
Simultaneity Safari:

A Study of Concurrency Bugs in Device Drivers

Markus Peloquin, et al.

Department of Computer Science

University of Wisconsin–Madison

markus@cs.wisc.edu

December 21, 2009

Abstract

Concurrency has been an issue in device drivers
since the advent of interrupts. The ubiquity of multi-
core CPUs increases the urgency to fix errors in the
code (since the probability of manifestation increases)
and to understand the issues involved as architec-
tural priorities change (decreasing the probability
that threads block). The particular challenges asso-
ciated with concurrent programs, however, have not
been handled appropriately in many cases. Since the
development of tools to accurately test and debug
programs that use concurrency hinges on a deeper
level of understanding of concurrency bugs than cur-
rently exist, this paper seeks to advance the state of
the art by outlining real world examples of these bugs
as they appear in device drivers.
We have carefully examined the origins, scopes,

and mitigation strategies for a collection of 98 real
world concurrency bugs drawn from a pool of USB,
FireWire, and PCI device drivers. Our study reveals
several significant classes of bugs and a selection of
interesting anomalies, both of which may be useful in
avoiding or addressing concurrency bugs in other sit-
uations. Specifically, we found that: (1) Around 20%
of the bugs we examined were deadlock bugs, the ma-
jority of which could be grouped into certain faulty
assumptions which, once recognized, could be avoided
in future development; (2) Of the non-deadlock con-
currency bugs, nearly 43% were caused by disconnec-

tion event or power management handling sections
of the drivers. This indicates that the hot-swappable
functionality provided by the USB and FireWire pro-
tocols entails a certain challenge particular to device
drivers; (3) Although ensuring proper locking proto-
col (esp. lock balance and lock initialization) is a well-
studied issue in concurrency bug testing, a full 10%
of all bugs examined in this study failed to correctly
manage their locks.

Keywords: driver concurrency, concurrency bug,
bug characteristics, USB, FireWire, PCI

1 Introduction

The myriad of bugs present in device drivers has led
some to claim that device drivers, as a group, are
the single biggest threat to kernel reliability [1, 3, 7].
Threats imposed by failing drivers include data loss,
memory corruption (with subsequent kernel panics or
instability), and storage corruption. Some techniques
to make drivers safer involve hardware memory pro-
tection, privilege separation, and the usage of safe
languages [11]. Previous approaches have been pro-
posed that detect and test user-level concurrent pro-
grams [5, 9, 12].
For this project, we examined a number of

concurrency-related bug fixes in Linux device drivers.
By examining the nature of these bugs, we hoped to

1



gain a deeper understanding of how device drivers
differ differ from applications, how concurrency bugs
are introduced, and how concurrency bugs can neg-
atively impact kernel reliability. We hoped that this
would give insight into approaches for detecting and
avoiding bugs in device drivers in the future.

1.1 Motivation

Driver code makes up 70% of the Linux codebase,
making drivers an important target for preventing
and fixing bugs. In addition, drivers are more buggy
than other parts of the kernel; Chou et al. find that
the vast majority of bugs in the Linux kernel oc-
cur within driver code, and that the rate of bugs is
several times higher than for other parts of the ker-
nel [1]. Driver bugs can also have drastic effects; bugs
in driver code account for a significant percentage of
the crashes in a system. In Windows XP, driver bugs
cause 85% of system crashes [10].
Many of the driver bugs are related to concur-

rency. A recent work studied the development his-
tory of representative drivers and found that concur-
rency bugs account for 19% of device driver bugs [8].
While other studies have explored concurrency bugs
found in server and client applications [6], this paper
provides the first comprehensive look at concurrency
bugs found in device drivers. It is the intention of
the authors that this study can be used to reveal
interesting findings and provide useful guidance for
concurrency bug detection and resolution.
It is important to understand concurrency bugs for

