type

(Amt)

CPU Thds/Cores/Sockets (Family; N machines if >1) Mem (N if

>1)

Description

cs-misc

(23 VM, 6 BM)

1 vCPU (Broadwell ’16; 8), 2 vCPUs (Broadwell ’16; 7),

4 vCPUs (Broadwell ’16; 5), 1 vCPU (Haswell ’14; 3),

20T/10C/1S (Cascade Lake ’19; 3), 64T/32C/2S (Cascade

Lake ’19), 2T/2C/1S (Blackford ’05), 4T/4C/1S (Yorkfield

’08)

192GB (1),

64GB (3), 32GB

(1), 16GB (3),

8GB (5) 4GB

(6), 2GB (10)

Misc hosts supporting specific

use cases/projects

cs-cuda (16

BM)

48T/24C/1S (EPYC ’19; 4), 48T/24C/2S (Broadwell ’16; 3),

64T/32C/2S (EPYC ’19; 2), 64T/32C/2S (Cascade Lake ’19;

2), 48T/24C/2S (Cascade Lake ’20), 96T/48C/2S (Cascade

Lake ’20), 48T/24C/2S (Cascade Lake ’19), 36T/18C/1S

(Skylake ’17), 56T/28C/2S (Broadwell ’16)

512GB (4),

480GB (1),

256GB (5),

192GB (2),

128GB (3),

96GB (1)

Research hosts using Nvidia

CUDA [107]

cs-slrm (15

BM)

48T/24C/2S (Haswell ’14; 13), 32T/16C/2S (Skylake ’17),

24T/12C/1S (Haswell ’14)

384GB (1),

128GB (14)

SLURM compute nodes run on

behalf of Stats dept

cs-doop (3 BM) 48T/24C/2S (Cascade Lake ’19; 3) 64GB Hadoop cluster used for re-

search

cs-igpu (4 BM) 64T/32C/2S (Cascade Lake ’19; 4) 512GB Instructional lab machines with

GPUs

cs-afs1 (11

BM)

16T/8C/1S (Cascade Lake ’20; 4), 8T/4C/1S (Broadwell

’16; 3), 4T/4C/1S (Opteron ’10; 2), 20T/10C/1S (Cascade

Lake ’19), 4T/2C/1S (Clarkdale ’10)

64GB (1), 32GB

(4), 16GB (3),

4GB (3)

AFS servers [74, 110]

cs-afs2 (6 VM) 1 vCPU (Broadwell ’16; 3), 1 vCPU (Haswell ’14; 3) 2GB (3), 1GB

(3)

AFS servers [74, 110]

cs-sush (6 VM) 1 vCPU (Broadwell ’16; 5), 4 vCPUs (Broadwell ’16) 16GB (1), 2GB

(5)

Backup servers

cs-msql (4 VM) 1 vCPU (Broadwell ’16; 3), 2 vCPUs (Haswell ’14) 2GB MySQL databases

cs-nfs

(3 VM, 1 BM)

1 vCPU (Broadwell ’16; 2), 2 vCPUs (Broadwell ’16),

48T/24C/2S (EPYC ’19)

128GB (1), 2GB

(3)

NFS servers

cs-pstg (2 VM) 2 vCPUs (Broadwell ’16; 2) 4GB, 2GB PostgreSQL servers

cs-dns

(6 VM, 1 BM)

2 vCPUs (Broadwell ’16; 3), 1 vCPU (Broadwell ’16; 3),

4T/4C/1S (Lynnfield ’09)

8GB (1), 4GB

(2), 2GB (3),

1GB (1)

DNS servers, recursers, load

balancers

cs-mntr (3 VM) 4 vCPUs (Broadwell ’16; 3) 16GB (1), 4GB

(2)

Network/application monitor-

ing

cs-vaul (3 VM) 2 vCPUs (Broadwell ’16; 3) 2GB HashiCorp Vault secret man-

agement servers

cs-prx (3 VM) 2 vCPUs (Broadwell ’16; 2), 1 vCPU (Broadwell ’16) 4GB (1), 2GB

(2)

Various proxy servers

(Haproxy, squid, REST)

cs-dhcp (2 VM) 2 vCPUs (Broadwell ’16; 2) 2GB DHCP hosts
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Host Type

(Amt)

CPU Thds/Cores/Sockets (Family; N machines if >1) Mem (N if

>1)

