CPU Scheduling

CS 537 - Introduction to Operating Systems

Objectives

* High throughput
* Low response time
* Good utilization of system resources
— low waiting time in system
* Avoid starvation
* Fairness
» Be efficient in scheduling - it’s done often

Bursts

e CPU burst

— interval of time a process would run before
blocking if not preempted

¢ /O burst

— time process spends doing a single 1/0
operation

* Burst times do not include waiting times

CPU and I/0 Bounded Processes

* CPU bound process
— process spends most of its time using processor
— very long CPU bursts
— compiler, simulator, scientific application
¢ I/O bound process
— process spends most of its time using I/O
— very short CPU bursts
— word processors, database applications
* Processes usually either CPU or I/O bound

— behavior may change over time (drastically)

Schedulers

* Short-term scheduler
— pick best job from those currently in memory
— pick a currently active process
— this is what we will be concerned with
* Long-term scheduler
— pick best jobs to place in memory
— batch system (CONDOR)

— need to pick jobs that will run well together
* want a good mix of CPU bound and I/O bound jobs

Invoking Scheduler

e 4 situations that could lead to scheduling a new
process
1. running process blocks
2. running process terminates
3. running process switches to ready state
* timer interrupt
4. blocked process switches to ready state
* finish I/O operation
« if first 2 only, non-preemptive scheduler
e if 3 or 4, preemptive scheduler
* Notice that all 4 do involve interrupts
— either software or hardware
— no interrupts, no context switches

Analyzing Schedulers

* Many possible parameters to measure

— throughput, avg waiting time, utilization, etc.
* Must pick important parameters

— system dependant

— example

* maximize throughput with all waiting times < 1 sec

* Various methods to analyze algorithm

— deteministic, queueing theory, simulation

— will examine these at end of lecture

Analysis
* Consider following system
Process Burst Time
A 5
B 20
C 12
 Gantt chart
5 12
A] B [¢]

 Calculations
— avg waiting time = X(start times) / # of procs
— throughput = # of finished jobs / time period
— utilization = time busy / total time

Scheduling Policies

¢ First-Come, First Serve (FCFS)
¢ Shortest Job First (SJF)

— non-preemptive and preemptive
* Priority
* Round-Robin
e Multi-Level Feedback Queue

FCFS

* Processes get processor in order they arrive
to ready queue

* Very easy to manage
— new job goes to tail of queue
— next job to run is removed from the head

* Poor policy for CPU scheduling

— very sensitive to the order in which jobs arrive

FCFS
* Example
Process Burst
A 24
B 3
C 3
24 3 3
A [[c]

W=(0+24+27)/3=17ms
now switch processes A and C

W=(0+3+6)/3=3ms

Convoy Effect

/O bound jobs have short CPU bursts
¢ CPU bound jobs have long CPU bursts

Once CPU bound job does go to I/O, all of
the I/O bound jobs will rush through CPU
and group behind the CPU bound job

* Leads to poor utilization

* Leads to poor response time

Convoy Effect

Process Burst

A 3

B 3

C 1000

D 3
1000

3 3
‘A‘B! c ED‘

i
A and B finish /O and get in line behind D
«Disk is now Idle as all jobs wait on CPU
«Process C finishes and goes to /O
D, A, and B all finish quickly and go to /O
*CPU sits idle while all jobs at Disk

< 1000
C

SJF non-Preemptive

* Schedule the job with the shortest burst
— better titled Shortest Burst First

* Provably the lowest response time (highest
throughput)

[(al®] ¢ [» |

a<b<c<d<..

R=[0+a+ (ath) + (atb+c) +...]/n

now switch any 2, for example b and ¢

R’ =[0+a+ (atc) + (a+ctb) +...]1/n

(a+c) > (a+b) and all other terms are the same
R<R’

SJF non-Preemptive

* Requires knowledge of future
— IMPOSSIBLE!
* So why study this

— if we can analyze after the fact, can compare to
ideal
— fortunately, consecutive bursts tend to be
similar
e if B,=X, then B, =X
« this allows us to predict the future

SJF non-Preemptive

* How do we do prediction of future?