several reasons. By understanding them, it may be
possible to avoid introducing them. If it is noted that
the majority of the bugs resemble one another, it may
be possible to avoid them in the future by knowing
to check similar code closely. It might also make it
possible to fix existing, undetected bugs by looking
for similar cases. For example, if a number of concur-
rency bugs involving the same function are found, it
is an indication that in the future, developers should
be especially careful writing code that includes that
function. In addition, places where that function oc-
cur should be considered automatically suspect if a
bug is encountered.
The intent of this project was three-fold: to ex-

plore the device driver environments to determine
what form concurrency bugs take in existing drivers;
to determine how those bugs were introduced to their
drivers; and to determine what, if any, general steps
can be taken to prevent the unforeseen introduction
of these errors in device drivers in the future.

2 Methodology

A list of bugs in several kinds of device drivers (USB,
Firewire, PCI) in Linux was obtained from the au-
thors of the Dingo paper [8]. The list contained ref-
erences for a large sampling of bugs from a variety
of device drivers. Each entry contained a pointer to
a BitKeeper page with changeset details, a comment
from the author, and the author’s classification of the
bug.
Using this list as a starting point, we examined

each bug by hand to determine what similarities and
differences existed between the bugs. The resulting
documentation included a description of the bug, a
description of the fix, and, when available, a history
of the bug and the consequences of its manifestation.
After processing the entire list of bugs, we designed
classifications for the prevalent patterns and interest-
ing anomalies that we had encountered. These classi-
fications segregated the bug list according to such fea-
tures as potential manifestation locations and what
methods were used to detect and repair the bug.

2.1 Bug Sources

Linux’s source code management was done with Bit-
Keeper from 2002 to 2005. Though Linux switched
to Git at version 2.6.12, BitKeeper currently con-
tains changes up to release 2.6.28. As such, BitKeeper
is the best source of “changeset” descriptions. Each
changeset includes a description of what the patch
was supposed to do, as well as a simple interface for
displaying the changes and an annotated version of
the source showing in which revision each line was
added. The descriptions by the submitter of the patch
were very helpful in determining the intent of the au-
thor.

2



2.2 Driver/Bug Selection

The USB/FireWire devices were interesting drivers
to examine for concurrency bugs due to the high cor-
relation between the drivers of outwardly dissimilar
devices. Since both USB and FireWire peripherals
support plug-and-play and hot-swapping paradigms,
the drivers must be able to handle similar special
functionality including graceful handling of unantici-
pated disconnect events; in fact, of the observed bugs,
races during disconnect events were the single largest
source of bugs in USB and FireWire drivers (see Fig-
ure 1). As similar robustness is necessary with power
management handling, this further validates the se-
lection of device drivers as interesting subjects for our
concurrency bug hunt.
The PCI drivers we studied included drivers from

network, frame buffer, sound card, and host channel
adapter card devices. While these devices lacked some
of the commonalities of USB/FireWire device drivers,
they provided another avenue of exploration that in-
cluded such interesting challenges as bug manifesta-
tions as a result of unanticipated CPU re-orderings.
As an additional avenue of exploration, we chose a

selection of bugs from various sources as candidates
for replication. These bugs were selected specifically
as they seemed the easiest to reproduce and were doc-
umented as manifested bugs in their accompanying
literature. Emphasis was also placed on bugs that
the team felt were either exemplars of common bug
situations or were very well-understood by the team.
The motivation sustaining the replication effort was
that of attaining a deeper understanding of some of
the difficulties inherent in debugging manifested con-
currency bugs.

3 Bug Classifications

For the bug patterns, we classified each bug into three
primary categories: locking protocol, deadlocks, and
races. These and other, more specific, categories are
shown in Figure 1 for our drivers, as well as described
in the following sections.

Disconnect
25.3%

Control

22.7%

Deadlock
19.2%

Locking Protocol

10.1%

Power Mgmt.

