The PRO key-value store

CS 739, project 1

Markus Peloquin et al.
mar kus@s. wi sc. edu

March 25, 2010

1 Introduction

The goal of the project was to design and implement
a consistent and fault-tolerant distributed key-value
store. We could decide what trade-offs we thought
were worthwhile. We chose to incorporate many of the
techniques we read about in class into our implemen-
tation, leading to a design similar in many ways to
Amazon’s Dynamo [1]. These features include consis-
tent hashing, heartbeats, and anti-entropy. Our PRO
system (Peloquin, Roller, Olson) is designed to be
eventually consistent, available except in the worst
cases, and able to survive most partitions. We also
chose to implement a stateful client to reduce the
work required per transaction.

Our implementation is described in Section 2. We
evaluate our implementation in Section 3, give future
work in Section 4, and conclude in Section 5.

2 Features

2.1 Consistent Hashing

We used consistent hashing to share the load evenly
between a number of servers. As pointed out by the
Chord developers and others, consistent hashing is
not enough, so each server gets a number of segments
arranged around the hash circle [2, 4]. To determine
these locations, we hash the server address, port, and
a segment index number, allowing each server to in-
dependently and without communication locate the
segments of another server given only its IP address
and port. When a key-value pair is stored, the next
server clockwise from (greater or equal to) the hash
value is the primary node, while the next distinct
node (successor) is the secondary. A strong digest
algorithm (MD5) was used both to hash server ad-
dresses and keys to the hash circle, achieving highly
random locations.

We have a bias towards providing fast reads. On a
read, either the primary or secondary node returns
the value it has stored. All writes require that both
the primary and secondary store the result, if both
are running; else the write will be performed on just
the remaining. Although the servers are most efficient
when the client sends requests to the proper node, re-
quests from clients are still forwarded so less intelli-
gent clients can still use the service. This can happen
with our own client, which may contact other servers
if it believes the primary or secondary nodes are down
This is explained more in Section 2.2.

If one of the primary or secondary goes down, the
data is no longer being replicated but is still accessi-
ble. If both are not responding, the client receives a
message about the service being unavailable for any
request.

2.2 Persistent client

One of the advantages of allowing the client to main-
tain state is that then it can keep track of which nodes
are up or down at any given time. This allows the
client to choose the correct node to send a request
to, avoiding nodes that were recently known to be
down. Because the client as specified in the project
description was stateless, we chose to implement a
client daemon that runs on the same machine as the
client. When the client wants to store or get a value,
it passes the request on to the client daemon, which
uses what it knows about the state of the servers to
send the requests more efficiently. To assist the client
daemon in determining the status of the servers, we
use the HTTP Pragma field to attach the server’s
view to responses to requests from the PRO client.
It is more efficient to get bad news from servers that
are up than from servers that are down.



2.3 Heartbeats

In order for the servers to determine who is responsi-
ble for any given key, they need to be aware of which
of the other servers are up. Each server will keep
timestamps of the latest communication with each
other. If it has been longer than a specific length of
time, the server is marked as down. This works well
when there is constant communication between the
nodes, but often there may be no requests requiring
communication, and so a lack of messages from a node
does not necessarily indicate that it is faulty.

To prevent such cases, we implemented a heartbeat
mechanism. Since it is not critical that every heart-
beat is safely received, we chose to implement it us-
ing UDP rather than TCP. The servers regularly send
heartbeats to all other servers (every 0.5 s), whether
or not they are thought to be down. If no messages
of any sort are received from another server in a time
period which is several times the length of the heart-
beat interval (1.25 s), then the server is marked down
and it updates its segment table and view.

The rationale for the timeout was to keep it low so
as to stay responsive, and the heartbeat interval was
chosen so as to not be excessive. Ideally, servers take
a long time to be marked as down but a very short
time to be marked as alive. This is because unless the
server closes a connection when it fails, it is necessary
to wait for some interval to determine whether the
server is down, or is simply responding slowly, or if
some heartbeat messages are being lost and there are
no client requests. When marking the server as alive,
it is sufficient for it to have sent one message.

2.4 Anti-entropy

Our anti-entropy system was used to correct inconsis-
tencies that arise occasionally, especially in two com-
mon scenarios. When a server comes online, it is im-
portant for it to receive the segments for which it is
the primary node from the secondary servers. For this
critical case, anti-entropy was designed to run imme-
diately when a server starts. It is not in this case
eventual consistency.

The other common case is to get data from the pri-
mary nodes to the secondary nodes, and this is ac-
complished by the periodic anti-entropy messages.
When the anti-entropy process begins for the other
existing nodes (every 10 s), the secondary node is able
to receive the updates. This does provide a healthy
window in which requests may be sent to the sec-
ondary, though it would be a simple matter for it

to reroute the request if it has not yet received the
segment from the primary.

In terms of implementation, anti-entropy is always
initiated by primary nodes to secondary nodes, and
once for each segment. The primary to secondary con-
nection was intended to reduce complexity and al-
low primary nodes to receive segments from the sec-
ondary replicas as soon as possible. A possible opti-
mization might be for anti-entropy to handle multiple
segments at once. There might be several contigu-
ous segments owned by a single host, and these could
just as well be contained in the same segment. This
assumes that our service will never allow a server to
dynamically join our system, and we would rather cut
ourselves off from that option for the future.

