Disk Allocation

CS 537 - Introduction to Operating Systems

Free Space

* Need to keep track of which blocks on a
disk are free

* Disk space is allocated by sectors
— 512 bytes typically

* The list of free blocks is also stored on disk

Bit Vector

* A very simple method is to keep a single bit
for each block on disk
» Example
— Free blocks: 2, 5, 13, 14, 15, 23, 24,29, 31, ...
— Bit Vector: 00100100000001110000000110000101...
* Requires the use of some disk space

— a 16 GB disk would require 8192 blocks to map
free list (assuming 512 byte blocks)

— roughly 0.025% of entire disk space

Bit Vector

Fairly simple to implement
— requires hardware support for bit manipulation

Biggest advantage is the ability to select
whichever block

— can be used to pick adjacent blocks for a file

* For good performance, cache the bit vector
in memory

— allows for fast lookup of available blocks

— need to write the vector back to disk frequently
« crash recovery

Linked List

» Keep a pointer in each free block to the next
free block

* To find a free block, just grab the first block
off the list

* Problem arises if multiple free blocks are
needed

— have to follow links all over disk - poor
performance

Grouped Linked List

* A single free block will point to a group of
other free blocks

 Consider the following free blocks
- 2,5,13,14,15,23,24,29,31,37,38,41, ...

) 29

5 31

3 37

4 38

15 41

23 42

) 24 56
pointer (0 next

free list block 29 61

Grouped Linked List

The last entry in each group points to
another free block with pointers to more
free blocks

When all the blocks in a group have been
allocated, then use the block that held the
pointers

Requires no disk space for implementing

— just need to store the location of the first pointer
block

Clusters

Disk blocks are 512 bytes

Most file systems group several blocks
together to form a cluster

— 1K, 4K, 16K, etc.

Lowest levels of OS must deal with
physical sectors

Everything else can work on clusters

— this includes the file system

— think of them as logical sectors

Clusters

4 KB cluster fits nicely into a single page of
memory

This helps in prefetching data

Internal fragmentation is now worse

— not bad though if the average file is near 4 KB

— or if most files are very large

Clusters

» Reconsider the bit vector requirements
— 16 GB disk using 4KB clusters
— each bit in the vector now represents 8 physical
sectors
— total memory requirements are now 1024
physical sectors

File Space Allocation

* Basic issues
— most files change size over there life time
— some files tend to be read sequentially
« would like to allocate space sequentially on disk
— some files are not read sequentially
« database files for example
« would still like to have decent performance
— files are continuously created and deleted
« this could cause fragmentation of disk
— disks are slow
« most information will be cached in memory

Contiguous Allocation

* When a file is first created, give it a set of
contiguous blocks on disk
* Simple method to implement

— just search free list for correct number of
consecutive blocks and mark them as used

* Supports sequential access very well
— files entire data is stored in adjacent blocks
* Also supports random access well

— quick and easy to determine where any piece of
data lives

Contiguous Allocation

[l [ifofoJofo oot [iofr1]1]1]o]o]

Current Disk Allocation

Newly created ﬁle4—|:|:|:|

This file could start in any of the blocks 3 through 6

Contiguous Allocation

* Several big problems with this method
— External fragmentation of disk
— How to determine how much space a file
should be given
¢ default value? user defined?
— What happens if file needs to grow beyond
allocated space?
« don’t let it happen? copy it to a bigger space?

Linked Allocation

* Keep a pointer in each file block to the next
block of the file

* Simple to imlement

— directory just needs to keep track of the first
block in the file

Allows file to easily grow

No external fragmentation

Linked Allocation

directory

test.c ‘ 7

last block in the file

\
dddddddddd
——

current disk allocation

Linked Allocation

* A few problems with this method
— a small portion of a files space is used for
pointers instead of for data
« not a huge issue
— to find a random byte in the file, must search
through all the other blocks to find the right
pointer
« poor for performance in non-sequential accesses
« this is a huge issue

File Allocation Table (FAT)

* This is an extension of the linked allocation
* Instead of putting the pointers in the file,
keep a table of the pointers around

* This table can be quickly searched to find
any random block in the file

FAT

last block in the file

FAT
0
1 eof
directory 2
3 s
4
5 1
test.c ‘ 7 p
7
8
9

current disk allocation

FAT

All the blocks on disk must be included in
the table
e Assume 4 KB clusters and 16 GB disk
— number of entries in the FAT is about 4 million
— assume each entry is 32 bits
— size of the FAT is 128 MB
* A nice side effect of FAT is for the free list

— whether a block is free or not can be recorded
in the table

FAT

* For good performance, the FAT should be
cached in memory
— otherwise traversing the list would require
many disk accesses to “follow” the pointers
* This method works well for both sequential
and random access

* This is the method used by Windows

Indexed Allocation

* Another solution is to record all of the
locations of a files blocks in a separate
“file”

* This “file” is referred to as an index node
— inode for short

* It contains all the pointers to the blocks that
a file currently owns

Indexed Allocation

directory

test.c ‘ 1

Al umwa

5}

Indexed Allocation

» The amount of space a file can hold would
be limited by the size of the inode
— if only 10 entries fit in the inode, that would
mean only 10 different blocks could be
referenced
» To represent a large file, would need large
inodes
» Large inode would be a waste of space for
small files

¢ Use indirection!

Indexed Allocation

Unix inodes are a total size of 128 bytes
— the first part of an inode is the meta data for a file
— atotal of 13 pointers (each 4 bytes long)

There are 10 direct pointers
— point directly to data blocks for the file

There is 1 indirect pointer

— points to a block that contain only pointers to data
blocks for the file

There are also 1 doubly indirect and 1 triply
indirect pointers

CHUARANE W =D

10
1
12

Indexed Allocation

Meta Data
Daa Block
[»
4
:: Data
T - Block
Y Data
— Block
— indirect block
indirect block
T~ doubly indirect

triply indirect block

Indexed Allocation

Small files will use the direct pointers

— little overall wasted space

Large files will use the indirect pointers

— allows for huge files

Maximum number of pointers in an indirect
block is 512/4 = 128 pointers

Maximum file size (in blocks) is
— 10 + 128 + 128%128 + 128*128*128 =~ 2 million blocks

Indexed Allocation

* Where are the inodes stored?
— in fixed location at beginning of disk
— think of it as a big table of inodes

— the root directory is stored at location 0 in the
table

Indexed Allocation

* Toread a single data block may require
multiple accesses to disk
— need to go through indirect pointers

* CACHE!

— place a referenced inode and subsequent
indirect pointer blocks into memory and access
there

10