9.1%
Data

8.1%

Device5.6%

Figure 1: Types of Device Driver Bugs

3.1 Locking Protocol

For the purposes of this paper, a locking protocol bug
is any bug that fails to properly utilize the locks it
has. The two main subcategories of locking protocol
bugs are lock balance and spinlock API.

3.1.1 Lock Balance

A lock balance bug is any bug where a lock is either
held but never released or is released but never previ-
ously held. While these bugs could have easily been
detected using some automated method (e.g. using
a novel template with the methods described by En-
gler et al. [2]), no comment was made in any of the ob-
served examples that indicated how the bug had been
detected. Even with the relative simplicity of bugs in
this category, we encountered three instances of this
bug, two undetected for thirteen months [Mellanox-
10,13]1. This shows how important it is to employ

1This notation indicates an exact bug refer-
ence. For our notes on it, see the paper’s wiki at
http://cs736concurrency.wikia.com/.

3

http://cs736concurrency.wikia.com/


automated analysis techniques as a supplement to re-
active analysis.

3.1.2 Spinlock API

A spinlock API bug manifests when an attempt is
made to use the lock without having previously prop-
erly initialized it. Again, automated analysis methods
could probably have been used to detect these bugs;
that they remained undetected for one year, on aver-
age, is evidence that automated analysis techniques
were not used.

3.1.3 Other

Within the locking protocol category, there were
some bugs that we determined were clearly related
to a failure in the locking protocol, but which did
not fit into any other category. Such bugs included
an attempt to acquire the same lock multiple times
in a single thread and an attempt to acquire a se-
ries of locks from different contexts and in different
orders. These bugs had varying severity, some result-
ing in machine freezes. In this group, one deadlock
(which was caused by improper lock acquisition or-
dering) was detected using Lockdep [Mellanox-06].
The nature of these locks strongly suggests that oth-
ers within the group might be detectable in a similar
manner.

3.2 Deadlocks

A deadlock is a bug where a race condition could
cause the code to deadlock indefinitely. While all
deadlocks are races, we have separated these from the
race category as they are a special case. Accordingly,
a bug that is reported as a deadlock is not further
reported as a race in another category. In the course
of this study, the three main subcategories that we
encountered were memory allocation, non-interrupt-
safe behavior, and unsafe unlink.

3.2.1 Memory Allocation

A memory allocation bug is a specific bug related to
improper use of the GFP KERNEL flag during a mem-
ory allocation attempt. The GFP KERNEL flag was

added to certain memory allocation functions com-
mon to many of the drivers we studied. The flag,
as relevant to the purposes of the bugs we encoun-
tered, was used to allow the programmer to signal
whether the memory allocation needed to happen in
an atomic context (GFP ATOMIC), in a non-atomic
but I/O-free context (GFP NOIO), or a regular con-
text (GFP KERNEL).
This flag was added as an argument to the func-

tion usb submit urb(), where it had previously
defaulted to GFP KERNEL. When the argument was
added, all calls to it began using kernel allocation ex-
plicitly. This was a bit of a roadblock to fix errors
in various USB drivers, since they could not control
how memory was allocated.
Two major bugs were able to be fixed as a result: a

function called in an atomic context could then block
in the memory allocation step, and a function called
when I/O operations are prohibited could be sub-
jected to I/O operations as a means of satisfying the
memory allocation request. Of all the bugs encoun-
tered in the course of this study, the memory alloca-
tion bugs comprised the largest group. They serve as
an example where a single, broad-sweeping assump-
tion can negatively impact the reliability of device
drivers across the board.

3.2.2 Non-Interrupt-Safe Behavior

A non-interrupt-safe behavior bug is a more general
bug related to the improper use of unsafe interrupt
behaviors in a context where interrupts could occur.
For the most part, these bugs manifest in similar situ-
ations as the memory allocation context-related bugs
described above, but occur in a different context than
the aforementioned memory allocation flags. One of
these bugs, related to a non-interrupt-safe spinlock
being used in an interruptible context, was identified
by Lockdep.