Description

cs-conf (2 VM) 16 vCPUs (Broadwell ’16), 4 vCPUs (Broadwell ’16) 32GB, 8GB Configuration management

servers

cs-vpn (1 VM) 2 vCPUs (Broadwell ’16) 2GB VPN server

cs-tftp (1 VM) 2 vCPUs (Broadwell ’16) 2GB TFTPD server used for installs

cs-apt (1 VM) 2 vCPUs (Broadwell ’16) 2GB Apt-Cacher Debian package

cache

cs-web (22 VM) 2 vCPUs (Broadwell ’16; 15), 1 vCPU (Broadwell ’16; 4),

2 vCPUs (Haswell ’14; 3)

4GB (2), 2GB

(19), 1GB (1)

Web servers for dept/facul-

ty/staff/student web sites

cs-ldap (7 VM) 2 vCPUs (Broadwell ’16; 3), 4 vCPUs (Broadwell ’16; 2),

1 vCPU (Broadwell ’16; 2)

8GB, 4GB (4),

2GB (2)

LDAP hosts

cs-cweb (5 VM) 4 vCPUs (Broadwell ’16; 3), 2 vCPUs (Broadwell ’16; 2) 16GB, 8GB,

4GB, 2GB (2)

Containerized web applica-

tions

cs-mail (4 VM) 2 vCPUs (Broadwell ’16; 4) 4GB (3), 2GB

(1)

Mail servers

cs-gitl (3 VM) 8 vCPUs (Broadwell ’16), 4 vCPUs (Broadwell ’16), 2

vCPUs (Broadwell ’16)

12GB, 4GB,

2GB

Gitlab server

cs-tckt (1 VM) 4 vCPUs (Broadwell ’16) 8GB Request Tracker 4 ticket tracker

cs-cal (1 VM) 1 vCPU (Broadwell ’16) 2GB Department events calendar

server

cs-rsyn (1 VM) 2 vCPUs (Broadwell ’16) 2GB rsync server for external collab-

orators

Table 5.2: Description and count of instrumented nodes. cs-* are department infrastructure hosts; hpc-* are
high-performance computing infrastructure. “BM/VM” indicates whether the node is bare-metal or a virtual
machine.

We observed 248 instrumented machines total, from X’s department infrastructure (DI) and high-performance

computing (HPC) infrastructure, spanning several generations and manufacturers of x86 hardware (Intel

Blackford ’05 and AMD Opteron ’09 to AMD EPYC’19 and Intel Cascade Lake ’20), and different sizes

of memory (from 1GB to 4TB). We observed 45 different classes of workloads (as classified by system

administrators; e.g., file servers, web servers, hypervisors, research workstations, and compute nodes from a

high-performance computing cluster), detailed in Table 5.2. Many DI nodes are virtual machines, whereas

most HPC nodes are bare-metal hardware. DI nodes mostly run Ubuntu 20.04 with kernel 5.4; HPC nodes

run Centos7 with kernel 3.10.0 or 5.0.8.

We instrumented all systems for 7 days from April 6 to April 13, 2022. In every 30-minute window during

this period, we pick a random minute to perform a “snapshot” of the system. Our instrumentation captures

the contents of /proc/kpageflags, which contains information about each physical 4KB page of memory
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and is our primary view into the memory fragmentation of the system. We also capture the kernel version,

hardware details, and uptime. For VMs, we capture all information at the guest OS level. No machines were

captured at both the guest and host OS level.

Free Memory

We examine the amount of free memory on all machines to better understand the impact of fragmentation.

Finding 2. Small VMs experience high memory pressure and churn. Machines with large amounts of memory

often have lower fragmentation.

DI nodes tend to use small VMs (6 4GB total) with 6 20% free memory. Most DI workloads and several

HPC workloads have less than 2GB of free memory at least 75% of the time. These small VMs are sized

to have minimal idle memory (e.g., by using balloon drivers). Background tasks, such as logging or virus

scanning, have high file cache usage that leads to churn (i.e., pages being reclaimed and recycled) even if

load is low.

Machines with more memory are more likely to be either highly idle (i.e., most cores idle; > 50% free

memory) or highly utilized (6 10% free memory). Often large amounts of memory are freed after a process

terminates; as we will see later, this leads to lower fragmentation.

Implications: On small VMs, kernels may want to use more passive fragmentation control, such as careful

page (re)placement, because memory pressure is high and resources are limited. On large machines with

more resources, more aggressive fragmentation control (e.g., compaction) may be acceptable.

