
The Backward Algorithm
Of the HMM algorithms we currently know, the Forward algorithm finds the probability
of a sequence P(x) and the Viterbi algorithm finds the most probable path that generated
sequence x.

However, we may need to do further inference on the sequence. For example, we may
wish to know the probability that observation xi in the sequence came from state k i.e.
P(πi = k | x). This is the posterior probability of state k at time step i when the emitted
sequence is known.

The approach to obtaining this posterior probability is a bit indirect. We first calcu-
late the join probability of observing the sequence and having state πi = k:

P(x, πi = k) = P(x1 . . . xi, πi = k) P(xi+1 . . . xL | x1 . . . xi, πi = k)
= P(x1 . . . xi, πi = k) P(xi+1 . . . xL | πi = k)

The first term in the product is the probability of observing the sequence up to the ith

symbol where the ith symbol is generated from state k. We see that this term is simply
a value fk(i) computed in the forward algorithm. The second term, we call bk(i), is the
second term and it is computed in the Backward algorithm:

bk(i) = P(xi+1 . . . xL | πi = k)

Thus, we calculate P(x, πi = k) as follows:

P(x, πi = k) = P(πi | x)P(x) = fk(i)bk(i)

And therefore,

P(πi | x) =
fk(i)bk(i)

P(x)

=
fk(i)bk(i)

fN(L)

where L is the length of sequence x and N is the end state in the HMM.
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Description
We build a dynamic programming matrix such that the (k, i)th value of the matrix is
defined as:

bk(i) = P(xi+1 . . . xL | πi = k) (1)

That is, bk(i) stores the probability of observing the rest of the sequence after time step
i given that at time step i we are in state k in the HMM.

We terminate when we compute b0(0) which is the probability of observing the en-
tire sequence given that the first state is the begin state. In practice, we would usually
not run the algorithm to completion because the forward algorithm is used to find the
full probability of the sequence. Nonetheless, we see that P(x) is the value of b0(0) in
the Backward algorithm.

We compute the values in the matrix from the right most column (i.e. the Lth column)
which corresponds to the probabilities of moving to the end state after observing the Lth

element in the sequence from each state. Thus, we perform the following initialization:

bk(L) = ak,0 for all k

Each element is then calculated using the following recurrence:

bk(i) =
∑

l

akl el(xi+1) bl(i + 1) (2)

That is, we sum over all states l where each term in the sum is the probability of tran-
sition from k to the next state l, denoted akl, times the probability of emitting the next
character in the next state el(xi + 1) all multiplied the backward probability calculated
from that next entry in the matrix bl(i + 1).

Example
Assume the following sequence was generated from the example HMM:

x = TAGA (3)

We wish to compute the full matrix which is the posterior P(πi | x) for every state at
every time step. We start by initializing the right-most column in the matrix:
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State, l
Time Step, t 0 1 (T) 2 (A) 3 (G) 4 (A)

γ0 - - - - 0
γ1 - - - - 0
γ2 - - - - 0
γ3 - - - - 0.6
γ4 - - - - 0.9
γ5 - - - - 0

We have fully filled in the probabilities at time step for the last symbol t = 4. The
entries in this column denote the probability moving to the end state from each state
after generating the entire sequence.

We now work backward from the left column to the right column filling in the matrix.
We show the calculations for filling in the first four entries of the column corresponding
to t = 3:

bγ1(t = 3) = aγ1γ3 eγ3(A) bγ3(4) + aγ1γ1 eγ1(A) bγ1(4)

= (0.8 × 0.2 × 0.6) + (0.2 × 0.4 × 0)

= 0.096

Notice that in the sum
∑
l

akl el(xi+1) bl(i + 1), we only need to sum over the states l

where akl , 0. Since the only transitions from state γ1 are to gamma3 and itself, we only
include these states in the summation because the transition probabilities to the other
states from γ1 are 0.

We continue with our calculations:

bγ2(t = 3) = aγ2γ4 eγ4(A) bγ4(4) + aγ2γ2 eγ2(A) bγ2(4)

= (0.2 × 0.1 × 0.9) + (0.8 × 0.4 × 0)

= 0.018
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bγ3(t = 3) = aγ3γ5 eγ3(A) bγ5(4) + aγ3γ3 eγ3(A) bγ3(4)

= (0.6 × 0 × 0) + (0.4 × 0.2 × 0.6)

= 0.048

We insert these values in the matrix:

State, l
Time Step, t 0 1 (T) 2 (A) 3 (G) 4 (A)

γ0 - - - 0 0
γ1 - - - 0.096 0
γ2 - - - 0.018 0
γ3 - - - 0.048 0.6
γ4 - - - - 0.9
γ5 - - - - 0

We continue these computations and fill in the entire matrix. The full probability of
the sequence under the model will be the value bγ0(t = 0) (i.e. the tom-most-left entry)
in the dynamic programming matrix.
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