3.2.3 Unsafe Unlink

An unsafe unlink bug is a specific non-interrupt-safe
behavior bug that came up multiple times. To can-
cel a USB Request Block (URB), one might use the
usb kill urb() function, but this is guaranteed to

4



block. The alternative is to use usb unlink urb().
This bug manifested twice. Once was in older code,

at a time when the kernel required a flag to be set in
the URB ahead of time, so it was easy to forget [USB-
Net-02]. When the flag was finally removed from the
kernel, it was clear that a few developers had made
the mistake of omitting it at some point. The other
manifestation was caused by a developer changing the
unlink version to kill, and reverted moments later by
the driver’s primary developer [RTL8150-05].

3.3 Other Races

A race bug is any race-related bug that does not cause
a deadlock condition. As these bugs do not share a
common characteristic in many cases, they are in-
stead classified according to the context in which they
occur. As such, the subcategories of race bugs are
control, data, device, disconnect, and power manage-
ment.

3.3.1 Control

A control race is any race that occurs in a control
path of the device driver during the connection, ini-
tialization, or normal use of the device. Control races
do not include races that occur during device discon-
nections or power suspensions. These errors varied
significantly in nature but included some patterns.
Some common behaviors included failure to protect
a variable from non-atomic access patterns, prema-
turely registering or de-registering a device in a non-
atomic context, and failure to protect paths where
the driver could proceed down two mutually exclu-
sive paths or down the same non-reentrant path from
multiple contexts.

3.3.2 Data

A data race is a race that occurs in the data path of
the device driver. These bugs were highly dissimilar
from one another and shared no common features
beyond the nature of their manifesting contexts.

Control-Data Control-data races are simply races
between execution of control and data paths. We

only encountered one such bug in the RTL8150
driver, where a queue remained active after the traf-
fic had been disabled and the URBs had been asyn-
chronously unlinked [RTL8150-03]. The bug was fixed
in the control path alone. In this study, the lone
control-data race is counted as both a control race
and a data race for reporting purposes.

3.3.3 Device

A device race is a race that manifests during a de-
vice’s direct memory access. Within this subcategory,
two-thirds of the bugs observed occurred in the Mel-
lanox InfiniHost III Infiniband host controller. These
bugs were particularly interesting in that, for the
most part, they manifested as a result of CPU re-
ordering.
The CPU re-ordering bugs encountered in device

races were highly dissimilar and largely dependant
on the assumptions of the developers. As an exam-
ple, one bug manifested when on systems with mul-
tiple CPUs issuing simultaneous commands to the
device [Mellanox-14]. What could happen is that the
commands, though strictly ordered, in theory, by a
mutex in the code, could be re-ordered by the CPU
and arrive out of order at the device. To fix this bug,
and most other CPU re-ordering bugs encountered,
the simple solution of adding a memory I/O write
barrier was sufficient.

Device-Data Device-data races are another rare
subclass of races, and are characterized by a race be-
tween the data path and the device. The only ex-
ample we encountered involved a breakdown in co-
herency for a cached table, though other examples
are imaginable [Mellanox-08]. In this study, the lone
device-data race is counted as both a device race and
a data race for reporting purposes.

3.3.4 Disconnect

We classified as disconnect races any control race
that occurred during the device disconnection events.
Such events could include bugs that manifest due to
hardware-initiated, hot-swapping disconnect events

5



or due to driver-initiated, component-shutdown dis-
connect events. Many of these bugs had to do either
with the attempted use of a recently de-allocated
resource or the attempted processing of an invalid
work-queue event. One such example is presented in
Section 5.2.1.

3.3.5 Power Management

The final class of races, power management races, oc-
cur when the device is placed into or later removed
from a low-power hibernation mode as a power man-
agement technique. These bugs were highly dissimi-
lar from one another and shared no common features
beyond the nature of their manifesting contexts.