Memory Usage and Homogeneity

We characterize machines’ use of physical memory, and analyze the contiguity of physical memory with

the same page flags in /proc/kpageflags – which we call “homogeneous”. Homogeneity is a good proxy

for contiguity/fragmentation because contiguous memory allocations must be homogeneous in usage and

page table permissions; non-homogeneous regions indicate discontiguous/fragmented memory usage, so

homogeneity bounds contiguity.

Finding 3. We observed 6 common and distinct memory usage patterns (Figure 5.1).

In Linux, we found that all memory in the system can be classified as one of seven usage types: free/unal-

located memory, anonymous (non-huge-page) memory, anonymous huge page memory, file cache memory,

pinned/opaque memory (e.g., used by drivers/DMA), kernel slab memory (used for common kernel data

structures), and other special cases (zero pages, pages with detected hardware failures, etc).

We observed 6 common memory usage patterns:
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Figure 5.1: Examples of memory usage patterns.

1. Slow-filling buffers: slow-filling buffers that periodically flush to disk.

2. GPU workloads: dozens of gigabytes of memory dedicated to I/O.

3. Small VMs with low-medium load: small single-task dedicated VMs with fairly consistent memory usage,

only a few hundred MBs of free memory, and significant memory dedicated to balloon drivers [138].

4. Highly variable and unpredictable workloads: widely varying and unpredictable memory usage as compute

tasks run, terminate, and are replaced.

5. Idle: large amounts of idle free memory; low activity.

6. Hypervisors: mostly huge pages backing guest memory.

Implication: Memory usage is highly diverse but often predictable. While current designs assume work-

loads are unknown, often this assumption is overly conservative.

Finding 4. Memory reclamation, triggered by memory pressure, is a major source of fragmentation because it breaks

up homogeneous regions. The fragmentation is often irreparable, even when 1/4 of memory is freed periodically.
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Figure 5.2: Amount of contiguity in free and allocated memory for the different memory usage patterns in
Figure 5.1.

This is a key finding of our work. Memory pressure causes fragmentation to irreparably worsen by up to

an order of magnitude, even if up to 1/4 of total memory is periodically freed, supporting prior findings [96].

Often such freed pages are quickly allocated to the file cache, preventing them from being merged. Batch tasks

and background daemons/loggers can cause regular and periodic memory pressure, leading to increasing

fragmentation over time. These behaviors are especially clear in patterns (1) - (4), as exemplified in Figures

5.2a to 5.2d. Unfortunately, as shown in Section 5.2, memory pressure is common.

Conversely, homogeneity (of both allocated and free memory) is correlated to free memory (R2 = 0.63,

i.e., free memory is the single most important factor in amount of homogeneity). Machines that are never

fully utilized tend to retain significant amounts of homogeneity in both free and allocated memory. Idle

machines tend not become significantly more or less fragmented over time; there is no memory pressure to
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trigger Linux’s reclamation (increasing fragmentation) or compaction (decreasing fragmentation). Also,

most idle machines lack significant fragmentation in their free memory anyway.

Implication: Reclamation must be made contiguity-aware, so that it does not needlessly break up memory

regions.

Finding 5. File caches comprise significant memory usage on most machines. Memory allocated to file caches

usually becomes progressively more fragmented over time, especially in the presence of reclamation.

This is a key finding of our work, illustrated by corresponding Figures 5.1 and 5.2. In patterns (1), (2),

and (4), significant file cache activity leads to reclamation, which as we show later, increases fragmentation

(illustrated by corresponding Figure 5.2). Moreover, Linux lacks general huge page support in the file

cache; the file cache manages memory at base page granularity, so memory management operations often

obliviously break up “incidentally contiguous” [118] memory regions. All patterns except (5) use significant

amounts of file cache memory, so file cache memory has a significant role in fragmentation control.

Implications: Kernels should make file caches contiguity-aware. File cache huge page support would

reduce fragmentation and allow this significant memory pool to use huge pages. Interestingly, most prior

work focuses on anonymous huge pages [67, 87, 105, 113, 115, 142, 144]. Additionally, pages that reduce

fragmentation can be prioritized for eviction from the file cache, including during writeback operations. For

example, the kernel can flush dirty pages that interrupt a run of otherwise clean pages, or reclaim pages that

are already not physically contiguous with their neighbors so as to avoid worsening fragmentation.

