Disk Scheduling

CS 537 - Introduction to Operating Systems

Disk Queues

» Each disk has a queue of jobs waiting to
access disk
— read jobs
— write jobs

* Each entry in queue contains the following

— pointer to memory location to read/write
from/to

— sector number to access
— pointer to next job in the queue

¢ OS usually maintains this queue

Disk Queues
Entry 3 Entry 2 Entry 1
Sector Z Sector Y Sector X
Mem Pir 2 MemPtr 1 Mem Ptr 0 >
next eﬂ[fy next en[ry next eﬂ[fy

1 -

tail Disk




First-In, First-Out (FIFO)

* Do accesses in the order in which they are
presented to the disk

e This is very fair to processes
* This is very simple to implement
* Approximates random accesses to disk

— gives rated, average latency for every read

— will have large average seeks between each
access

* Not a good policy

FIFO

sReference String: 5,35,2,14,12,21,3,9,22,20

\ tail head /

«Calculation of total seek distance:
30433+ 12+42+9+18+6+12+2=124

FIFO

* Obviously, reordering the accesses to the
disk could greatly reduce the seek distance
— seek distance ~ seek time

* Want to put close accesses next to each
other in the queue




Disk Scheduling

* Recall, statistical average seek time is 9 ms
— randomly accessing all over disk

» Multiple requests to disk will arrive while
one is being serviced

» Can drastically reduce average seek time by
intelligent scheduling accesses

Shortest Seek Time First (SSTF)

e When a new job arrives, calculate its seek
distance from the current job

¢ Place it in disk queue accordingly

¢ Service the next closest access when the
current job finishes

SSTF

*Reference String: 5,35,2, 14, 12,21, 3,9,22,20

«Calculation of total seek distance:
2+1+74+34+2+46+14+1+13=35




SSTF

* Provides substantial improvement in seek
time over FCFS

* One major issue
— STARVATION

» What if some accesses are on far end of disk
from current access
— jobs are constantly arriving in a real system
— jobs closest to the current access will keep

getting serviced

— jobs on the far end will starve

Elevator Algorithm

e Similar to SSTF

¢ One major difference

— next job scheduled is closest to current job but
in one particular direction

— all jobs in other direction are put at the end of
the list

 Similar to an elevator
— it goes up first and then comes back down

Elevator Algorithm

*Reference String: 5,35,2, 14, 12,21, 3,9,22,20

«Calculation of total seek distance:
4+43+2+6+1+1+13432+1=63




Elevator Algorithm

* Avoids starvation
¢ Provides very good performance
« Still has one major issue

— FAIRNESS

* Jobs in the middle of the disk get serviced
twice as much as jobs at the ends

One-Way Elevator Algorithm

» Exactly like elevator algorithm except
scheduling is done in only one direction
— for example, elevator always goes “up”
 This will require one long seek after
finished going up
— have to go back to the beginning
» This is okay because one long seek doesn’t
take very long
— IBM disk: 15 ms from one end to the other
* This long seek is done infrequently

One-Way Elevator Algorithm

*Reference String: 5,35,2, 14, 12,21, 3,9,22,20

«Calculation of total seek distance:
443+2+6+1+1+13+33+1=64