— could just use the time of the last burst
 Shortest Last Burst First
« anomalous burst will give bad prediction

— use an exponential average
« consider all past bursts
* smooth out anomalous bursts
« give less weight to bursts that happened longer ago

Exponential Averaging

+ Equation:
Ty = 0ty +(1-) T, O<ac<l eqt. |
t, = time of burst just finished
T, = predicted time of burst just finished
T, = predicted time of the next burst
o, = weight to give past events
if o =1, just consider the last burst
if o = 0, just use a default prediction
* Let’s expand out the above function
T, =0t + (-1, eqt. 2
combine equations 1 and 2 to get:
Ty =0, + o+ (o) Ot + o+ (- 0Ty
T, = arbitrary value (perhaps a system wide average burst time)
* For scheduling, pick the job with the lowest T value

SJF Preemptive

* Identical to SJF non-Preemptive except:

— if new job has shorter burst than current job has
left to run, stop the current job and run the new
job

» Often called Shortest Remaining Time First

SJF Algorithm Problems

e Starvation

— long burst never gets to run because lots of
short jobs in the system

¢ Fairness

— long jobs get to run very infrequently because
of lots of short jobs in the system

Aging

* Common solution to starvation / fairness
problem
— when job enters queue, give it a value of 0
— after every scheduling decision it loses,
increase its value by 1

— if the value become greater than some
threshold, it becomes the next job scheduled no
matter what

— if multiple jobs above threshold, pick the one
with the highest value

Priority Scheduling

* Each job has a priority associated with it
¢ Run the job with the highest priority
— ties can be broken arbitrarily (FCFS, perhaps)
* How do priorities get set?
— externally
* programmer
« administrator
— internally
* OS makes decision
* avg size of burst, memory requirements, etc.
« Starvation and Fairness are still issues
— use priority aging (increase priority over time)

Round-Robin

Give each burst a set time to run

If burst not finished after time, preempt and start
the next job (head of the ready queue)

— preempted process goes to back of ready queue

If burst does finish, start the next job at the head of
the ready queue

New jobs go to the back of the ready queue
Similar to FCFS except time limits on running

Time a burst gets to run before preemption is
called a Quantum

Round-Robin

Need hardware timer interrupts

Very fair policy

— everyone gets an equal shot at processor

Fairly simple to implement

If quantum is large enough to let most short bursts
finish, short jobs get through quickly

Must consider overhead of switching processes

— if quantum is too small, overhead hurts performance

— if quantum is too large, RR becomes like FCFS

Round-Robin

Process Burst
A 6
B 10
C 7
quantum =3

3 3 3 3 3 3 3 11
[aTo [clalnlc olcly

Multilevel Queue Scheduling

Maintain multiple queues

Each queue can have a different scheduling
policy

Or maybe same policy but different
parameters

— All are Round-Robin with different quantums

Multilevel Feedback Queue

Multiple queues for jobs depending on how long
they have been running (current burst)

All jobs enter at queue 0

— these jobs run for some quantum, n

If jobs do not complete in n, they move to queue 1
— these jobs run for some quantum, m (m > n)

If these jobs do not complete in time, they are
moved to yet another queue

A job can only be selected to run from a queue if
all queues above it are empty

Jobs higher up, preempt jobs lower down

Multilevel Feedback Queue

new bursts

Queue 0 quantum 8

CPU
Qe
-

Multilevel Feedback Queue

Longer a job is in the system, the longer it
can be expected to stay

Let long jobs run only when there are no
short jobs around

Different levels of long jobs
Can using aging to prevent starvation

— if a job sits in a low level queue for too long,
move it up one or more levels

Multilevel Feedback Queue

Important issues in a multilevel queue
number of queues

scheduling algorithm at each queue

method for upgrading a job to higher level
method used for demoting a job to lower level

“nokhwN =

which queue does a process enter on arrival

10