Finding 6. Kernel slab memory and page tables usually accounted for very little memory usage.

Combined, slab and page table memory comprised 6 5% on 44% of machines and 6 13% on all but 6

machines.

Implication: While some prior work significantly modifies the memory allocator to avoid fragmentation by

these pages [115], it may suffice (and be more efficient) to reserve a small dedicated memory pool for slabs

and page tables, falling back to the normal allocator in case of higher usage.

Finding 7. For each finding above, there was one or two exceptional nodes that broke the rule.

For example, there was one node that had high utilization and but also relatively high homogeneity.

There was also a small but significant minority of nodes that did not fit any of the six patterns we identified,

and a handful of nodes that had sizable amount of kernel slab memory.

Implications: It may make sense to have specialized memory management policies for common behaviors,

but general fallback policies are needed for exceptions.
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Figure 5.3: Median % of free memory vs median % of free memory that is contiguous enough for a 2MB
huge page throughout the observation window for each machine. The 205 blue points indicate either low-
memory-low-huge-page nodes or low-usage-high-huge-page nodes. The 43 red points indicate all other
nodes.

Huge Page Feasibility and Usage

We examine huge page usage and the percentage of homogeneous regions that are 2MB or larger, a common

huge page size on x86 and ARM.

Finding 8. Few machines used huge pages.

Only 69 machines used more than 10MB of huge pages at any time throughout the observation window,

and many of those machines did not use huge pages most of the time. Only 35 machines used more than

1GB of huge pages at any time throughout the observation window. Applications do not usually request

huge pages explicitly, and most machines are configured not to use huge pages, surprisingly. Except for

hypervisor nodes, no machine had more than 1/4 of their memory backed by huge pages (and often much

less). Hypervisor nodes used huge pages for over 1/2 of memory, presumably to back guest pages.

Implication: Kernels need transparent huge page systems that can be on-by-default without regressing

performance.

Finding 9. Large-scale contiguity (e.g., huge pages) is rare, but smaller-scale contiguity is quite common.

Figure 5.2 exemplifies this finding. Small VMs usually have homogeneity up to 64KB, but rarely large than

that. High-variability machines, such as HPC compute nodes (e.g., Figure 5.2d), rarely had homogeneity

greater than 128KB, especially in free memory. Only when a task consuming more than 1/3 of memory

terminated did fragmentation decrease, and then only 1/6 of memory became less fragmented. Moreover,

the unfragmented memory was often quickly consumed by Linux’s Transparent Huge Page system, leaving

the remaining free memory fragmented. Kernel slab memory tends to have 8KB-16KB contiguity generally,

which matches our findings in the previous section.

Implications: Our findings support prior proposals for contiguity-aware TLBs [116,118]. They also suggest
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a 64KB granularity for some kernel mechanisms, as such homogeneous chunks are commonly present. Such

mechanisms might include memory ballooning/hot-unplugging, reclamation, range-based virtual-address

translations or permissions, or even the kernel allocator. Moreover, a smaller intermediate 64KB huge page

size might be more usable than existing sizes (2MB, 1GB on x86_64), which often require compaction.

Finding 10. On machines with little free memory, little of that free memory was usable for huge pages.

Figure 5.3 shows the amount of free memory on each machine that is contiguous enough to create a huge

page compared to the total amount of free memory. Over 83% of machines fit in one of two general patterns:

(1) if 6 25% of memory is free, most of it is discontiguous (lower left); or (2) if > 50% of memory is free,

almost all of it is highly contiguous (upper right).

43 nodes (17%; red in the figure) fit neither pattern. Of these, most had a relatively large amount of file

cache memory at some point. Many were also machines with highly variable workloads. A few also had

relatively large amounts of slab memory (shown to cause fragmentation in the past [115]) and huge pages

(i.e., contiguous memory was already being used, leaving free memory fragmented).

The use of file cache pages on an otherwise idle machine can reduce contiguity, as discussed in Finding 5.

For example, about 15% of large machines with ample free memory had low contiguity compared to similar

machines.

Implication: Currently in Linux, to have contiguity a machine must be either overprovisioned with memory

or pay the overhead of memory compaction.

Change over time

We examine the usage of each page of memory on each machine across snapshots.
Finding 11. The page flags of > 95% of pages changed less than once every 3 hours, and on most machines, 20-60%

of pages did not change at all.