3.4 Uncategorizable

Despite our best efforts, there were some bugs for
which we could not determine a satisfactory classifi-
cation. These bugs included two from the Kawasaki
LSI KL5KUSB100 USB to Ethernet controller driver
and one from the USB core hub driver [KL5K-05].
They were parts of significantly larger commits that
made changes to a sufficiently large number of loca-
tions, so determining the root cause of the bug that
was being addressed was nigh impossible. Were the
changelogs more descriptive, the changesets smaller,
or the code better commented, it would have been
possible to learn something from these bugs. Unfor-
tunately, since few coders see the inherent value of
code readability, it is highly likely that there will al-
ways be bugs whose fixes escape all but the original
programmer.

4 Bug Replication

The ability to reproduce bugs is beneficial for a couple
of reasons. It confirms understanding of what the fix
is actually doing. It also would serve as a test case
for bug detection tools.
We used several approaches to reproduce driver

concurrency bugs. Actual hardware was obtained,
and multiple attempts were used to create the condi-
tions “fixed” by some of the developers.

4.1 Reproducing a Crash Report

One of the devices that seemed to have a rather nasty
error was the RTL8150. The changelog for indicates
that it “crashes the kernel if the USB lead is un-
plugged while the device is active” [RTL8150-07]. Re-
production should only require producing a load on
the device before unplugging it. Unfortunately, out-
dated sources led to our conclusion that the device we
chose did not have the same, but a similar chipset.
As such, it had no disconnect bug.

4.2 Reproducing Memory Allocation
Errors

The other approach was to modify working code
to reproduce the more popular memory allocation
bugs. One attempt was made to cause I/O in mem-
ory allocations in the Device Mapper (a change
from GFP NOIO to GFP KERNEL). The broken De-
vice Mapper was fed a stream of I/O and control
operations for four hours without failing.
The next point of attack was the Human Inter-

face Device driver. Whenever the mouse moves, an
interrupt is fired that will allocate memory with
GFP ATOMIC. This was changed to do kernel allo-
cation requiring a far larger amount of memory, and
the amount allocated would increase at each inter-
rupt. No noticeable problems were encountered after
causing a quarter million interrupts.
It appears that the memory allocation errors de-

serve the title hypothetical. It is a reasonable pre-
caution, as these flags appear over three thousand
times in the kernel, and they cannot all be unneces-
sary. Supposing they do actually occur, the window
is probably too small in most cases.

5 Bug Extermination

The changes came about for a few reasons. Bugs may
be detected by automated tools or reported by users.
There are other cases where the change is instigated
by a careful developer, or for no apparent reason. The
causes of the bug fixes are shown in Figure 2 and in
the following sections.

6



Unknown

55.8%

Manifested

29.1% Hypothetical
7.0%

Bugzilla
5.8%

Lockdep2.3%

Figure 2: Detection Method of Device Driver Bugs

5.1 Bug Detection

We looked at the techniques used to find bugs in
the first place. In most cases, the changesets did
not document how the bug was discovered. However,
there were some cases where the exact method was
noted. Documentation included links to Bugzilla en-
tries, comments that Lockdep was used, explicit ac-
knowledgements that the bug was seen in the wild,
notes that the bug was hypothetical, and references
to “fixed” races or crashes. This last was problematic
in that it was often unclear about whether the buggy
behavior had ever actually been observed, or whether
the fix was simply aimed at preventing it.
Several bugs in the Mellanox driver were detected

using Lockdep. Lockdep is an optional validator in
the Linux kernel. It detects behavior that can lead to
lock inversion (a cycle in a partial ordering). There
are also checks whether conflicting safe and unsafe
types of locks are held at the same time. It proves
with complete certainty whether a lock-based dead-
lock is possible regardless of what happens with the
scheduling. It seems to leave the door open, however,

for deadlocks caused by blocks in atomic contexts.
Some of the changesets we examined included

