Halfspaces

The **halfspace** hypothesis space is the set of hypotheses that consist of a hyperplane in a *d*-dimensional coordinate space that classifies a feature vector $\phi(x) \in \mathbb{R}^{d+1}$ as either -1 or 1 based on which side of the hyperplane it lies. Here *d* represents the number of features of item *x*. A hypothesis in this space is often called a **linear classifier** or a **perceptron**.

Mathematical Construction

A hyperplane in d-dimensional space is To rigorously define this hypothesis space, we first define the set of affine functions in d-dimensions as A_d where,

$$A_d = \{ f_{\mathbf{w},b} \mid \mathbf{w} \in \mathbb{R}^d, b \in \mathbf{R} \}$$

and

$$f_{\mathbf{w},b}(\mathbf{v}) = \langle \mathbf{w}, \mathbf{v} \rangle + b$$

Since we are considering a coordinate vector space, we will use the dot product and thus,

$$f_{\mathbf{w},b}(\mathbf{v}) = \mathbf{w} \cdot \mathbf{v} + b$$

$$= \left(\sum_{i=1}^{d} w_i v_i\right) + b$$

An affine function is a hyperplane in d-dimensional space that is translated by a scalar b. In the context of affine functions for classification, the scalar b is called the **bias**.

Note that we can include the bias term into the inner-product by simply appending b to the beginning of the **w** vector to form **w**' and to then append the value 1 to the beginning of each **v** vector forming vector **v**. That is, $v'_0 = 1$.

Then we see that,

$$\langle \mathbf{w}, \mathbf{v} \rangle + b = \langle \mathbf{w}', \mathbf{v}' \rangle$$

Proof:

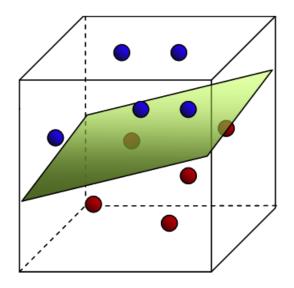


Figure 1: A hyperplane in \mathbb{R}^3 used as a decision-boundary for the instances that lie in this space.

$$f_{\mathbf{w},b}(\mathbf{v}) = b + \langle \mathbf{w}, \mathbf{v} \rangle$$

$$= b + \sum_{i=1}^{d} w_i v_i$$

$$= b(1) + \sum_{i=1}^{d} w_i v_i$$

$$= w_0' v_0' + \sum_{i=1}^{d} w_i' v_i'$$

$$= \sum_{i=0}^{d} w_i' v_i'$$

$$= \langle \mathbf{w}', \mathbf{v}' \rangle$$

We will then redefine the notation so that the set of functions we consider will be linear functions rather than affine functions:

$$A_d = \{ f_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^d \}$$

and

$$f_{\mathbf{w}}(\mathbf{v}) = \langle \mathbf{w}, \mathbf{v} \rangle$$

where **v** is an arbitrary vector in \mathbb{R}^{d+1} .

Classification

A half space hypothesis space \mathcal{H} is then the set of functions

$$\mathcal{H} = \{ \operatorname{sign}(f_{\mathbf{w}}(\mathbf{v})) \mid f_{\mathbf{w}} \in A_d \}$$

That is, each hypothesis in \mathcal{H} is parameterized by coefficients w_0, w_1, \dots, w_d that defines the hyperplane decision boundary between -1 and 1 instances.

Also, we note that the weight vector \mathbf{w} is normal to the hyperplane. If we have a vector \mathbf{v} that lies on the hyperplane, then their inner product is zero. That is,

$$\langle \mathbf{w}, \mathbf{v} \rangle = 0 \implies \mathbf{w} \perp \mathbf{v}$$

When operating on feature vectors $\phi(x) \in \mathbb{R}^{d+1}$, we will always assume that $\phi(x)_0 = 1$ and that $\phi(1)_1 \dots \phi(x)_d$ are the d features of item x. Furthermore we will assume that w_0 of \mathbf{w} will be the bias term.

Lastly, we see that instances that fall on the same side of the hyperplane for which \mathbf{w} points will form an acute angle from the hyperplane to \mathbf{w} . Conversely, instances that fall on the opposite side of the hyperplane for which \mathbf{w} points will form an obtuse angle from the hyperplane to \mathbf{w} . Thus, the side of the hyperplane for which \mathbf{w} points away from will be the side of the hyperplane with positive labeled instances.