On almost all machines, > 95% of pages changed usage (i.e., flags in kpageflags) 6 50 times over the

course of a week (i.e., less than 1 change every 3 hours). Moreover, on most machines, 20-60% of pages did

not change usage at all during the observation period. While it is possible that additional changes were not

captured between snapshots, we took our snapshots at a random time in each half hour window so as not to

miss frequent or periodic behavior.

For pages that did change, the changes tended to be slightly bursty, rather than uniform over time – on

most machines, the distribution of time between changes was long-tailed (skewness between 2 and 41),

indicating multiple relatively rapid changes followed by extended periods with no change. Only 19 machines
1Skewness is a statistical quantification of the long-tailed-ness of a distribution. 0 indicates a symmetric distribution, while positive

and negative values indicate right- or left-tailed-ness, respectively. A common rule of thumb is that values > 1 or 6 −1 indicate highly
skewed distributions [34].
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had a high rate of page changes. These machines had little free memory and bursty workloads that drove

significant file cache activity.

Implications: This finding suggests that fragmentation is disproportionately affected by a small set of

rapidly-changing pages. If so, then fragmentation control can be more efficient by focusing on these pages,

rather than scanning through all pages, as current systems do. However, further investigation is needed;

because we captured snapshots at an average interval of 30 minutes, it is possible that our methodology

misses important changes in between snapshots that affect fragmentation’s evolution over time without

changing overall page usage (e.g., the flushing of dirty pages in the file cache).

Uptime

Finding 12. Uptime has little to do with fragmentation; rather memory pressure is a much more important factor

than uptime in magnitude of memory fragmentation.

For security reasons, over half of DI machines restart weekly, while 91% were restarted within two weeks.

In contrast, HPC machines had long and highly variable uptimes; over 97% of machines had an uptime over

one month, and nearly 20% of machines had an uptime between 1 and 4 years. Many DI machines have low

contiguity despite short uptimes due to their small size and memory pressure. Moreover, many of them had

been rebooted just days before our observation window but were already as fragmented as long-uptime

machines, despite very modest load and often entirely due to background processes such as logging or virus

scans. In contrast, many non-idle HPC machines had significantly longer uptimes but comparable or better

memory contiguity.

Implications: While some prior work suggests rebooting as a fragmentation control measure [17], our

results show that this technique is unreliable at best.

5.3 Future Work

There are many aspects of our data that we have yet to explore. First, we do not analyze the kernel’s “dirty”

page flag (not to be confused with the page table bit), which indicates that a page needs to be flushed.

Likewise, the kernel has an “accessed” flag (again not to be confused with the page table bit), which indicates

that a page has been touched recently. While these flags give low-resolution information, they may still offer

significant insights about idle memory and file cache dirtiness. Key questions include (1) are there common

patterns of file cache usage? (2) what percentage of memory is idle? (3) are there policies that could be

applied for different usage patterns? (4) what is needed to detect these patterns and apply appropriate



76

kernel policies? (5) what is the rate of change between snapshots (i.e., is there behavior between snapshots

that our data does not capture)?

Second, our analysis of change over time is only cursory. Key questions include (1) can we identify

changes in workload behavior over time? (2) how long does it take system behavior to quiesce to a steady

state? (3) how does change over time correlate to other memory usage characteristics we analyzed?

Another avenue of future work is to prototype and test designs/policies suggested by our findings. For

example, our work suggests that managing memory at a granularity around 16KB may be possible because

small-scale contiguity is often available even on fragmented systems. Also, making reclamation and file

cache management more contiguity-aware may reduce fragmentation. More research is needed to see if these

ideas can work and benefit systems in practice.

5.4 Conclusion

More work is need to understand and mitigate fragmentation in current systems. Our work suggests that

huge page support in the file cache and fragmentation-aware reclamation algorithms could have a big impact

to reduce fragmentation.
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6 experiences and takeaways

In this section, we describe experiences, impressions, and takeaways that developed over the course of the

work described in this dissertation.

Systems have a “zone of stability” corresponding to their common case usage. Outside the “zone of

stability”, they are unpredictable and unreliable. The F-16 fighter jet is “aerodynamically unstable” –

it requires the fly-by-wire system to maintain an angle-of-attack within a certain window; outside of the

window, the plane stalls. In our experience, modern systems are much the same: they are heavily tested and

optimized along commonly used code paths, but if you stray off the beaten path and do something unusual,

you are in for a crash (pun intended). Nowhere was this more evident than in our work on 0sim. We found

that while Linux has no theoretical or fundamental limits on the amount of physical memory, there are a lot

of practical issues and annoyances that need sorting out before a researcher can be productive.