Version vectors were used to decide which version is
newer. Where the version numbers conflict, a times-
tamp is used as the deciding factor. The vector and
timestamp is also returned to the client in an HTTP
Pragma field.

3 Results

Our results are divided into subsections according to
the CAP theorem. We also consider how well our sys-
tem can scale in Section 3.4.

3.1 Availability

Our service usually achieves good availability. Pro-
vided that either the primary or secondary node are
available, the reads and writes will be performed.
Clients will be unable to perform any action on seg-
ments owned jointly by a pair of unresponsive nodes.

We considered allowing tertiary nodes to exist, which
would take over in the event the primary and sec-
ondary were inaccessible. Until the primary and sec-
ondary returned, the tertiary node would be the
sole owner of these segments (no replication). Clients
would still be able to write and read their own writes,
but when the primary/secondary returned, any writes
would disappear. A better approach is given in Sec-
tion 4.

3.2 Consistency

In most cases, consistency is provided. There is no
commit model for writes like in Paxos [3]. Instead,
we use a model similar to Dynamo: we attempt to



send the write to all responsible nodes, and return
success to the client if any succeed [1].

When a node comes online, the segments for which it
is the primary are updated from the secondary as
soon as possible. However, the segments it is sec-
ondary for could take as much as 10 s to update
as it passively waits for anti-entropy to send it the
segment’s data. Our service could be modified so
that servers request updates from both sides imme-
diately, but it would require switching to more ad-
vanced queuing methods.

3.3 Partitioning

There are some well-defined places where partition-
ing can cause problems in our system. If a request is
sent to a partition not containing a primary or sec-
ondary, the service will be unavailable to the client.
We have found that once a system becomes unrespon-
sive, requests are delayed for around a second. Re-
quests that arrive after heartbeats discover the parti-
tion is down return almost immediately. If values are
written to both sides of a partition, the system will
return whatever side each partition sees as long as
the partition exists. As soon as the partition disap-
pears, anti-entropy will choose whichever version had
the latest timestamp.

3.4 Scaling

Our design is definitely not scalable, as it only needs
to support four servers. It is only a question of how
much needs to be done to make it scalable. Like Ama-
zon Dynamo, in our consistent hashing scheme, ev-
ery node knows about every other node. It would
be algorithmically simple to announce a joining node
and to offload partial segments to the new node, pro-
vided there are not too many nodes. To scale further,
Chord’s approach with ‘fingers’ could be useful [4].

Heartbeats would scale in the same way as consis-
tent hashing. Because heartbeats are used only to
determine which nodes are up and simplify determin-
ing which nodes are responsible for a given key, they
are only necessary between neighboring nodes, as the
client will usually send requests to the correct node.

Anti-entropy is not a concern, as it only will exist
among k nodes for each segment.

4 Future work

Portions of our system can become unavailable when
multiple nodes are down or the system is partitioned.
If two nodes are inaccessible, the intersection of all
segments they are responsible for cannot be accessed.
A solution we liked but were unable to implement due
to time constraints was to use segment migration. If
either the primary or secondary goes down, the acting
primary node would send the segment’s data to the
acting secondary node. Then, when a node more re-
sponsible than this ‘acting secondary’ appears, anti-
entropy would move the data to the newly-running
server. After some period of time has passed, the
backup server would discard its copy of the segment.
This would allow data to remain accessible to clients,
and consistency would be maintained when the pri-
mary servers rejoin the system.

A simple change would be to have data committed to
disk. This would keep data in the system even if the
primary nodes go down at the same time. Doing this
correctly would require asynchronous writes to not
hinder anti-entropy throughput. Most operating sys-
tems should end up performing asynchronous writes
anyway, so little effort on our part would be required.

5 Conclusion

We built an eventually consistent and well-
performing system that implements some of the more
popular ideas we have come across in distributed sys-
tems. Consistent hashing is used to distribute data
and do load sharing when systems go down. Data
is replicated by the successors along the hash wheel.
Anti-entropy fills in the gaps in the commit model to
make our system eventually consistent. Heartbeats
keep our system performing well by eliminating un-
necessary communication and notifying nodes of state
changes. We believe the only major task to making
our model much more useful and available is seg-
ment migration. To make it truly scalable, something
like the Chord approach to joining and exiting nodes
would be needed.

References

[1] DECANDIA, G., HASTORUN, D., JAMPANI, M.,
KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND VoO-



GELS, W. Dynamo: Amazons highly available
key-value store. In SOSP’07 (October 2007).

KARGER, D., SHERMAN, A., BERKHEIMER, A.,
Boastap, B., DuaniDINA, R., IwamoTO, K.,
Kim, B., MATKINS, L., AND YERUSHALMI,
Y. Web caching with consistent hashing. In
WWW ’99: Proceedings of the eighth interna-
tional conference on World Wide Web (New York,
NY, USA, 1999), Elsevier North-Holland, Inc.,
pp- 1203-1213.

LAMPORT, L. The part-time parliament. ACM
Trans. Comput. Syst. 16, 2 (1998), 133-169.

StoicAa, 1., Morris, R., KARGER, D.
KAASHOEK, M. F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup service
for internet applications. SIGCOMM Comput.
Commun. Rev. 31, 4 (2001), 149-160.