Bugzilla reports. These indicate that the behavior
was observed by users who were not part of the de-
velopment team, and that the effects of the bugs were
sufficiently severe that these users filed bug reports.
These mainly seemed to involve easily reproducible
crashes.
A few changesets indicated that the bug had never

been seen to manifest; for example, our notes for a
bug in the USB network infrastructure indicate notes
that while they do not know of any problems that
were definitely caused by the bug, they still think
that it was worth fixing before a release [USB-Net-
06].
For the majority of changesets, there was not even

a hint about how the bug might have been detected.
It is likely that many of these actually did mani-
fest, which is what drew the developers’ attention to
them; however, it is also possible that some of them
were just detected by developers who happened to
notice potential problems, or who were specifically
looking for them (for example, because they knew
that GPF KERNEL was often used inappropriately).

5.2 Bug Fixes

Depending on the type of bug and the circumstances
where it occurred, there were a variety of approaches
to fixing driver concurrency bugs. In some cases, the
fix was as simple as adding locks where they had not
previously been, initializing a previously uninitialized
spinlock, or switching from potentially blocking func-
tions to guaranteed non-blocking functions. In some
cases, the code was rearranged to avoid the issue
entirely—for example, by moving the call of a po-
tentially blocking function to a point after the lock
was released as in the USB network infrastructure
[USB-Net-04]. The exact way of fixing the bug proved
highly dependent on both the type of bug as well as
its effects.

5.2.1 Bug Non-Fixes

One can hardly say that a bug has been fixed if it
has never occurred. Concurrency is far too unpre-

7



dictable, and the infinite interleavings possible (esp.
on multi-core systems) demand a higher level of as-
surance. We commented on a classic example of bug
non-fixing in Section 4.2. The only indication that
any of these bugs actually occurred was one of the
first to be fixed, where the changelog used language
like “fixes . . . deadlock” [KL5K-08].
There are cases where the change is only to reduce

the possibility of a race; one such case can be found in
the USB serial converter driver [USB-Serial-10]. For
this bug, the portion of the code where the change
occurred was removed thirteen months later by the
primary developer of the driver without any word
of the race. In some cases, reducing the probability
that a bug would manifest (window shrinking) may
be considered a valid fix, especially if a truly “correct”
fix would be very complicated or might hurt perfor-
mance in the common case. However, we did not see
many cases where window shrinking was chosen as
the method to fix a bug.

5.2.2 Incorrect Fixes

There were a few cases of incorrect fixes. The time
to fix such bugs ranged from one hour to six months.
The one that escaped notice the longest was in the
USB serial converter driver [USB-Serial-02]. In this
bug, a spinlock was held while calling a blocking func-
tion. The fix was to replace the spinlock with a mutex;
since spinlocks disable thread switching, they cannot
be used across blocking code. We could not find doc-
umentation describing this in the Linux kernel.

5.3 Bug Avoidance

Sometimes code is changed not because it was bro-
ken, but because it could be written in a way that
encourages safety. This happened once in the USB
storage driver [USB-Storage-10]. The SCSI subsys-
tem has three layers, which lends itself naturally to
a locking convention. A semaphore was introduced
that covered only the middle layer. Now the locks
can be layered in the same way as the architecture,
and deadlocks become much harder to create.

6 Related Work

Related works have previously explored the interplay
between device drivers and concurrency issues. Dingo
is an event-driven architecture for device driver de-
velopment [8]. It focuses on protecting against two
classes of bugs: concurrency faults and software pro-
tocol violations (failure to properly interact with the
OS). Ryzhyk et al. made the observation that drivers
lend themselves to an event-driven implementation
more so than a multithreaded implementation. Syn-
chronization becomes much more localized and easier
to work out, and much of this is handled by Dingo, it-
self. Protocol violations are prevented with the use of
protocol specifications. Drivers declare in their com-
ponent specification which protocols they support. A
single protocol implementation is then shared among
all drivers that need it in a uniform way.
Some work has been done to make drivers more re-