First, many Linux distributions and tools have arbitrary hard-coded limits. For example, Ubuntu does

not support more than 1023GB of memory, and CentOS does not support more than 12TB. While CentOS

documents its limit, Ubuntu, Debian, and Fedora do not document their limits, and we discovered them after

long searches for an explanation for strange errors and crashes. QEMU’s command line argument parser

seems unable to accept “8000G” as an argument for the -m flag, which specifies the amount of memory of the

guest, although it accepts smaller amounts. This artificially limits the size of 0sim simulations to 8TB.

Second, documentation from hypervisors and chip vendors is sparse, especially regarding extreme

environments like those we studied. We find that neither Intel nor AMD document the number of physical

and virtual address bits their processor support; rather, we rely on Linux’s /proc/cpuinfo file to find these

values for machines to which we have access. Likewise, we found that knowledge about the meanings and

usages of various KVM options was scarce. Often, we resorted to reading the KVM source code or crawling

through poorly-organized kernel mailing lists. It is especially difficult to find out which KVM options are

affected by the number of physical or virtual address bits supported by the host processor.

Third, problems rarely result in a clean error. For example, we found that if a guest was given 1TB or

more on an Ubuntu host, no error was thrown at all; rather, the QEMU process itself hangs forever. In other

situations, we found that booting a large guest on a CentOS host with the wrong KVM options would lead to

a guest general protection fault on boot. In some situations, a seemingly sane combination of host, guest, and

KVM options would inexplicably lead to guest kernel null pointer panics. These sorts of errors are hard to

explain and generally difficult to debug.

We hope that by allowing researchers to play around with large simulated systems, 0sim will improve
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the quality of software, documentation, and failure behavior in general.

Fail-slow failures are growing in importance and should be treated as first-class correctness problems.

Performance debugging remains among the most tedious and challenging of tasks facing system developers.

It is not a stretch to say I spent most of the last few years debugging anomalous performance, often fruitlessly.

In fact, anomalous performance during the 0sim project was the inspiration for the CBMM project.

I posit that the performance debugging curse occurs because current systems treat optimizations as

implementation details to be hidden, rather than part of the interface of a system to be tested and documented.

As a result, when the conditions of those hidden optimization are not met, the system is mysteriously slow,

and the problem is difficult to debug, reproduce, or fix. An example of this is Transparent Huge Pages, as

discussed in Chapter 4.

The problem is not limited to MM, either; I think it is a problem of growing importance to system

design in general. In 2018, the architecture and OS communities were rocked by the Spectre and Meltdown

vulnerabilities [86, 93]. These vulnerabilities exist solely because performance is not part of the architecture

(i.e., interface) but the micro-architecture (i.e., implementation). Likewise, recent work on disk failures

suggests that fail-slow disk failures have a massive impact on datacenters [94]. So far, system developers

have treated optimizations as secondary-concerns compared to functional correctness. I suggest that we start

treating system performance as part of the interface – a first-class correctness concern.

More practically, here are some properties I found myself repeatedly wishing were true of Linux:

• Transparency: optimizations should be strictly opt-in with good documentation about when they can

be applied and what their limitations are. I include micro-architectural optimizations in this.

• Fail-fast: a system should prefer to fail quickly with an error than to succeed slowly without an error.

Fast failures are easy to debug and reproduce. Slow successes propagate deeper into a system leading

to either anomalous behavior (e.g., a really slow successful response) or delayed errors (e.g., a timeout

in some other part of the system).

• Configurability: it should be possible to turn on and tune a single optimization in the absence of

others to see what its effects are (and again, I include micro-architectural optimizations). For example,

such configurability would have helped to debug the performance overhead of asynchronous memory

compaction; instead, we resorted to coaxing the system into compaction, which also had the effect of

triggering reclamation and confounding our experiments. Another example: many times, I’ve wanted

to turn off hardware optimizations such as page walk caches or prefetchers for a short stint so as to see

the true impact of TLBs or NUMA effects.
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Heuristics are a fast way to make a project functional, but they can result in complications later when

hidden assumptions interact pathologically. By their nature, heuristics abstract away details, simplifying

implementation. However, those same details may turn out to matter, leading to unexpected behavior that is

hard to debug precisely because the details are hidden. Worse, multiple heuristics together may produce

pathological interactions, as we saw in Chapter 4.

