Disk Allocation

CS 537 - Introduction to Operating Systems

Free Space

* Need to keep track of which blocks on a
disk are free

* Disk space is allocated by sectors
— 512 bytes typically

* The list of free blocks is also stored on disk

Bit Vector

* A very simple method is to keep a single bit
for each block on disk
» Example
— Free blocks: 2, 5, 13, 14, 15, 23, 24,29, 31, ...
— Bit Vector: 00100100000001110000000110000101...
* Requires the use of some disk space

— a 16 GB disk would require 8192 blocks to map
free list (assuming 512 byte blocks)

— roughly 0.025% of entire disk space




Bit Vector

Fairly simple to implement
— requires hardware support for bit manipulation

Biggest advantage is the ability to select
whichever block

— can be used to pick adjacent blocks for a file

* For good performance, cache the bit vector
in memory

— allows for fast lookup of available blocks

— need to write the vector back to disk frequently
« crash recovery

Linked List

» Keep a pointer in each free block to the next
free block

* To find a free block, just grab the first block
off the list

* Problem arises if multiple free blocks are
needed

— have to follow links all over disk - poor
performance

Grouped Linked List

* A single free block will point to a group of
other free blocks

 Consider the following free blocks
- 2,5,13,14,15,23,24,29,31,37,38,41, ...
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Grouped Linked List

The last entry in each group points to
another free block with pointers to more
free blocks

When all the blocks in a group have been
allocated, then use the block that held the
pointers

Requires no disk space for implementing

— just need to store the location of the first pointer
block

Clusters

Disk blocks are 512 bytes

Most file systems group several blocks
together to form a cluster

— 1K, 4K, 16K, etc.

Lowest levels of OS must deal with
physical sectors

Everything else can work on clusters

— this includes the file system

— think of them as logical sectors

Clusters

4 KB cluster fits nicely into a single page of
memory

This helps in prefetching data

Internal fragmentation is now worse

— not bad though if the average file is near 4 KB

— or if most files are very large




Clusters

» Reconsider the bit vector requirements
— 16 GB disk using 4KB clusters
— each bit in the vector now represents 8 physical
sectors
— total memory requirements are now 1024
physical sectors

File Space Allocation

* Basic issues
— most files change size over there life time
— some files tend to be read sequentially
« would like to allocate space sequentially on disk
— some files are not read sequentially
« database files for example
« would still like to have decent performance
— files are continuously created and deleted
« this could cause fragmentation of disk
— disks are slow
« most information will be cached in memory

Contiguous Allocation

* When a file is first created, give it a set of
contiguous blocks on disk
* Simple method to implement

— just search free list for correct number of
consecutive blocks and mark them as used

* Supports sequential access very well
— files entire data is stored in adjacent blocks
* Also supports random access well

— quick and easy to determine where any piece of
data lives




Contiguous Allocation
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This file could start in any of the blocks 3 through 6

Contiguous Allocation

* Several big problems with this method
— External fragmentation of disk
— How to determine how much space a file
should be given
¢ default value? user defined?
— What happens if file needs to grow beyond
allocated space?
« don’t let it happen? copy it to a bigger space?

Linked Allocation

* Keep a pointer in each file block to the next
block of the file

* Simple to imlement

— directory just needs to keep track of the first
block in the file

Allows file to easily grow

No external fragmentation




Linked Allocation
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Linked Allocation

* A few problems with this method
— a small portion of a files space is used for
pointers instead of for data
« not a huge issue
— to find a random byte in the file, must search
through all the other blocks to find the right
pointer
« poor for performance in non-sequential accesses
« this is a huge issue

File Allocation Table (FAT)

* This is an extension of the linked allocation
* Instead of putting the pointers in the file,
keep a table of the pointers around

* This table can be quickly searched to find
any random block in the file
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FAT

All the blocks on disk must be included in
the table
e Assume 4 KB clusters and 16 GB disk
— number of entries in the FAT is about 4 million
— assume each entry is 32 bits
— size of the FAT is 128 MB
* A nice side effect of FAT is for the free list

— whether a block is free or not can be recorded
in the table

FAT

* For good performance, the FAT should be
cached in memory
— otherwise traversing the list would require
many disk accesses to “follow” the pointers
* This method works well for both sequential
and random access

* This is the method used by Windows




Indexed Allocation

* Another solution is to record all of the
locations of a files blocks in a separate
“file”

* This “file” is referred to as an index node
— inode for short

* It contains all the pointers to the blocks that
a file currently owns

Indexed Allocation
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Indexed Allocation

» The amount of space a file can hold would
be limited by the size of the inode
— if only 10 entries fit in the inode, that would
mean only 10 different blocks could be
referenced
» To represent a large file, would need large
inodes
» Large inode would be a waste of space for
small files

¢ Use indirection!




Indexed Allocation

Unix inodes are a total size of 128 bytes
— the first part of an inode is the meta data for a file
— atotal of 13 pointers (each 4 bytes long)

There are 10 direct pointers
— point directly to data blocks for the file

There is 1 indirect pointer

— points to a block that contain only pointers to data
blocks for the file

There are also 1 doubly indirect and 1 triply
indirect pointers
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Indexed Allocation
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Indexed Allocation

Small files will use the direct pointers

— little overall wasted space

Large files will use the indirect pointers

— allows for huge files

Maximum number of pointers in an indirect
block is 512/4 = 128 pointers

Maximum file size (in blocks) is
— 10 + 128 + 128%128 + 128*128*128 =~ 2 million blocks




Indexed Allocation

* Where are the inodes stored?
— in fixed location at beginning of disk
— think of it as a big table of inodes

— the root directory is stored at location 0 in the
table

Indexed Allocation

* Toread a single data block may require
multiple accesses to disk
— need to go through indirect pointers

* CACHE!

— place a referenced inode and subsequent
indirect pointer blocks into memory and access
there
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