silient to general failures. TheNooks architecture for
Linux provides a wrapper for drivers, giving multiple
levels of protection, while requiring trivial changes to
existing drivers [11]. This includes lowering privilege
levels and emulating a protection domain. Corruption
of external data structures is prevented, but corrup-
tion of internal data and deadlocks still can occur.
The Minix 3 OS isolates drivers within user-mode
processes, and so shares most functional advantages
ofNooks [4]. It further allows for problematic drivers
to be detected and restarted as necessary. Heartbeats
emitted by the driver are used as an indication of
deadlocks, causing a driver restart.
Several techniques have been used to detect and

even prevent races. Eraser is a run-time analysis tool
that detects many common data races [9]. It is able
to study the execution by modifying the binary. Dim-
munix is another run-time analysis tool, and is able to
both detect and prevent deadlocks from occurring [5].
It is implemented by adding hooks to the threading
library, so it is probably easier to implement in the
kernel than Eraser. A third tool is DDVerify, which
is a static analysis tool that specializes in detecting
synchronization errors [12].
Chou et al. looked at errors in the Linux kernel

which were detected automatically by compiler ex-
tensions. They found that drivers accounted for be-

8



tween 70% and 90% of bugs, depending on the type
of bug. They also looked at other characteristics of
bugs, such as bug density by function length, bug
distribution across files, and the lifetimes of bugs [1].

7 Discussion

There were several characteristics we noticed about
Linux device driver concurrency bugs that might be
useful for developers trying to detect or avoid similar
bugs in the future. First, we noticed that there are
several very common causes of problems. For exam-
ple, the incorrect use of GFP KERNEL was responsi-
ble for a large number of deadlocks, indicating that
driver developers should take a careful look at any
code using the flag to make sure it is appropriate. In
general, calling potentially blocking functions from
atomic contexts was a bug that came up repeatedly in
our examination of changesets; appearing in such con-
texts as memory allocation, unsafe unlink, and work
queue bugs.
A type of bug that surprised us with its frequency

was locking protocol bugs. 10% of the changesets we
examined dealt with fixing a bug caused by improper
locking protocol. We encountered several that were
very simple: (1) forgetting to initialize a spinlock or
(2) entering the function epilogue responsible for un-
locking locks taken by the function, even when the
locks were never taken. These bugs indicate that even
simple static analysis might be worthwhile for device
drivers.

7.1 Limitations

There are several limitations to our results that are
inherent to the way that the set of bugs we examined
were chosen. Because all of these bugs were found
by looking in the changesets for fixes, the sample of
bugs we have might not be representative of driver
concurrency bugs as a whole. It may be biased to-
wards bugs that manifest relatively frequently, bugs
with severe results, and bugs that are simple to fix,
because these are characteristics of bugs that would
make them more likely to be fixed. It is possible that
there are numerous other concurrency bugs in the

drivers which we did not see because either the ef-
fects were not very noticeable or because they did not
occur frequently enough to be reported and fixed.

7.2 Future Work

There are several things that were outside the scope
of our project that would be interesting to investi-
gate. As mentioned in Section 7.1, our results might
be affected by a bias in the bugs we were able to
examine. Although it would be hard to completely
avoid this effect, looking to see the characteristics of
bugs discovered by other methods, such as by static
analysis, might yield further insights into the charac-
teristics of device driver bugs.
It would also be interesting to see how Linux device

drivers compare to bugs in drivers for other operat-
ing systems, although this would likely be difficult
due to the closed-source nature of many Windows
drivers. Another question to investigate might be the
similarity of concurrency bugs found in device drivers
to concurrency bugs found in other domains.

8 Conclusions

This paper provides a comprehensive study of a num-
ber of real world concurrency bugs in device drivers
and provides a study of their characteristics, manifes-
tations, detection methods, and fixing strategies. The
study references 98 concurrency bugs drawn from a
pool of USB, FireWire, and PCI drivers across multi-
ple device domains. Included in the examination were
a number of bug paradigms as well as a selection of
unique, yet interesting, bugs in the hope that their
study may drive future work in concurrency bug ex-
termination efforts.