A major thrust of our work focuses on measurement-based MM designs and policies. If you use heuristics,

make sure you thoroughly measure, understand, and document your assumptions. As demonstrated by

CBMM, this yields faster and more debuggable systems.

MM extensibility and modularity are important. Code quality and engineering effort matter a lot, even

though they often go unrewarded. Linux’s current MM code is quite initimidating, in my humble opinion,

and I’ve been working with it for years. The code is mostly not modular, documented, or self-documenting.

Pointers to every data structure are scattered around like dandelions. Complex and non-obvious synchro-

nization invariants are enforced by an ominous mix of convention, grep, and luck (especially if you are

writing a research prototype that will never be code-reviewed). struct page, one of the core data structures

of Linux MM, has about 20 nested unions of structs of unions of madness – to the extent that key developer

Matthew Wilcox made a spreadsheet to explain it [141]. This lack of modularity and extensibility is a strong

hinderance to experimentation.

Kernel developers must wrestle with complex, invasive changes to kernel MM to support new (or even

not-so-new) hardware paradigms. For example, even though huge pages have been generally available

for over two decades [105], Linux still does not implement huge page support in its file cache. Efforts to

add this support necessitate massive refactorings, such as the struct folio work currently under way [48].

Other recent work such as Meta’s Transparent Page Placement have made invasive changes across 22 files to

implement support for memory tiering [72, 99].

The lack of extensibility also makes it difficult to measure kernel behavior without modifying it directly to

add in instrumentation. This was the approach we resorted to for our CBMM study of page fault latency and

huge page benefits. Admittedly, the eBPF framework is massively and rapidly improving kernel extensibility,

but there are many more niche tasks that cannot be done with generic kernel extentions like eBPF. For

example, in our attempts to reproduce fragmentation patterns, the lack of MM extensibility proved to be a

hinderance to studying and reproducing MM behavior.

Finally, unmodular and unextensible code is hard to understand and learn about, which particularly

affects students. I spent a fair bit of time during the 0sim and CBMM projects helplessly floundering around

the kernel MM code hoping for answers about why my kernel was panicking. I can recall watching at least 3
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other students go through the same process. This is a massive and unnecessary waste of time, grant money,

and sleepless nights.

I am heartened by the renewed emphasis that modern systems programming languages, such as modern

C++ and Rust, place on modularity and encapsulation. I would like to see more of these concepts seep

back into the Linux kernel. For my part, I have tried to spend extended time documenting and cleaning up

the code in my paper artifacts and research prototypes in hopes that they will make life easier for the next

student that has to work with them.
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7 conclusions and future work

Memory management techniques are struggling to keep up with modern computing needs. Supporting new

hardware and software paradigms mandates new tools and new MM designs and policies. In our work, we

approached this mandate with three thrusts.

First, we found that many current algorithms are not scalable to large-memory systems. We showed that

0sim is able to help find and debug these issues and prototype solutions.

Second, we found that the intuition-based heuristics and “scattered” implementations used in many

MM designs cause performance anomalies. In CBMM, we propose a centralized design based on thorough

measurements of system behavior that produces more consistent performance and is easier to debug.

Third, we characterized physical memory fragmentation in the wild by observing live machines. We

found a wide variety of behaviors and identified page reclamation and the file cache as key instigators of

fragmentation in Linux.

More complex hardware architectures and larger-scale deployments will only make MM harder and more

performance-critical. Our work, while preliminary, demonstrates a critical need for thorough measurement

and principled MM designs based on concrete data, rather than intuition, heuristics, or implementation

simplicity.

Our work suggests several useful directions for future exploration...

First, there is a need for MM algorithms and designs that scale with memory capacity. While 0sim

identified several potential issues, finding solutions is difficult. Some prior work has suggested filesystem

algorithms for memory management, as filesystems regularly have large capacities [130]. We found that a

number of algorithms in current MM designs involve scanning through lists of pages, including reclamation

and compaction. Prior work and our work suggest that these algorithms are already becoming too expensive;

can they be replaced with filesystem-inspired algorithms? Or obviated entirely?

