Deadlock

CS 537 - Introduction to Operating Systems

Defining Deadlock

* Deadlock is a situation where 2 or more
processes are unable to proceed because
they are waiting for shared resources.

» Three necessary conditions for deadlock

— able to hold more than one resource at a time
— unwilling to give up resources
— cycle

» Break any one of these three conditions and

deadlock is avoided

Example

* Imagine 4 cars at an intersection

Example

¢ Lanes are resources.
» Deadlock has occurred because
— each car is holding 2 resources (lanes)
— none of the cars is willing to backup
— car 0 waits for car 1 which waits for car 2
which waits for car 3 which waits for car 0
« this is a cycle
* If any ONE of the above conditions can be
broken, deadlock would be broken

Dealing with Deadlock

» Three ways to deal with deadlock
— never allow it to occur
— allow it to occur, detect it, and break it
— ignore it
« this is the most common solution

e requires programmers to write programs that don’t
allow deadlock to occur

Not Allowing Deadlock to Occur

* Don’t allow cycles to happen

» Force requests in specific order

— for example, must requests resources in
ascending order

— Process A may have to wait for B, but B will
never have to wait for A
* Must know in advance what resources are
going to be used

— or be willing and able to give up higher
numbered resources to get a lower one

Detecting Deadlock

* Basic idea

— examine the system for cycles
— find any job that can satisfy all of its requests

— assume it finishes and gives its resources back
to the system

— repeat the process until

« all processes can be shown to finish - no deadlock

* two or more processes can’t finish — deadlocked

Detecting Deadlock

* Very expensive to check for deadlock

— system has to stop all useful work to run an
algorithm

¢ There are several deadlock detection
algorithms
— not used very often

— we won’t cover them

Deadlock Recovery

* So what to do if deadlock is discovered?
— OS can start deactivating processes
— OS can revoke resources from processes

* Both of the above solutions will eventually
end a deadlock

— which processes to deactivate?

— which resources to revoke?

Dining Philosophers

Philosophers sitting around a dining table

Philosophers only eat and think
* Need two forks to eat
» Exactly as many forks as philosophers

Before eating, a philosopher must pick up
the fork to his right and left

* When done eating, each philosopher sets
down both forks and goes back to thinking

Dining Philosophers

Dining Philosophers

* Only one philosopher can hold a fork at a
time

* One major problem

¢ what if all philosophers decide to eat at
once?
— if they all pick up the right fork first, none of

them can get the second fork to eat

— deadlock

Philosopher Deadlock Solutions

* Make every even numbered philosopher
pick up the right fork first and every odd
numbered philosopher pick up the left fork
first

* Don’t let them all eat at once

— a philosopher has to enter a monitor to check if
it is safe to eat
* can only get into the monitor if no one else in it

— each philosopher checks and sets some state
indicating their condition

Philosopher Deadlock Solution
enum { THINKING, HUNGRY, EATING };
monitor diningPhilosopher {

int state[5];
condition self[5];
diningPhilosphers { for(int i=0; i<5; i++) state[i] = THINKING: }
pickup(int i) {

stateli] = HUNGRY;

test(i);

if (state[i] '= EATING) selffi].wait;
)
putDown(int i) {

state[i] = THINKING;

test((i+5) % 6);

test((i+1) % 6);
)
test(int i)

if((state](i + 5) % 6] = EATING) && (state[i] = HUNGRY)

&& (state]i + 1) % 6] I= EATING)) {
state[i] = EATING;
selffil.signal;