9 Acknowledgements

We would like to thank Professor Shan Lu, who pro-
vided us with sound guidance and suggestions. Many
thanks go to Leonid Ryzhyk, whose analysis was al-
ways useful and occasionally indispensable.

9



References

[1] Chou, A., Yang, J., Chelf, B., Hallem, S.,

and Engler, D. An empirical study of oper-
ating systems errors. In SOSP ’01: Proceedings
of the eighteenth ACM symposium on Operating
systems principles (New York, NY, USA, 2001),
ACM, pp. 73–88.

[2] Engler, D., Chen, D. Y., Hallem, S.,

Chou, A., and Chelf, B. Bugs as deviant
behavior: a general approach to inferring errors
in systems code. SIGOPS Oper. Syst. Rev. 35,
5 (2001), 57–72.

[3] Ganapathi, A., Ganapathi, V., and Pat-

terson, D. Windows xp kernel crash analy-
sis. In LISA ’06: Proceedings of the 20th confer-
ence on Large Installation System Administra-
tion (Berkeley, CA, USA, 2006), USENIX Asso-
ciation, pp. 12–12.

[4] Herder, J. N., Bos, H., Gras, B., Hom-

burg, P., and Tanenbaum, A. S. Failure
resilience for device drivers. In DSN ’07: Pro-
ceedings of the 37th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and
Networks (Washington, DC, USA, 2007), IEEE
Computer Society, pp. 41–50.

[5] Jula, H., and Candea, G. A scalable, sound,
eventually-complete algorithm for deadlock im-
munity. 119–136.

[6] Lu, S., Park, S., Seo, E., and Zhou, Y.

Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics.
SIGPLAN Not. 43, 3 (2008), 329–339.

[7] Murphy, B. Automating software failure re-
porting. Queue 2, 8 (2004), 42–48.

[8] Ryzhyk, L., Chubb, P., Kuz, I., and Heiser,

G. Dingo: taming device drivers. In EuroSys
’09: Proceedings of the 4th ACM European con-
ference on Computer systems (New York, NY,
USA, 2009), ACM, pp. 275–288.

[9] Savage, S., Burrows, M., Nelson, G.,

Sobalvarro, P., and Anderson, T. Eraser:
a dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst. 15, 4
(1997), 391–411.

[10] Swift, M. M., Annamalai, M., Bershad,

B. N., and Levy, H. M. Recovering device
drivers. ACM Trans. Comput. Syst. 24, 4 (2006),
333–360.

[11] Swift, M. M., Martin, S., Levy, H. M., and

Eggers, S. J. Nooks: an architecture for re-
liable device drivers. In EW10: Proceedings of
the 10th workshop on ACM SIGOPS European
workshop (New York, NY, USA, 2002), ACM,
pp. 102–107.

[12] Witkowski, T., Blanc, N., Kroening, D.,

and Weissenbacher, G. Model checking con-
current linux device drivers. In ASE ’07: Pro-
ceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software en-
gineering (New York, NY, USA, 2007), ACM,
pp. 501–504.

10


	Introduction
	Motivation

	Methodology
	Bug Sources
	Driver/Bug Selection

	Bug Classifications
	Locking Protocol
	Lock Balance
	Spinlock API
	Other

	Deadlocks
	Memory Allocation
	Non-Interrupt-Safe Behavior
	Unsafe Unlink

	Other Races
	Control
	Data
	Device
	Disconnect
	Power Management

	Uncategorizable

	Bug Replication
	Reproducing a Crash Report
	Reproducing Memory Allocation Errors

	Bug Extermination
	Bug Detection
	Bug Fixes
	Bug Non-Fixes
	Incorrect Fixes

	Bug Avoidance

	Related Work
	Discussion
	Limitations
	Future Work

	Conclusions
	Acknowledgements