Second, there is a need to design software such that implicit assumptions and limitations become explicit

with clear and actionable failure messages. We found that system software often breaks when run in

uncommon settings or with uncommon inputs. For example, in our 0sim work, we experienced odd software

failures from QEMU, KVM, and a number of Linux distributions when trying to run them with large amounts

of memory. The failures ranged from (suspected) emulated hardware failures to command line argument

parsing failures, and the mode of failure was usually user-unfriendly. What is needed to avoid such failure
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modes? Better programming language design? Or better programming frameworks/paradigms in existing

languages? Or something else?

Third, there is a need for extensible MM. We found that implementing new MM features in Linux for

experimentation is difficult; it hinders exploration and wastes time. There is a need for extensible MM designs

that allow the exploration of different policies and mechanisms. For example, during the CBMM project, we

wished to replace current MM policies with cost-benefit-based policies, but the implementation of Linux MM

makes this difficult because policies are scattered all over the code. Likewise, the lack of extensibility made it

difficult to accurately reproduce fragmentation patterns without extensive kernel modifications. Is it possible

to make different kernel MM mechanisms (e.g., the physical memory allocator) and policies (e.g., huge page

usage or page placement) replacable with kernel modules or eBPF scripts or some other mechanism?

Fourth, there is a need for new and more flexible hardware performance introspection, both for debug-

ging and for guiding MM policies. Page table accessed/dirty bits are woefully insufficient; MM systems

need more and better and cheaper information to guide their actions. In our dream world, hardware counters

would be easily configurable and filterable. For example, the kernel would be able to measure events that

satisfy certain conditions, such as page walks or TLB misses related to in a particular region of memory

(e.g., is this data structure causing TLB misses?). It would also be nice to have visibility into the current and

near-future state of hardware... What translations are currently in the TLB? How long would a TLB miss on

a particular address take? What are the N most (or least) heavily accessed pages? Is this page in the LLC

cache? How much memory bandwidth is currently being used by communication between NUMA nodes?

Currently, these questions are difficult or expensive to answer, but they are exactly the sorts of questions

memory managers need to ask.

Fifth, there is a need for better huge page management and memory reclamation/migration algorithms.

This has been an area of increasingly active research in recent years. Memory compaction, migration

(e.g., between NUMA nodes or memory tiers), and reclamation have well-known overheads associated with

them that make them undesirable. And yet these systems are increasingly critical to efficiency and good

performance in modern systems. Our CBMM and fragmentation studies indicate that future MM requires

robust and low-overhead anti-fragmentation techniques to make huge pages usable. Likewise, memory

reclamation, and memory migration generally, require low-overhead ways to identify target pages.

Moreover, all of these algorithms require low-overhead ways to copy memory contents and move page

mappings. Current designs require unmapping, modifying page tables, flushing TLBs (and possibly sending
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IPIs to do so), remapping, and taking TLB misses. Perhaps a hardware extension can provide a low-overhead

way to change a page mapping?

Sixth, there is an opportunity to use the relative regularity of first-party datacenter workloads for fun

and profit. First-party datacenter workloads commonly run with high redundancy for long amounts of

time or at high frequencies. They are well-known to the operator, highly controlled, and change at known

times. And yet kernels treat all workloads as if they are the first to run the workload ever in the history of

mankind. It seems that there is an opportunity for automated profiling or policy exploration at the cluster

level.

In particular, we believe that cluster-level A/B testing can be used to test out different MM policies. For

example, the cluster manager can assign some machines to use huge pages for a particular application or

memory region, while other machines use base pages. The resulting performance difference can be used

to assess whether huge pages help for the given workload or not. Similar questions about page placement

policies or performance interference between applications can also be answered by this sort of cluster-level

A/B testing.

The idea is not without precedent. Meta has used a similar automated A/B-style testing to fine-tune

architectural and boot-time parameters [129]. Also, Google uses cluster-level data aggregation and machine

learning to guide its software-defined far-memory system [88]. We propose doing something similar to

guide MM policy cluster-wide.

Seventh, there is still ample data to mine from the fragmentation study. The data we collected for our

fragmentation study is large, high-dimensional, and rich. While we extracted a number of findings from

it, there is still much left to learn. For example, we did not analyze the effect of page dirtiness on file cache

behavior. Or which pages are most likely to change over time. Or which workloads have the most volatile

pages. Or how many of the changes we observed over time were suboptimal in retrospect. Each of these

questions has potential to significantly improve memory management.

Our data and artifacts are publicly available and we hope they enable others to bring new insights to memory

management.
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